import pandas as pd def merge(): # 读取三份csv文件 df1 = pd.read_csv("../_dataset/TrafficLabelling_/Friday-WorkingHours-Morning.pcap_ISCX.csv") df2 = pd.read_csv("../_dataset/TrafficLabelling_/Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv") df3 = pd.read_csv("../_dataset/TrafficLabelling_/Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv") # 将它们拼合成一个DataFrame df = pd.concat([df1, df2, df3]) # 保存为新的csv文件 df.to_csv("../_dataset/TrafficLabelling_/Friday-WorkingHours-merged.csv", index=False) def select(): df = pd.read_csv('../_dataset/TrafficLabelling_/Friday-WorkingHours-merged.csv') df_ddos = df[df.iloc[:, -1] == 'DDoS'] df_ddos.to_csv('../_dataset/TrafficLabelling_/Friday-WorkingHours-DDoS.csv', index=False) def search(query: str, row_name: str): df = pd.read_csv('../_dataset/TrafficLabelling_/Friday-WorkingHours-merged.csv') result = df[df[row_name].str.contains(query)] print(result.head()) if __name__ == "__main__": # merge() # select() search("172.16.0.1-192.168.10.50-49533-80-6", "Flow ID")