diff --git a/.gitignore b/.gitignore index 33e7851..9d913f1 100644 --- a/.gitignore +++ b/.gitignore @@ -3,7 +3,7 @@ __pycache__/ *.py[cod] *$py.class - +.idea/ # C extensions *.so diff --git a/_reference/LICENSE b/_reference/LICENSE new file mode 100644 index 0000000..5a3eac4 --- /dev/null +++ b/_reference/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2021 talshapira + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/_reference/README.md b/_reference/README.md new file mode 100644 index 0000000..d5cb68d --- /dev/null +++ b/_reference/README.md @@ -0,0 +1,67 @@ +# FlowPic: A Generic Representation for Encrypted Traffic Classification and Applications Identification + +Identifying the type of a network flow or a specific application has many advantages, but become harder in recent years due to the use of encryption, e.g., by VPN and Tor. +Current solutions rely mostly on handcrafted features and then apply supervised learning techniques for the classification. + +We introduce a novel approach for encrypted Internet traffic classification and application identification by transforming basic flow data into a picture, em a FlowPic, and then using known image classification deep learning techniques, Convolutional Neural Networks (CNNs), to identify the flow category (browsing, chat, video, etc.) and the application in use. Our approach can classify traffic with high accuracy, both for a specific application, or a flow category, even for VPN and Tor traffic. Our classifier can even identify with high success new applications that were not part of the training phase for a category, thus, new versions or applications can be categorized without additional training. + +A recent [work](https://arxiv.org/abs/2104.03182) by Yang et al. compared different recent methods for Internet Traffic Classification, and showed that our method achieves the best tradeoff between accuracy and model complexity, as shown below (FlowPic marked with [17]): + +

+ +

+ +# Approach + +1. Extract records from each flow, which comprised of a list of pairs, {IP packet size, time of arrival} for each packet in the flow. +2. Split each unidirectional flow to equal blocks (15/60 seconds). +3. Generate 2D-histogram. For simplicity, we set the 2D-histogram to be a square image. +4. Feed a Convolution Neural Network. + + + + +# FlowPics Exploration + + + +

+ +

+ +# Dataset + +We use labeled datasets of packet capture (pcap) files from the Uni. of New Brunswick (UNB): ["ISCX VPN-nonVPN traffic dataset" (ISCX-VPN)](https://www.unb.ca/cic/datasets/vpn.html) and ["ISCX Tor-nonTor dataset" (ISCX-Tor)](https://www.unb.ca/cic/datasets/tor.html), as well as our own small packet capture (TAU), and conduct different types of experiments; (1) multiclass classification experiments over non-VPN/VPN/Tor and merged dataset, (2) class vs. all classification experiments, (3) application identification, and (4) classification of an unknown application. + +Each pcap file corresponds to a specific application, a traffic category and an encryption technique. However, all these captures also contain sessions of different traffic categories, since while performing one action in an application, many other sessions occur for different tasks simultaneously. For example, while using VoIP over Facebook, there is another STUN session taking place at the same time for adjusting and maintaining the VoIP conversation, as well as an HTTPS session of the Facebook site. + +We use a combined dataset only from the five categories that contains enough samples: VoIP, Video, Chat, Browsing, and File Transfer. For these categories we have 3 encryption techniques: non VPN, VPN (for all classes except Browsing) and TOR. +Notice that our categories differ slightly from those suggested by UNB. All the applications that were captured in order to create the dataset, for each traffic category and encryption technique, are shown in the folowing table: + +

+ +

+ +We parsed the pcap files and constructed for each combination of traffic category and encryption technique a CSV file with the following structure - +|pcap_name|ip_src|port_src|ip_dst|port_dst|TCP/UDP|start_time|length|[timestamps_list]|[sizes_list]| , such that each entry corresponds to a specific unidirectional session. + +# TrafficParser + +Contains the code use to generate the dataset (npy files) per experiment. +If you choose to use our proceesed dataset (i.e. CSV files) directly, run the scripts in the following order: +1. Run traffic_csv_converter.py +2. Run datasets_generator.py + +The other two scripts (generic_parser.py + traffic_csv_merger.py) used to generate the proceesed dataset. + +# License + +Our proceesed dataset (i.e. CSV files) is [publicly available](https://drive.google.com/file/d/1gz61vnMANj-4hKNvZv1KFK9LajR91X-m/view?usp=sharing) upon request for researchers. If you are using our dataset, please cite our related research paper, as well as UNB's related research papers: + +* T. Shapira and Y. Shavitt, "FlowPic: A Generic Representation for Encrypted Traffic Classification and Applications Identification," in IEEE Transactions on Network and Service Management, doi: 10.1109/TNSM.2021.3071441. + +* T. Shapira and Y. Shavitt, "FlowPic: Encrypted Internet Traffic Classification is as Easy as Image Recognition," IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019, pp. 680-687. + +* Gerard Drapper Gil, Arash Habibi Lashkari, Mohammad Mamun, Ali A. Ghorbani, "Characterization of Encrypted and VPN Traffic Using Time-Related Features", In Proceedings of the 2nd International Conference on Information Systems Security and Privacy(ICISSP 2016) , pages 407-414, Rome, Italy. + +* Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun and Ali A. Ghorbani, "Characterization of Tor Traffic Using Time Based Features", In the proceeding of the 3rd International Conference on Information System Security and Privacy, SCITEPRESS, Porto, Portugal, 2017. diff --git a/_reference/TrafficParser/datasets_generator.py b/_reference/TrafficParser/datasets_generator.py new file mode 100644 index 0000000..586aaef --- /dev/null +++ b/_reference/TrafficParser/datasets_generator.py @@ -0,0 +1,87 @@ +#!/usr/bin/env python +""" +datasets_generator.py creates final class_vs_all dataset ready to be inserted to machine. +The input for this module are pre-created numpy array containing all classes session 2d_histograms created in traffic_csv_conveter.py +""" +import glob +import numpy as np +# from sklearn.cross_validation import train_test_split +from sklearn.model_selection import train_test_split + +CLASS = "browsing" +TEST_SIZE = 0.1 +DATASET_DIR = "../datasets/" + +VPN_TYPES = { + "reg": glob.glob("../raw_csvs/classes/**/reg/*.npy"), + "vpn": glob.glob("../raw_csvs/classes/**/vpn/*.npy"), + "tor": glob.glob("../raw_csvs/classes/**/tor/*.npy") +} + + +def import_array(input_array): + print("Import dataset " + input_array) + dataset = np.load(input_array) + print(dataset.shape) + return dataset + + +def export_dataset(dataset_dict, file_path): + # with open(file_path + ".pkl", 'wb') as outfile: + # pickle.dump(dataset_list, outfile, pickle.HIGHEST_PROTOCOL) + for name, array in dataset_dict.items(): + np.save(file_path + "_" + name, array) + + +def create_class_vs_all_specific_vpn_type_dataset(class_name, vpn_type="reg", validation=False, ratio=1.2): + class_array_file = [fn for fn in VPN_TYPES[vpn_type] if class_name in fn and "overlap" not in fn][0] + print(class_array_file) + all_files = [fn for fn in VPN_TYPES[vpn_type] if class_name not in fn and "overlap" not in fn] + print(all_files) + + class_array = import_array(class_array_file) + count = len(class_array) + print(count) + + all_count = len(all_files) + count_per_class = ratio*count/all_count + print(count_per_class) + + for fn in all_files: + print(fn) + fn_array = import_array(fn) + p = count_per_class*1.0/len(fn_array) + print(p) + if p < 1: + mask = np.random.choice([True, False], len(fn_array), p=[p, 1-p]) + fn_array = fn_array[mask] + + print(len(fn_array)) + class_array = np.append(class_array, fn_array, axis=0) + print(len(class_array)) + del fn_array + + labels = np.append(np.zeros(count), np.ones(len(class_array) - count)) + print(len(class_array), len(labels), labels[0], labels[count-1], labels[count], labels[-1]) + dataset_dict = dict() + + if validation: + x_train, x_val, y_train, y_val = train_test_split(class_array, labels, test_size=TEST_SIZE) + print(len(y_train), sum(y_train), 1.0*sum(y_train)/len(y_train)) + print(len(y_val), sum(y_val), 1.0*sum(y_val)/len(y_val)) + + dataset_dict["x_train"] = x_train + dataset_dict["x_val"] = x_val + dataset_dict["y_train"] = y_train + dataset_dict["y_val"] = y_val + else: + dataset_dict["x_test"] = class_array + dataset_dict["y_test"] = labels + + export_dataset(dataset_dict, DATASET_DIR + class_name + "_vs_all_" + vpn_type) + + +if __name__ == '__main__': + # create_class_vs_all_specific_vpn_type_dataset(CLASS, validation=True) + # create_class_vs_all_specific_vpn_type_dataset(CLASS, vpn_type="vpn", validation=False) + create_class_vs_all_specific_vpn_type_dataset(CLASS, vpn_type="tor", validation=False) diff --git a/_reference/TrafficParser/generic_parser.py b/_reference/TrafficParser/generic_parser.py new file mode 100644 index 0000000..c1a15e4 --- /dev/null +++ b/_reference/TrafficParser/generic_parser.py @@ -0,0 +1,127 @@ +#!/usr/bin/env python +""" +Use DPKT to read in a pcap file and create one directional sessions of packets sizes (ip total length) and ts. +""" +import dpkt +import os +import socket +import argparse +import csv +import time + +FLAGS = None +# INPUT = "../dataset/iscxNTVPN2016/CompletePCAPs"#"../dataset/CICNTTor2017/Pcaps/tor" #"../dataset/iscxNTVPN2016/CompletePCAPs"#"./test_pacaps"#"../dataset/iscxNTVPN2016/CompletePCAPs" # "" +INPUT = './test_pcaps/my_chat' +FILTER_LIST = None # [(["audio", "voip"], True), (["vpn", "tor"], False)] + +PROTO_DICT = {dpkt.tcp.TCP: "TCP", dpkt.udp.UDP: "UDP"} + + +def inet_to_str(inet): + """Convert inet object to a string + Args: + inet (inet struct): inet network address + Returns: + str: Printable/readable IP address + """ + # First try ipv4 and then ipv6 + try: + return socket.inet_ntop(socket.AF_INET, inet) + except ValueError: + return socket.inet_ntop(socket.AF_INET6, inet) + + +def get_pcaps_list(dir_path, filter_list=None): + def filter_list_func(fn): + if filter_list is not None: + for filter_str_list, type in filter_list: + result = any([filter_str in fn.lower() for filter_str in filter_str_list]) + if result is not type: + return False + return True + return [(os.path.join(dir_path, fn), fn) for fn in next(os.walk(dir_path))[2] if (".pcap" in os.path.splitext(fn)[-1] and filter_list_func(fn))] + + +def parse_pcap(pcap, pcap_path, file_name): + """Print out information about each packet in a pcap + Args: + pcap: dpkt pcap reader object (dpkt.pcap.Reader) + """ + counter = 0 + pcap_dict = {} + + # For each packet in the pcap process the contents + for ts, packet in pcap: + + # Unpack the Ethernet frame + try: + eth = dpkt.ethernet.Ethernet(packet) + except dpkt.dpkt.NeedData: + print("dpkt.dpkt.NeedData") + + # Make sure the Ethernet data contains an IP packet + if isinstance(eth.data, dpkt.ip.IP): + ip = eth.data + elif isinstance(eth.data, str): + try: + ip = dpkt.ip.IP(packet) + except dpkt.UnpackError: + continue + else: + continue + + # Now unpack the data within the Ethernet frame (the IP packet) + # Pulling out src_ip, dst_ip, protocol (tcp/udp), dst/src port, length + + proto = ip.data + + # Print out the info + if type(ip.data)in PROTO_DICT: + session_tuple_key = (inet_to_str(ip.src), proto.sport, inet_to_str(ip.dst), proto.dport, PROTO_DICT[type(ip.data)]) + pcap_dict.setdefault(session_tuple_key, (ts, [], [])) + d = pcap_dict[session_tuple_key] + size = len(ip) #ip.len + d[1].append(round(ts - d[0], 6)), d[2].append(size) + counter += 1 + + print("Total Number of Parsed Packets in " + pcap_path + ": " + str(counter)) + + csv_file_path = os.path.splitext(pcap_path)[0] + ".csv" + with open(csv_file_path, 'wb') as csv_file: + writer = csv.writer(csv_file) + for key, value in pcap_dict.items(): + writer.writerow([file_name.split(".")[0]] + list(key) + [value[0], len(value[1])] + value[1] + [None] + value[2]) + + for k,v in pcap_dict.iteritems(): + if len(v[1]) > 2000: + print(k, v[0], len(v[1])) + + +def generic_parser(file_list): + """Open up a pcap file and create a output file containing all one-directional parsed sessions""" + for pcap_path, file_name in file_list: + try: + with open(pcap_path, 'rb') as f: + pcap = dpkt.pcap.Reader(f) + parse_pcap(pcap, pcap_path, file_name) + + except ValueError: + new_pcap_file = os.path.splitext(pcap_path)[0] + "_new.pcap" + os.system("editcap -F libpcap -T ether " + pcap_path + " " + new_pcap_file) + + with open(new_pcap_file, 'rb') as f: + pcap = dpkt.pcap.Reader(f) + parse_pcap(pcap, pcap_path, file_name) + + os.remove(new_pcap_file) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--input', type=str, default=INPUT, help='Path to pcap') + + FLAGS = parser.parse_args() + file_list = get_pcaps_list(FLAGS.input, FILTER_LIST) + start_time = time.time() + generic_parser(file_list) + total_time = time.time() - start_time + print("--- %s seconds ---" % total_time) diff --git a/_reference/TrafficParser/sessions_plotter.py b/_reference/TrafficParser/sessions_plotter.py new file mode 100644 index 0000000..d4bc409 --- /dev/null +++ b/_reference/TrafficParser/sessions_plotter.py @@ -0,0 +1,75 @@ +#!/usr/bin/env python +""" +sessions_plotter.py has 3 functions to create spectogram, histogram, 2d_histogram from [(ts, size),..] session. +""" + +import matplotlib.pyplot as plt +import numpy as np + +MTU = 1500 + +def session_spectogram(ts, sizes, name=None): + plt.scatter(ts, sizes, marker='.') + plt.ylim(0, MTU) + plt.xlim(ts[0], ts[-1]) + # plt.yticks(np.arange(0, MTU, 10)) + # plt.xticks(np.arange(int(ts[0]), int(ts[-1]), 10)) + plt.title(name + " Session Spectogram") + plt.ylabel('Size [B]') + plt.xlabel('Time [sec]') + + plt.grid(True) + plt.show() + + +def session_atricle_spectogram(ts, sizes, fpath=None, show=True, tps=None): + if tps is None: + max_delta_time = ts[-1] - ts[0] + else: + max_delta_time = tps + + ts_norm = ((np.array(ts) - ts[0]) / max_delta_time) * MTU + plt.figure() + plt.scatter(ts_norm, sizes, marker=',', c='k', s=5) + plt.ylim(0, MTU) + plt.xlim(0, MTU) + plt.ylabel('Packet Size [B]') + plt.xlabel('Normalized Arrival Time') + plt.set_cmap('binary') + plt.axes().set_aspect('equal') + plt.grid(False) + if fpath is not None: + # plt.savefig(OUTPUT_DIR + fname, bbox_inches='tight', pad_inches=1) + plt.savefig(fpath, bbox_inches='tight') + if show: + plt.show() + plt.close() + + +def session_histogram(sizes, plot=False): + hist, bin_edges = np.histogram(sizes, bins=range(0, MTU + 1, 1)) + if plot: + plt.bar(bin_edges[:-1], hist, width=1) + plt.xlim(min(bin_edges), max(bin_edges)+100) + plt.show() + return hist.astype(np.uint16) + + +def session_2d_histogram(ts, sizes, plot=False, tps=None): + if tps is None: + max_delta_time = ts[-1] - ts[0] + else: + max_delta_time = tps + + # ts_norm = map(int, ((np.array(ts) - ts[0]) / max_delta_time) * MTU) + ts_norm = ((np.array(ts) - ts[0]) / max_delta_time) * MTU + H, xedges, yedges = np.histogram2d(sizes, ts_norm, bins=(range(0, MTU + 1, 1), range(0, MTU + 1, 1))) + + if plot: + plt.pcolormesh(xedges, yedges, H) + plt.colorbar() + plt.xlim(0, MTU) + plt.ylim(0, MTU) + plt.set_cmap('binary') + plt.show() + return H.astype(np.uint16) diff --git a/_reference/TrafficParser/traffic_csv_converter.py b/_reference/TrafficParser/traffic_csv_converter.py new file mode 100644 index 0000000..1d83f25 --- /dev/null +++ b/_reference/TrafficParser/traffic_csv_converter.py @@ -0,0 +1,197 @@ +#!/usr/bin/env python +""" +Read traffic_csv +""" + +import os +import argparse +import csv +from sessions_plotter import * +import glob +import re + +FLAGS = None +INPUT = "../raw_csvs/classes/browsing/reg/CICNTTor_browsing.raw.csv"#"../dataset/iscxNTVPN2016/CompletePCAPs" # "" +INPUT_DIR = "../raw_csvs/classes/chat/vpn/" +CLASSES_DIR = "../raw_csvs/classes/**/**/" + +# LABEL_IND = 1 +TPS = 60 # TimePerSession in secs +DELTA_T = 60 # Delta T between splitted sessions +MIN_TPS = 50 + +# def insert_dataset(dataset, labels, session, label_ind=LABEL_IND): +# dataset.append(session) +# labels.append(label_ind) + +# def export_dataset(dataset, labels): +# print "Start export dataset" +# np.savez(INPUT.split(".")[0] + ".npz", X=dataset, Y=labels) +# print dataset.shape, labels.shape + +# +# def import_dataset(): +# print "Import dataset" +# dataset = np.load(INPUT.split(".")[0] + ".npz") +# print dataset["X"].shape, dataset["Y"].shape + + +def export_dataset(dataset): + print("Start export dataset") + np.save(os.path.splitext(INPUT)[0], dataset) + print(dataset.shape) + + +def export_class_dataset(dataset, class_dir): + print("Start export dataset") + np.save(class_dir + "/" + "_".join(re.findall(r"[\w']+", class_dir)[-2:]), dataset) + print(dataset.shape) + + +def import_dataset(): + print("Import dataset") + dataset = np.load(os.path.splitext(INPUT)[0] + ".npy") + print(dataset.shape) + return dataset + + +def traffic_csv_converter(file_path): + print("Running on " + file_path) + dataset = [] + # labels = [] + counter = 0 + with open(file_path, 'r') as csv_file: + reader = csv.reader(csv_file) + for i, row in enumerate(reader): + # print row[0], row[7] + session_tuple_key = tuple(row[:8]) + length = int(row[7]) + ts = np.array(row[8:8+length], dtype=float) + sizes = np.array(row[9+length:], dtype=int) + + # if (sizes > MTU).any(): + # a = [(sizes[i], i) for i in range(len(sizes)) if (np.array(sizes) > MTU)[i]] + # print len(a), session_tuple_key + + if length > 10: + # print ts[0], ts[-1] + # h = session_2d_histogram(ts, sizes) + # session_spectogram(ts, sizes, session_tuple_key[0]) + # dataset.append([h]) + # counter += 1 + # if counter % 100 == 0: + # print counter + + for t in range(int(ts[-1]/DELTA_T - TPS/DELTA_T) + 1): + mask = ((ts >= t * DELTA_T) & (ts <= (t * DELTA_T + TPS))) + # print t * DELTA_T, t * DELTA_T + TPS, ts[-1] + ts_mask = ts[mask] + sizes_mask = sizes[mask] + if len(ts_mask) > 10 and ts_mask[-1] - ts_mask[0] > MIN_TPS: + # if "facebook" in session_tuple_key[0]: + # session_spectogram(ts[mask], sizes[mask], session_tuple_key[0]) + # # session_2d_histogram(ts[mask], sizes[mask], True) + # session_histogram(sizes[mask], True) + # exit() + # else: + # continue + + h = session_2d_histogram(ts_mask, sizes_mask) + # session_spectogram(ts_mask, sizes_mask, session_tuple_key[0]) + dataset.append([h]) + counter += 1 + if counter % 100 == 0: + print(counter) + + return np.asarray(dataset) #, np.asarray(labels) + + +def traffic_csv_converter_splitted(file_path): + def split_converter(ts, sizes, dataset, counter): + if ts[-1] - ts[0] > MIN_TPS and len(ts) > 20: + # print ts[0], ts[-1] + h = session_2d_histogram(ts-ts[0], sizes) + # session_spectogram(ts, sizes, session_tuple_key[0]) + dataset.append([h]) + counter += 1 + # if counter % 100 == 0: + # print counter + + total_time = ts[-1] - ts[0] + if total_time > TPS: + for ts_split, sizes_split in zip(np.split(ts, [len(ts)/2]), np.split(sizes, [len(sizes)/2])): + split_converter(ts_split, sizes_split, dataset, counter) + + print("Running on " + file_path) + dataset = [] + # labels = [] + counter = 0 + with open(file_path, 'r') as csv_file: + reader = csv.reader(csv_file) + for i, row in enumerate(reader): + # print row[0], row[7] + session_tuple_key = tuple(row[:8]) + length = int(row[7]) + ts = np.array(row[8:8+length], dtype=float) + sizes = np.array(row[9+length:], dtype=int) + + # if (sizes > MTU).any(): + # a = [(sizes[i], i) for i in range(len(sizes)) if (np.array(sizes) > MTU)[i]] + # print len(a), session_tuple_key + + if length > 10: + split_converter(ts, sizes, dataset, counter) + + return np.asarray(dataset) + + +def traffic_class_converter(dir_path): + dataset_tuple = () + for file_path in [os.path.join(dir_path, fn) for fn in next(os.walk(dir_path))[2] if (".csv" in os.path.splitext(fn)[-1])]: + dataset_tuple += (traffic_csv_converter(file_path),) ################ + + return np.concatenate(dataset_tuple, axis=0) + + +def iterate_all_classes(): + for class_dir in glob.glob(CLASSES_DIR): + if "other" not in class_dir: #"browsing" not in class_dir and + print("working on " + class_dir) + dataset = traffic_class_converter(class_dir) + print(dataset.shape) + export_class_dataset(dataset, class_dir) + + +def random_sampling_dataset(input_array, size=2000): + print("Import dataset " + input_array) + dataset = np.load(input_array) + print(dataset.shape) + p = size*1.0/len(dataset) + print(p) + if p >= 1: + raise Exception + + mask = np.random.choice([True, False], len(dataset), p=[p, 1-p]) + dataset = dataset[mask] + print("Start export dataset") + + np.save(os.path.splitext(input_array)[0] + "_samp", dataset) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--input', type=str, default=INPUT, help='Path to csv file') + + FLAGS = parser.parse_args() + ## + # iterate_all_classes() + + # dataset = traffic_class_converter(INPUT_DIR) + # dataset = traffic_csv_converter(INPUT) + + input_array = "../raw_csvs/classes/browsing/reg/browsing_reg.npy" + random_sampling_dataset(input_array) + + + # export_class_dataset(dataset) + # import_dataset() diff --git a/_reference/TrafficParser/traffic_csv_merger.py b/_reference/TrafficParser/traffic_csv_merger.py new file mode 100644 index 0000000..fc78477 --- /dev/null +++ b/_reference/TrafficParser/traffic_csv_merger.py @@ -0,0 +1,122 @@ +#!/usr/bin/env python +""" +traffic_csv_merger.py merge all filtered traffic_csvs from the same original_pacps_dataest, class and vpn type into one merged csv file. +""" + +import os +import argparse +import csv +from sessions_plotter import * + +FLAGS = None + +# INPUT = "../raw_csvs/CICNTTor2017/tor" +# INPUT = "../raw_csvs/iscxNTVPN2016" # "" +# INPUT = "D:/TS/Internet Traffic Classification/TrafficParser/test_pcaps/my_chat" +INPUT = "./test_pcaps/my_chat" +# OUTPUT1 = "CICNTTor_browsing_tor.raw.csv" +# OUTPUT2 = "CICNTTor_browsing_others_tor.raw.csv" +# OUTPUT1 = "iscx_email.raw.csv" +# OUTPUT2 = "iscx_email_others.raw.csv" +# OUTPUT3 = "iscx_video_voip.raw.csv" +OUTPUT1 = "my_chat.raw.csv" +OUTPUT2 = "my_chat_others.raw.csv" + +# FILTER_LIST = [(["audio", "voip"], True), (["tor", "vpn"], False)] #-> voip, , "tor" +# FILTER_LIST = [(["video", "youtube", "vimeo", "netflix"], True), (["tor", "vpn"], False)] #-> video +# FILTER_LIST = [(["audio", "voip"], True), (["spotify"], False)] #-> voip, , "tor" +# FILTER_LIST = [(["ftps", "scp", "sftp", "file"], True), (["mail", "pop", "tor"], False), (["vpn"], True)] +FILTER_LIST = [(["chat"], True), (["vpn"], False)] + + +def get_csvs_list(dir_path, filter_list=None): + def filter_list_func(fn): + if filter_list is not None: + for filter_str_list, type in filter_list: + result = any([filter_str in fn.lower() for filter_str in filter_str_list]) + if result is not type: + return False + return True + + return [(os.path.join(dir_path, fn), fn) for fn in next(os.walk(dir_path))[2] if (".csv" in os.path.splitext(fn)[-1] and filter_list_func(fn))] + + +def traffic_csv_reader(file_list): + + output1 = open(OUTPUT1, 'w') + writer1 = csv.writer(output1) + counter1 = 0 + output2 = open(OUTPUT2, 'w') + writer2 = csv.writer(output2) + counter2 = 0 + # output3 = open(OUTPUT3, 'wb') + # writer3 = csv.writer(output3) + # counter3 = 0 + + rate_list = [] + for i, (file_path, file_name) in enumerate(file_list): + print("Running on " + str(i) + " file - " + file_path) + with open(file_path, 'r') as csv_file: + reader = csv.reader(csv_file) + for i, row in enumerate(reader): + session_tuple_key = tuple(row[:8]) + length = int(row[7]) + ts = np.array(row[8:8+length], dtype=float) + if length >= 20: + total_time = ts[-1] - ts[0] + sizes = np.array(row[9+length:], dtype=int) + # print row[0], length, total_time, length/total_time + rate = length/total_time + rate_list.append(rate) + # if (sizes > MTU).any(): + # a = [(sizes[i], i) for i in range(len(sizes)) if (np.array(sizes) > MTU)[i]] + # print len(a), session_tuple_key, a + + # if ("facebook" in row[0] and rate > 40) or ("facebook" not in row[0] and 20 <= rate and length >= 1000): # for iscx_voip + # if "facebook" not in row[0] and 40 <= rate and length >= 1000: # for iscx_voip_vpn + # if ("youtube" in row[0] and row[2] == '443' and total_time > 10 and rate > 15) or ("vimeo" in row[0] and rate > 30 and total_time > 15) or ("netflix" in row[0] and rate > 60) or ("facebook" in row[0] and rate > 60) or (40 <= rate and row[5] == "UDP" and "facebook" not in row[0]): # for iscx_video + # if length > 6000 and rate > 10 and total_time > 10 and (row[2] == '443' or row[2] == '80'): # for iscx_video_vpn + # if total_time > 30 and rate > 30 and (row[2] == '443' or row[2] == '80'): # for CICNTTor_video + # if total_time > 30 and (row[2] == '443' or row[2] == '80'): # for CICNTTor_video + # if total_time > 10 and rate > 10 and length > 1000 and (session_tuple_key[-1] != '3326' and session_tuple_key[-1] != '6367'): # for CICNTTor_voip + # if (total_time > 10 and ((rate > 100) or ("skype" in row[0] and rate > 10))) or ("rent" in row[0] and total_time > 20 and row[2] != '21943' and row[4] != '28904'): #for iscx_file + # if ("torrent" in row[0] and total_time > 30 and rate > 10 and (row[2] == '443' or row[2] == '80')) or ("torrent" not in row[0] and total_time > 30 and rate > 10 and int(row[2]) not in [22, 1781, 59886, 35968]): #for iscx_file_vpn + # if (total_time > 20) and (("POP" in row[0] and rate > 150) or (("IMAP" in row[0] and rate > 10 and row[7][0] == '8') or row[0] == 'FTP_filetransfer' and total_time > 20 and rate > 100) or ( rate > 10 and "SFTP" in row[0])): #for CICNTTor_file + # if total_time > 20 and rate > 5: #for CICNTTor_file_tor + # if ("skype" in row[0] and total_time > 20 and rate > 3 and row[1][:2] == "10") or ("ftps" in row[0] and total_time > 20 and rate > 300 and row[2] != '1781') or ("sftp" in row[0] and total_time > 20 and rate > 5 and (('A' in row[0] and row[4]=='22') or ('B' in row[0] and row[2]=='22'))):#for iscx_file_vpn + if (total_time > 50 and rate<5) and (("whats" in row[0] and ("185.60." in row[1] or "185.60." in row[3])) or ("hang" in row[0] and ("216.58." in row[1] or "216.58." in row[3])) or ("book" in row[0] and ("192.114." in row[1] or "192.114." in row[3]))): #my_chat + # if (row[1] in ["131.202.240.242","131.202.240.45"] and row[3] in ["131.202.240.242","131.202.240.45"]) or ("gmail" in row[0] and "131.202.240.87" in [row[1], row[3]] and total_time > 40 and row[5] == 'TCP' and rate < 0.3): #for scx_chat + # if ("skype" in row[0] and (row[1] in ["86.4.212.228", '157.56.52.13', '64.4.23.162'] or row[3] in ["86.4.212.228", '157.56.52.13', '64.4.23.162'])) or (total_time > 20 and rate < 2 and (("205.188." not in (row[1]+row[3]) and "hang" not in row[0]) or ("hang" in row[0] and "216.58" in (row[1]+row[3])))): #for iscx_chat_vpn + # if total_time > 20 and rate < 2: #for CICNTTor_chat + # if total_time > 20 and (row[2] in ['80', '443'] or row[4] in ['80', '443']): #for CICNTTor_browsing_tor + # if total_time > 20: + writer1.writerow(row) + counter1 += 1 + print(session_tuple_key, total_time, rate) + # session_spectogram(ts, sizes, session_tuple_key[0]) + # elif "facebook" in row[0] and rate > 50:# --> voip + else: + writer2.writerow(row) + counter2 += 1 + # # # + # if "skype" in row[0] and (row[1] in ["86.4.212.228", '157.56.52.13', '64.4.23.162'] or row[3] in ["86.4.212.228", '157.56.52.13', '64.4.23.162']):# and row[2] == '443' and rate >10: + # print session_tuple_key, total_time, rate + # session_spectogram(ts, sizes, session_tuple_key[0]) + + print("Total sessions in " + OUTPUT1 + " : " + str(counter1)) + print("Total sessions in " + OUTPUT2 + " : " + str(counter2)) + output1.close() + output2.close() + + print(rate_list) + plt.hist(rate_list) + plt.show() + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--input', type=str, default=INPUT, help='Path to csvs folder') + + FLAGS = parser.parse_args() + file_list = get_csvs_list(FLAGS.input, FILTER_LIST) + print("Total number of files " + str(len(file_list)) + " in " + INPUT) + traffic_csv_reader(file_list) diff --git a/_reference/overlap_multiclass_reg_non_bn.ipynb b/_reference/overlap_multiclass_reg_non_bn.ipynb new file mode 100644 index 0000000..a6f9fe5 --- /dev/null +++ b/_reference/overlap_multiclass_reg_non_bn.ipynb @@ -0,0 +1,1659 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import random\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Dropout, Flatten\n", + "from keras.layers import Conv2D, MaxPooling2D\n", + "from keras.utils import np_utils\n", + "from keras.layers.normalization import BatchNormalization\n", + "from keras.callbacks import TensorBoard,ModelCheckpoint\n", + "from keras import backend as K\n", + "from keras.metrics import top_k_categorical_accuracy\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensorflow channels_first\n" + ] + } + ], + "source": [ + "# def set_keras_backend(backend):\n", + "\n", + "# if K.backend() != backend:\n", + "# os.environ['KERAS_BACKEND'] = backend\n", + "# reload(K)\n", + "# assert K.backend() == backend\n", + "\n", + "# set_keras_backend(\"theano\")\n", + "K.set_image_data_format('channels_first')\n", + "print(K.backend(), K.image_data_format())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "batch_size = 128 #128\n", + "samples_per_epoch = 10\n", + "num_classes = 5\n", + "epochs = 40\n", + "class_names = [\"voip\", \"video\", \"file transfer\", \"chat\", \"browsing\"]\n", + "\n", + "# input hist dimensions\n", + "height, width = 1500, 1500\n", + "input_shape = (1, height, width)\n", + "MODEL_NAME = \"overlap_multiclass_reg_non_bn\"\n", + "PATH_PREFIX = \"D:/TS/Internet Traffic Classification/datasets/overlap_multiclass_reg/overlap_multiclass_\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import Train and Validation Data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3350, 1, 1500, 1500) (3350,)\n", + "(314, 1, 1500, 1500) (314,)\n" + ] + } + ], + "source": [ + "x_train = np.load(PATH_PREFIX + \"reg_x_train.npy\")\n", + "y_train_true = np.load(PATH_PREFIX + \"reg_y_train.npy\")\n", + "x_val = np.load(PATH_PREFIX + \"reg_x_val.npy\")\n", + "y_val_true = np.load(PATH_PREFIX + \"reg_y_val.npy\")\n", + "\n", + "print(x_train.shape, y_train_true.shape)\n", + "print(x_val.shape, y_val_true.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Shuffle Data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3350, 1, 1500, 1500) (3350,)\n", + "[ 2. 4. 4. 3. 3. 1. 1. 3. 4. 1.]\n" + ] + } + ], + "source": [ + "def shuffle_data(x, y):\n", + " s = np.arange(x.shape[0])\n", + " np.random.shuffle(s)\n", + " x = x[s]\n", + " y = y[s]\n", + " print (x.shape, y.shape)\n", + " return x, y\n", + "\n", + "x_train, y_train_true = shuffle_data(x_train, y_train_true)\n", + "\n", + "print(y_train_true[0:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### convert class vectors to binary class matrices" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0. 0. 1. 0. 0.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 1. 0.]\n", + " [ 0. 1. 0. 0. 0.]\n", + " [ 0. 1. 0. 0. 0.]\n", + " [ 0. 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 1. 0. 0. 0.]]\n", + "[[ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]\n", + " [ 0. 0. 0. 0. 1.]]\n", + "(3350, 5) (314, 5)\n" + ] + } + ], + "source": [ + "y_train = np_utils.to_categorical(y_train_true, num_classes)\n", + "y_val = np_utils.to_categorical(y_val_true, num_classes)\n", + "print(y_train[0:10])\n", + "print (y_val[0:10])\n", + "print(y_train.shape, y_val.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define and Compile model" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(None, 10, 300, 300)\n", + "(None, 10, 150, 150)\n", + "(None, 20, 30, 30)\n", + "(None, 20, 15, 15)\n", + "(None, 4500)\n", + "(None, 64)\n", + "(None, 64)\n", + "(None, 5)\n" + ] + } + ], + "source": [ + "def precision(y_true, y_pred):\n", + " \"\"\"Precision metric.\n", + "\n", + " Only computes a batch-wise average of precision.\n", + "\n", + " Computes the precision, a metric for multi-label classification of\n", + " how many selected items are relevant.\n", + " \"\"\"\n", + " true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n", + " predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))\n", + " precision = true_positives / (predicted_positives + K.epsilon())\n", + " return precision\n", + "\n", + "def recall(y_true, y_pred):\n", + " \"\"\"Recall metric.\n", + "\n", + " Only computes a batch-wise average of recall.\n", + "\n", + " Computes the recall, a metric for multi-label classification of\n", + " how many relevant items are selected.\n", + " \"\"\"\n", + " true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n", + " possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))\n", + " recall = true_positives / (possible_positives + K.epsilon())\n", + " return recall\n", + "\n", + "def f1_score(y_true, y_pred):\n", + " prec = precision(y_true, y_pred)\n", + " rec = recall(y_true, y_pred)\n", + " return 2*((prec*rec)/(prec+rec))\n", + "\n", + "def top_2_categorical_accuracy(y_true, y_pred):\n", + " return top_k_categorical_accuracy(y_true, y_pred, k=2) \n", + "\n", + "from keras.layers.core import Activation\n", + "\n", + "model = Sequential()\n", + "# model.add(BatchNormalization(input_shape=input_shape, axis=-1, momentum=0.99, epsilon=0.001)) ############################\n", + "model.add(Conv2D(10, kernel_size=(10, 10),strides=5,padding=\"same\", input_shape=input_shape))\n", + "convout1 = Activation('relu')\n", + "model.add(convout1)\n", + "print(model.output_shape)\n", + "model.add(MaxPooling2D(pool_size=(2, 2)))\n", + "print(model.output_shape)\n", + "model.add(Conv2D(20, (10, 10),strides=5,padding=\"same\")) #################################################\n", + "convout2 = Activation('relu')\n", + "model.add(convout2)\n", + "print(model.output_shape)\n", + "model.add(Dropout(0.25))\n", + "model.add(MaxPooling2D(pool_size=(2, 2)))\n", + "print(model.output_shape)\n", + "model.add(Flatten())\n", + "print(model.output_shape)\n", + "model.add(Dense(64, activation='relu'))\n", + "print(model.output_shape)\n", + "model.add(Dropout(0.5))\n", + "print(model.output_shape)\n", + "model.add(Dense(num_classes, activation='softmax'))\n", + "print(model.output_shape)\n", + "\n", + "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', top_2_categorical_accuracy, f1_score, precision, recall])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define nice_imshow and make_moasic functions" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import pylab as pl\n", + "import matplotlib.cm as cm\n", + "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", + "import numpy.ma as ma\n", + "\n", + "def nice_imshow(ax, data, vmin=None, vmax=None, cmap=None, bar=True):\n", + " \"\"\"Wrapper around pl.imshow\"\"\"\n", + " if cmap is None:\n", + " cmap = cm.jet\n", + " if vmin is None:\n", + " vmin = data.min()\n", + " if vmax is None:\n", + " vmax = data.max()\n", + " divider = make_axes_locatable(ax)\n", + " im = ax.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap,origin='lower')\n", + " if bar:\n", + " cax = divider.append_axes(\"right\", size=\"5%\", pad=0.05)\n", + " pl.colorbar(im, cax=cax)\n", + "\n", + "def plotNNFilter2(data, nrows, ncols, layer_name, cmap=None, bar=True):\n", + " \"\"\"Wrapper around pl.subplot with color bar\"\"\"\n", + " if cmap is None:\n", + " cmap = \"gray\"\n", + " \n", + " fig, axes = pl.subplots(nrows, ncols,figsize=(5*ncols, 4*nrows))\n", + " for i, ax in enumerate(axes.flat):\n", + " im = ax.imshow(data[:,:,i], interpolation=\"nearest\", cmap=cmap)\n", + " ax.set_yticklabels([])\n", + " ax.set_xticklabels([])\n", + " ax.invert_yaxis()\n", + "\n", + " fig.subplots_adjust(wspace=0.025, hspace=0.05)\n", + " if bar:\n", + " fig.colorbar(im, ax=axes.ravel().tolist())\n", + " \n", + " pl.savefig(MODEL_NAME + \"_plotNNFilter2_\" + layer_name, bbox_inches='tight', pad_inches=1)\n", + " pl.show()\n", + "\n", + "def plotNNFilter(data, nrows, ncols, layer_name, cmap=None, bar=True):\n", + " \"\"\"Wrapper around pl.subplot\"\"\"\n", + " if cmap is None:\n", + " cmap = \"gray\"\n", + " \n", + " pl.figure(figsize=(3*ncols, 3*nrows))\n", + " \n", + " for i in range(nrows*ncols):\n", + " pl.subplot(nrows, ncols, i+1)\n", + " pl.imshow(data[:,:,i], interpolation=\"nearest\", cmap=cmap)\n", + " pl.xticks([])\n", + " pl.yticks([])\n", + " pl.gca().invert_yaxis()\n", + " pl.subplots_adjust(wspace=0.025, hspace=0.05)\n", + " pl.savefig(MODEL_NAME + \"_plotNNFilter_\" + layer_name, bbox_inches='tight', pad_inches=1)\n", + " pl.show()\n", + " \n", + "def make_mosaic(imgs, nrows, ncols, border=1):\n", + " \"\"\"\n", + " Given a set of images with all the same shape, makes a\n", + " mosaic with nrows and ncols\n", + " \"\"\"\n", + " nimgs = imgs.shape[2]\n", + " imshape = imgs.shape[0:2]\n", + " \n", + " mosaic = ma.masked_all((nrows * imshape[0] + (nrows - 1) * border,\n", + " ncols * imshape[1] + (ncols - 1) * border),\n", + " dtype=np.float32)\n", + " \n", + " paddedh = imshape[0] + border\n", + " paddedw = imshape[1] + border\n", + " for i in range(nimgs):\n", + " row = int(np.floor(i / ncols))\n", + " col = i % ncols\n", + " \n", + " mosaic[row * paddedh:row * paddedh + imshape[0],\n", + " col * paddedw:col * paddedw + imshape[1]] = imgs[:,:,i]\n", + " return mosaic\n", + "\n", + "def mosaic_imshow(imgs, nrows, ncols, cmap=None, border=1, layer_name=\"convout\"):\n", + " pl.figure(figsize=(3*ncols, 3*nrows))\n", + "# pl.suptitle('convout2')\n", + " nice_imshow(pl.gca(), make_mosaic(imgs, nrows, ncols, border=border), cmap=cmap)\n", + " pl.savefig(MODEL_NAME + \"_mosaic_imshow_\" + layer_name, bbox_inches='tight', pad_inches=1)\n", + " pl.show()\n", + "\n", + "# pl.imshow(make_mosaic(np.random.random((10, 10, 9)), 3, 3, border=1))\n", + "# pl.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 0 0]\n", + " ..., \n", + " [0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 5 4]]\n", + "1.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAANJCAYAAABK8cLiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X+MZfd5HvbnLWXLEhxHUskwLH+ArMskpdSoMTeM2gSt\nUqUh5aamChQCVSemXdmEYLp1iwC2mBRV0JSAW7dNYtiUsLAUUYkrlnXciCmo2ApbVzUSWiIT2xKp\n0NqKlrg0JVJWHaU2Iofy2z/mMrrv1c7O7szsztw9nw8wmHvPPffc787M5ezD9zlnq7sDAAAAL/mX\njnoBAAAAHC+CIgAAAIOgCAAAwCAoAgAAMAiKAAAADIIiAAAAg6AIwLFSVU9U1RuPeh0AsGTl31EE\nYGmq6v1JTnf3f3XUawGA48hEEQAAgEFQBOBYqapfq6o/VVV/qaoerKoPVNU/XVVST2zsd09VPVlV\n/29V/fWq+qbVY99dVb+wcdyuqn+tqu5K8p1Jfqiq/r+q+jsX908IAMefoAjAcfYdSR5I8qokDyX5\n8Y3HvzPJrUm+NckfSLJnlbS7Tyb5qST/fXd/c3f/h4e6YgC4BAiKABxnv9DdD3f3V5P8jSSv33j8\nx7v7me7+UpJ7k7ztoq8QAC5BgiIAx9nn127/dpJvqqqXrW17Zu32Z5P8KxdlVQBwiRMUAdhm167d\nvi7Jr69u/1aSV770QFX9/o3nueQ3AJyFoAjANru7qq6pqtck+YtJ/pfV9l9O8tqq+jdXF7j5SxvP\n+0KSf/XiLRMAtougCMA2+5+T/FySzyT5f5L8t0nS3b+a5L9J8veSfDrJL2w8771Jbqqq36yqv33x\nlgsA26G6tW8A2D5V9WtJvre7/95RrwUALjUmigAAAAyCIgAAwBarqvdV1fNV9cldHq+q+rGqOlVV\nv1JV37bXMQVFALZSd1+vdgoASZL3J7ntLI+/OcmNq4+7krx7rwMKigAAAFusuz+a5Etn2eX2JB/o\nHY8meVVVXXW2YwqKAAAAl7arkzyzdv/0atuuXnZBl3MILr/88r7++uvP+Njjjz+em2+++cCv8fjj\njyfJONZBj735/DMd76Vt658313Fc7LbWl7y05jP9WXbbd6/X223f3b5em6+5/vlsr3G2da3vc7bv\n0W7f77N9b4/z9/uw7ef9tNtzzvf7zOHafN+85Ezv9TPtczGc6X2712sv6f3I8XKu76ndfgdv/v69\nWNZfb/P2+rrWHz/b79SzfR3Y3fn8N/lc//51tu/VmY51pp+F/bz2QZzt98/Z1trd9dJjVXXc/ymI\nJ5L8s7X7J7v75IV8wWMfFK+//vo89thjR70MAADgEnHixImjXsL5+mfdfZBFP5vk2rX716y27Ur1\nFAAA4NL2UJLvWl399A1J/kl3P3e2Jxz7iSIAAAC7q6oPJnljksur6nSSdyX5hiTp7vckeTjJtyc5\nleS3k3zPXscUFAEAgMWrqr13OiLdZz+FsrvftsfjneTu83lN1VMAAAAGQREAAIBB9RQAAFi8ba6e\nXggmigAAAAyCIgAAAIPqKRyCqjqSSgAcN9v8XtjmtbMMfkbhwjrO1dOjYKIIh8Avbtixze+FbV47\ny+BnFLiYBEUAAAAG1VMAAGDxVE8nE0UAAAAGQREAAIBB9RQAAFi0qlI93WCiCAAAwCAoAgAAMKie\nAgAAi6d6OpkoAgAAMAiKAAAADKqnAADA4qmeTiaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AI\nAADAoHoKAMBFV1Xp7qNeBvwLqqeTiSIAABedkAjHm6AIAADAICgCAAAwOEcRAABYtKpyjuIGE0UA\nAAAGQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEAgMVT\nPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEH1FAAAWLSqUj3dYKIIAADAsGdQrKr3\nVdXzVfXJMzz256uqq+rytW33VNWpqnqqqm5d235zVX1i9diPlcgOAABwLJ3LRPH9SW7b3FhV1yb5\n00k+t7btpiR3JHnt6jn3VdVlq4ffneT7kty4+vi6YwIAAByFl+qnx/HjKOwZFLv7o0m+dIaH/kqS\nH0rSa9tuT/JAd3+lu59OcirJLVV1VZJv6e5Hu7uTfCDJWw68egAAAA7dvs5RrKrbkzzb3b+88dDV\nSZ5Zu396te3q1e3N7QAAABwz533V06p6ZZK/kJ3a6QVRVXcluStJrrvuugv1MgAAAEniqqcb9jNR\n/NYkNyT55ar6tSTXJPmHVfX7kzyb5Nq1fa9ZbXt2dXtz+xl198nuPtHdJ6644op9LBEAAID9Ou+g\n2N2f6O7f193Xd/f12amRflt3fz7JQ0nuqKqXV9UN2blozce6+7kkX66qN6yudvpdST50eH8MAAAA\nDsue1dOq+mCSNya5vKpOJ3lXd7/3TPt29xNV9WCSJ5O8mOTu7v7q6uHvz84VVF+R5MOrDwAAgCOn\nejrtGRS7+217PH79xv17k9x7hv0eS/K681wfAAAAF9m+rnoKAADApeu8r3oKAABwqVE9nUwUAQAA\nGARFAAAABkERAACAwTmKAADAolWVcxQ3mCgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACD\n6ikAALB4qqeTiSIAAACDoAgAAMCgegoAACye6ulkoggAAMAgKAIAADCongIAAIunejqZKAIAADAI\nigAAAAyqpwAAwKJVlerpBhNFAAAABkERAACAQfUUAABYPNXTyUQRAACAQVAEAABgUD0FAAAWT/V0\nMlEEAABgEBQBAAAYVE8BAIDFUz2dTBQBAAAYBEUAAAAG1VMAAGDxVE8nE0UAAAAGQREAAIBBUAQA\nAGBwjiIAALBoVeUcxQ0migAAAAyCIgAAAIPqKQAAsHiqp5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSi\nCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAADKqnAADA4qmeTiaKAAAADIIiAAAAg+opAACw\naFWlerrBRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEAgMVTPZ1MFAEAABgERQAA\nAAbVUwAAYPFUTycTRQAAAAZBEQAAgEFQBAAAYHCOIgAAsHjOUZxMFAEAABgERQAAAAbVUwAAYNGq\nSvV0g4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAwqJ4CAACLp3o6mSgCAAAwCIoAAAAM\nqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALB4qqeTiSIAAACDoAgAAMCgegoAACxaVamebjBRBAAA\nYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXT\nyUQRAACAQVAEAABgEBQBAAAYnKMIAAAsnnMUJxNFAAAAhj2DYlW9r6qer6pPrm370ar6x1X1K1X1\nv1XVq9Yeu6eqTlXVU1V169r2m6vqE6vHfqxEdgAAuOD8tfvSV1W3rfLXqap65xke/71V9Xeq6per\n6omq+p69jnkuE8X3J7ltY9tHkryuu/9wkl9Ncs9qATcluSPJa1fPua+qLls9591Jvi/JjauPzWMC\nAACHrLuPegnHXlUd64891n5Zkp9I8uYkNyV52yqXrbs7yZPd/fokb0zyP1bVN57tuHsGxe7+aJIv\nbWz7ue5+cXX30STXrG7fnuSB7v5Kdz+d5FSSW6rqqiTf0t2P9s5P6geSvGWv1wYAAOCsbklyqrs/\n092/k+SB7OSydZ3k96xand+cnXz3Ys7iMM5R/E+TfHh1++okz6w9dnq17erV7c3tAAAA7N9uGWzd\njyf515P8epJPJPnB7v7dsx30QFc9raq/mJ0k+lMHOc4ZjntXkruS5LrrrjvMQwMAAHydY34u5+VV\n9dja/ZPdffI8nn9rkl9K8u8l+dYkH6mq/7u7v7zbE/YdFKvqu5P8mSRv6q8Vn59Ncu3abtestj2b\nr9VT17ef0eoPfTJJTpw4oVQNAAAs2Re7+8Quj+2WwdZ9T5IfWeW2U1X1dJI/lORju73gvqqnVXVb\nkh9K8h3d/dtrDz2U5I6qenlV3ZCdi9Z8rLufS/LlqnrDqhf7XUk+tJ/XBgAA4F/4eJIbq+qG1QVq\n7shOLlv3uSRvSpKqujLJH0zymbMddM+JYlV9MDtXxrm8qk4neVd2rnL68uyMLJPk0e5+R3c/UVUP\nJnkyO5XUu7v7q6tDfX92rqD6iuyc0/jhAAAAHAPHvHq6q+5+sap+IMnPJrksyftWuewdq8ffk+Qv\nJ3l/VX0iSSX54e7+4tmOu2dQ7O63nWHze8+y/71J7j3D9seSvG6v1wMAAODcdffDSR7e2Paetdu/\nnuRPn88xD+OqpwAAAFxCDnTVUwAAgEvBtlZPLxQTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAAgEFQ\nBAAAYFA9BQAAFq2qVE83mCgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALB4qqeT\niSIAAACDoAgAAMCgegoAACye6ulkoggAAMAgKAIAADAIigAAAAzOUQQAABbPOYqTiSIAAACDoAgA\nAMCgegoAACxaVamebjBRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRPJxNF\nAAAABkERAACAQfUUAABYPNXTyUQRAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIBF\nqyrV0w0migAAAAyCIgAAAIPqKQAAsHiqp5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSimDNfDvegPyjn\n8vyX9tn8fJydac3r695t+27bzuW1zmf7+X4N9/rav3TMs/25zvT8vb5O+13vttrPn/Ncvs/b9N65\nVJzpZ3q3n/fNj+NsG9bIpels75cz3d983vr9o7LXa5/v37G8Hw/Xfv9+dK5/bznXvwdeSHu9d87k\n8ccfv1jL21omikm6+5y2HfSYu+2z+fk422vNZ/uznO+fb7f9z3f7ubzGuR7zfPc7zK/HNjvI9+Zs\n27fpvXOpONPXfBv/W7ZpG9fMpeFsP3tn+x10rr+fLoa9Xvt81+r9eLgO63fwcf69vJ/3w80333yh\nlnPJEBQBAIDFM8meVE8BAAAYBEUAAAAGQREAAIDBOYoAAMDiOUdxMlEEAABgEBQBAAAYVE8BAIBF\nqyrV0w0migAAAAyCIgAAAIPqKQAAsHiqp5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAA\nMKieck6qKt191MsAAM5gW39Pb+u6uTSpnk4mipwT/xEHgONrW39Pb+u6YQkERQAAAAbVUwAAYPFU\nTycTRQAAAAZBEQAAgEH1FAAAWLSqUj3dYKIIAADAICgCAAAwqJ4CAACLp3o6mSgCAAAwCIoAAAAM\nqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALB4qqeTiSIAAACDoAgAAMAgKB6hbRxvb8uat2WdwPHh\nvxtwdLz/ttc2fe+2aa3HgXMUj1B3H/USztu2rHlb1gkcH/67AUfH+297bdP3bq+1CpKTiSIAAACD\noAgAAMCgegoAACxaVamebjBRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRP\nJxNFAAAABkERAACAQfUUAABYPNXTyUQRAACAQVAEAABg2DMoVtX7qur5qvrk2rbXVNVHqurTq8+v\nXnvsnqo6VVVPVdWta9tvrqpPrB77sTLbBQAAjoGqOtYfR+FcJorvT3LbxrZ3Jnmku29M8sjqfqrq\npiR3JHnt6jn3VdVlq+e8O8n3Jblx9bF5TAAAAI6BPYNid380yZc2Nt+e5P7V7fuTvGVt+wPd/ZXu\nfjrJqSS3VNVVSb6lux/t7k7ygbXnAAAAcIzs96qnV3b3c6vbn09y5er21UkeXdvv9GrbP1/d3tx+\nRlV1V5K7kuS6667b5xIBAADOjTPjpgNfzGY1IexDWMv6MU9294nuPnHFFVcc5qEBAADYw36D4hdW\nddKsPj+/2v5skmvX9rtmte3Z1e3N7QAAABwz+w2KDyW5c3X7ziQfWtt+R1W9vKpuyM5Faz62qql+\nuaresLra6XetPQcAAOBIHfWVTY/bVU/3PEexqj6Y5I1JLq+q00neleRHkjxYVW9P8tkkb02S7n6i\nqh5M8mSSF5Pc3d1fXR3q+7NzBdVXJPnw6gMAAIBjZs+g2N1v2+WhN+2y/71J7j3D9seSvO68VgcA\nAMBFt9+rngIAAFwyXPV0OvBVTwEAALi0CIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACDoAgAAMDg\nHEUAAGDRqso5ihtMFAEAABgERQAAAAbVUwAAYPFUTycTRQAuGL90AWA7CYoAXDDdfdRLAAD2QfUU\nAABYPC2YyUQRAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIDFUz2dTBQBAAAYBEUA\nAAAG1VMAAGDRqkr1dIOJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6Opko\nAgAAMAiKAAAADKqnAADA4qmeTiaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAICgCAAAw\nOEcRAABYtKpyjuIGE0UAAAAGQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGAQFAEAgMV76cqnx/Hj\nHNZ+W1U9VVWnquqdu+zzxqr6pap6oqr+r72O6RxFAACALVVVlyX5iST/fpLTST5eVQ9195Nr+7wq\nyX1Jbuvuz1XV79vruCaKAAAA2+uWJKe6+zPd/TtJHkhy+8Y+/0mSn+nuzyVJdz+/10FNFAEAgMXb\n4queXp3kmbX7p5P8sY19/kCSb6iqn0/ye5L8te7+wNkOKigCAAAcb5dX1WNr909298nzeP7Lktyc\n5E1JXpHkH1TVo939q2d7AgAAAMfXF7v7xC6PPZvk2rX716y2rTud5De6+7eS/FZVfTTJ65PsGhSd\nowgAACzeUV/Z9ABXPf14khur6oaq+sYkdyR5aGOfDyX5E1X1sqp6ZXaqqZ8620FNFAEAALZUd79Y\nVT+Q5GeTXJbkfd39RFW9Y/X4e7r7U1X1d5P8SpLfTfKT3f3Jsx1XUAQAANhi3f1wkoc3tr1n4/6P\nJvnRcz2moAgAACzauf7D9kviHEUAAAAGQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP\n9XQyUQQAAGAQFAEAABhUTwEAgMVTPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEFQ\nBAAAYHCOIgAAsGhV5RzFDSaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurp\nZKIIAADAICgCAAAwqJ4CAACLp3o6mSgCAAAwCIoAAAAMqqdwhKoq3X3UywAAWDzV08lEEY6QkAgA\nwHEkKAJA/J9kAFinegoAMeEHWLKq8j8MN5goAgAAMAiKAAAADKqnAADA4qmeTiaKAAAADIIiAAAA\ng+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAwHCgoVtV/WVVPVNUnq+qD\nVfVNVfWaqvpIVX169fnVa/vfU1Wnquqpqrr14MsHAAA4uKo6th9HYd9BsaquTvKfJznR3a9LclmS\nO5K8M8kj3X1jkkdW91NVN60ef22S25LcV1WXHWz5AAAAHLaDVk9fluQVVfWyJK9M8utJbk9y/+rx\n+5O8ZXX79iQPdPdXuvvpJKeS3HLA1wcAAOCQ7TsodvezSf6HJJ9L8lySf9LdP5fkyu5+brXb55Nc\nubp9dZJn1g5xerUNAACAY2Tf/zzG6tzD25PckOQ3k/yvVfVn1/fp7q6q3sex70pyV5Jcd911+10i\nAADAno7yXMDj6iDV0z+V5OnufqG7/3mSn0nybyf5QlVdlSSrz8+v9n82ybVrz79mte3rdPfJ7j7R\n3SeuuOKKAywRAACA83WQoPi5JG+oqlfWTvx+U5JPJXkoyZ2rfe5M8qHV7YeS3FFVL6+qG5LcmORj\nB3h9AAAALoB9V0+7+xer6qeT/MMkLyb5R0lOJvnmJA9W1duTfDbJW1f7P1FVDyZ5crX/3d391QOu\nHwAA4MBUT6d9B8Uk6e53JXnXxuavZGe6eKb9701y70FeEwAAgAvroP88BgAAAJeYA00UAQAALgWq\np5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAADKqn\nAADAolWV6ukGE0UAAAAGQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQ\nFAEAABhUTwEAgMVTPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEFQBAAAYHCOIgAA\nsGhV5RzFDSaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAAAMQhOC\nIgAAMHT3US+BI6Z6CgAALJ4p6mSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAADKqnAADA\nolWV6ukGE0UAAAAGQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEA\nABhUTwEAgMVTPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEFQBAAAYHCOIgAAsGhV\n5RzFDSaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAw\nqJ4CAACLp3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALBoVaV6usFEEQAA\ngEFQBAAAYFA9BQAAFk/1dDJRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRP\nJxNFAAAABkERAACAQfUUAABYPNXTyUQRAACAQVAEAABgEBQBAAAYnKMIAAAsWlU5R3GDiSIAAACD\noAgAAAyma6ieAgAAQ3cf9RIuOuF4MlEEAABgEBQBAAAYVE8BAIDFUz2dTBQBAAAYBEUAAACGAwXF\nqnpVVf10Vf3jqvpUVf1bVfWaqvpIVX169fnVa/vfU1Wnquqpqrr14MsHAAA4uKo6th/nsPbbVhnr\nVFW98yz7/dGqerGq/uO9jnnQieJfS/J3u/sPJXl9kk8leWeSR7r7xiSPrO6nqm5KckeS1ya5Lcl9\nVXXZAV8fAABgsVaZ6ieSvDnJTUnetspeZ9rvv0vyc+dy3H0Hxar6vUn+nSTvTZLu/p3u/s0ktye5\nf7Xb/Unesrp9e5IHuvsr3f10klNJbtnv6wMAAJBbkpzq7s909+8keSA72WvTf5bkbyV5/lwOepCr\nnt6Q5IUkf72qXp/k8SQ/mOTK7n5utc/nk1y5un11kkfXnn96tQ0AAOBIbfFVT69O8sza/dNJ/tj6\nDlV1dZL/KMmfTPJHz+WgB6mevizJtyV5d3f/kSS/lVXN9CXd3Un6fA9cVXdV1WNV9dgLL7xwgCUC\nAABsvctfykerj7vO8/l/NckPd/fvnusTDjJRPJ3kdHf/4ur+T2cnKH6hqq7q7ueq6qp8bbT5bJJr\n155/zWrb1+nuk0lOJsmJEyfOO2gCAABcQr7Y3Sd2eexcctaJJA+spqaXJ/n2qnqxu//2bi+474li\nd38+yTNV9QdXm96U5MkkDyW5c7XtziQfWt1+KMkdVfXyqrohyY1JPrbf1wcAADgMR31V0wNe9fTj\nSW6sqhuq6huzcwHRh9Z36O4buvv67r4+OwO+7z9bSEwONlFMdk6I/KnVgj6T5HuyEz4frKq3J/ls\nkreuFvdEVT2YnTD5YpK7u/urB3x9AACAxeruF6vqB5L8bJLLkrxvlb3esXr8Pfs57oGCYnf/UnbG\nmJvetMv+9ya59yCvCQAAwNd098NJHt7YdsaA2N3ffS7HPOhEEQAAYOtt8VVPL4iDXPUUAACAS5Cg\nCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAADKqnAADA4qmeTiaK\nAAAADIIiAAAAg6AIAADA4BxFAABg0arKOYobTBQBAAAYBEUAAAAG1VMAAGDxVE8nE0UAAAAGQREA\nAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEAgEWrKtXTDSaK\nAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAwqJ4CAACL\np3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJopwkfiPD5ciP9dw8W3z+26b135cbX5NX7p/0K/1tn6v\ntnXdx5GgCBdJdx/1EuDQ+bmGi2+b33fbvPbjavNr+tL9g36tt/V7ta3rPo5UTwEAgEWrKtPIDSaK\nAAAADIIiAAAAg6AIAADA4BxFAABg8ZyjOJkoAgAAMAiKAAAADKqnAADA4qmeTiaKAAAADIIiAAAA\ng+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAwqJ4CAACLVlWqpxtMFAEA\nABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAAgEFQBAAAYFA9BQAAFk/1\ndDJRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg0apK9XSDiSIAAACDoAgAAMAg\nKAIAcFHsVu/b3KYGeG7O9Wvka8l+OEcRAICLorvPaftu+zGd69fJ1/PcCNSTiSIAAACDoAgAAMCg\negoAACye6ulkoggAAMAgKAIAADCongIAAIunejqZKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyC\nIgAAAIOd5DfeAAARsElEQVTqKQAAsGhVpXq6wUQRAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQB\nAAAYVE8BAIDFUz2dTBQBAAAYBEUAAAAG1VMAAGDxVE+nA08Uq+qyqvpHVfW/r+6/pqo+UlWfXn1+\n9dq+91TVqap6qqpuPehrAwAAcPgOo3r6g0k+tXb/nUke6e4bkzyyup+quinJHUlem+S2JPdV1WWH\n8PoAAAAcogMFxaq6Jsl/kOQn1zbfnuT+1e37k7xlbfsD3f2V7n46yakktxzk9QEAAA5DVR3bj6Nw\n0IniX03yQ0l+d23bld393Or255Ncubp9dZJn1vY7vdoGAADAMbLvoFhVfybJ8939+G77dHcn6X0c\n+66qeqyqHnvhhRf2u0QAAAD24SBXPf3jSb6jqr49yTcl+Zaq+ptJvlBVV3X3c1V1VZLnV/s/m+Ta\ntedfs9r2dbr7ZJKTSXLixInzDpoAAADn6igrnsfVvieK3X1Pd1/T3ddn5yI1/0d3/9kkDyW5c7Xb\nnUk+tLr9UJI7qurlVXVDkhuTfGzfKwcAAOCCuBD/juKPJHmwqt6e5LNJ3pok3f1EVT2Y5MkkLya5\nu7u/egFeHwAAgAM4lKDY3T+f5OdXt38jyZt22e/eJPcexmsCAABwYVyIiSIAAMBWcY7idNB/HgMA\nAIBLjKAIAADAoHoKAAAsnurpZKIIAADAICgCAAAwqJ4CAACLp3o6mSgCAAAwCIoAAAAMqqcAAMDi\nqZ5OJooAAAAMgiIAAACD6ikAALBoVaV6usFEEQAAgEFQBAAAYFA9BQAAFk/1dDJRBAAAYBAUAQAA\nGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXTyUQRAACA\nQVAEAABgUD0FAAAWrapUTzeYKAIAADAIigAAAAyCIgAAAINzFAEAgMVzjuJkoggAAMAgKAIAADCo\nngIAAIunejqZKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAAAIPqKQAAsHiqp5OJIgAAcGgE\nrkuDoAgAABya7j7qJXAIVE8BAIBFqyqT0A0migAAAFusqm6rqqeq6lRVvfMMj39nVf1KVX2iqv5+\nVb1+r2MKigAAAFuqqi5L8hNJ3pzkpiRvq6qbNnZ7Osm/293/RpK/nOTkXsdVPQUAABZvi6untyQ5\n1d2fSZKqeiDJ7UmefGmH7v77a/s/muSavQ5qoggAALC9rk7yzNr906ttu3l7kg/vdVATRQAAgOPt\n8qp6bO3+ye7esz66qar+ZHaC4p/Ya19BEQAAWLxjXj39Ynef2OWxZ5Ncu3b/mtW2oar+cJKfTPLm\n7v6NvV5Q9RQAAGB7fTzJjVV1Q1V9Y5I7kjy0vkNVXZfkZ5L8ue7+1XM5qIkiAADAluruF6vqB5L8\nbJLLkryvu5+oqnesHn9Pkv86yb+c5L7V5PTFs0wokwiKAAAAx716elbd/XCShze2vWft9vcm+d7z\nOabqKQAAAIOgCAAAwKB6CgAALN42V08vBBNFAAAABkERAACAQfUUAABYtKpSPd1goggAAMAgKAIA\nADAIigAAAAzOUQQAABbPOYqTiSIAAACDoAgAAMCgegoAACye6ulkoggAAMAgKAIAADCongIAAIun\nejqZKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAAAIPqKQAAsGhVpXq6wUQRAACAQVAEAABg\nUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIDFUz2dTBQBAAAYBEUAAAAG1VMAAGDxVE8nE0UAAAAG\nQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABatqlRPN5goAgAAMAiKAAAADIIiAAAAg3MU\nAQCAxXOO4mSiCAAAwCAoAgAAMKieAgAAi6d6Ou17olhV11bV/1lVT1bVE1X1g6vtr6mqj1TVp1ef\nX732nHuq6lRVPVVVtx7GHwAAAIDDdZDq6YtJ/nx335TkDUnurqqbkrwzySPdfWOSR1b3s3rsjiSv\nTXJbkvuq6rKDLB4AAIDDt+/qaXc/l+S51e1/WlWfSnJ1ktuTvHG12/1Jfj7JD6+2P9DdX0nydFWd\nSnJLkn+w3zUAAAAcBtXT6VAuZlNV1yf5I0l+McmVqxCZJJ9PcuXq9tVJnll72unVNgAAAI6RAwfF\nqvrmJH8ryX/R3V9ef6y7O0nv45h3VdVjVfXYCy+8cNAlAgAAcB4OFBSr6huyExJ/qrt/ZrX5C1V1\n1erxq5I8v9r+bJJr155+zWrb1+nuk919ortPXHHFFQdZIgAAwJ6q6th+HIWDXPW0krw3yae6+39a\ne+ihJHeubt+Z5ENr2++oqpdX1Q1Jbkzysf2+PgAAABfGQf4dxT+e5M8l+URV/dJq219I8iNJHqyq\ntyf5bJK3Jkl3P1FVDyZ5MjtXTL27u796gNcHAADgAjjIVU9/Icluc9A37fKce5Pcu9/XBAAAOGxH\nWfE8rg7lqqcAAABcOgRFAAAAhoOcowgAAHBJUD2dTBQBAAAYBEUAAAAG1VMAAGDxVE8nE0UAAAAG\nQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEAgEWrKtXT\nDSaKAAAADIIiAAAAg6AIAADA4BxFAABg8ZyjOJkoAgAAMAiKAAAADKqnAADA4qmeTiaKAAAADIIi\nAAAAg+opAACweKqnk4niMeKHc3v53sHx433JNlj/OfUzy3G2bT+f27be40hQPEa6+6iXwD753sHx\n433JNlj/OfUzy3G2bT+f27be40j1FAAAWDxTyMlEEQAAgEFQBAAAYFA9BQAAFq2qVE83mCgCAAAw\nCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALB4qqeTiSIAAACDoAgAAMCgegoAACye6ulk\noggAAMAgKAIAADCongIAAIunejpt9UTRNxMAYLv4+9vx5XvDuq0Oit191EsAAOA8+Pvb8eV7wzrV\nUwDIzv9J95ckgGWqKhPVDVs9UQSAwyIkAsDXCIoAAAAMgiIAAACDcxQBAIDFc47i9P+3d7ehlpVl\nGMf/FzP5TllIZjNDDjEUJoWO2JQQkb2MJY6fYiLTLBJJy0IIx6C+BkUvghmDmkqiiBkNoalY0Kcx\nPZovo1mDls6kaUQZCdrU3Ye1xLWmM84508zea5/1/8Hh7PWsvfd55lycNfvez73WdkVRkiRJktRj\noShJkiRJ6rH1VJIkSdLo2Xra54qiJEmSJKnHQlGSJEmS1GPrqSRJkqTRs/W0zxVFSZIkSVKPhaIk\nSZIkqcfWU0mSJEmjlsTW0924oihJkiRJ6rFQlCRJkiT12HoqSZIkafRsPe1zRVGSJEmS1GOhKEmS\nJEnqsfVUkiRJ0ujZetrniqIkSZIkqcdCUZIkSZLUY+upJEmSpNGz9bTPFUVJkiRJUo+FoiRJkiSp\nx9ZTSZIkSaNn62mfK4qSJEmSpB4LRUmSJElSj62nkiRJkkYtia2nu3FFUZIkSZLUY6EoSZIkSeqx\n9VSSJEnS6Nl62ueKoiRJkiSpx0JRkiRJktQz+EJxbm5ur/d5tWXi/bWEPPSl6KHPT5IWwmOZpKXK\n45tmzeDPUVy7du1e71NV+7RvMfbX8xwoQ5+fJC2ExzJJS5XHt+GzmO8b/IqiJEmSJGmyLBQlSZIk\nST2Dbz2VJEmSpAPN1tM+VxQlSZIkST0WipIkSZKkHltPJUmSJI2erad9rihKkiRJknosFCVJkiRJ\nPbaeSpIkSRq1JLae7sYVRUmSJElSj4WiJEmSJKnH1lNJkiRJo2fraZ8ripIkSZKkHgtFSZIkSVKP\nraeSJEmSRs/W0z5XFCVJkiRJPRMvFJOsT/JYku1JLpn0z5ckSZKkpWRvNVYal7X7H0xy4t6ec6Kt\np0mWAZcDHwJ2APck2VJVj0xyHpIkSZLUNautpwussU4D1rRf7wauaL/v0aRXFE8GtlfV41X1EnAj\nsGHCc5AkSZKkpWIhNdYG4LpqbAWOTHLMqz3ppAvFFcBTne0d7ZgkSZIkafEWUmMtug4b5FVPk5wH\nnNduvpjk4WnORwtyFPCXaU9Ce2VOw2dGs8GcZoM5zQZzmg1LLae3dDfm5uZuT3LUtCazAIckubez\nvbmqNh/IHzjpQnEnsKqzvbId62n/0ZsBktxbVSdNZnraV+Y0G8xp+MxoNpjTbDCn2WBOs2Gp51RV\n66c9h//DQmqsBdVhXZNuPb0HWJNkdZKDgI3AlgnPQZIkSZKWioXUWFuAs9urn64D/l5VT7/ak050\nRbGqdiW5ELgdWAZcXVXbJjkHSZIkSVoq9lRjJTm/3f8D4Fbgo8B24AXg3L0978TPUayqW2kmulAH\ntPdW+405zQZzGj4zmg3mNBvMaTaY02wwpwGbr8ZqC8SXbxdwwWKeM81jJEmSJElqTPocRUmSJEnS\nwA22UEyyPsljSbYnuWTa8xmzJKuS/DLJI0m2JbmoHX9DkjuT/L79/vrOYza12T2W5CPTm/24JFmW\n5P4kP2u3zWiAkhyZ5OYkv03yaJL3mNWwJPlye7x7OMkNSQ4xo+lLcnWSZ7sfm7UvuSRZm+Shdt9l\nSTLpf8tStoecvtke8x5M8pMkR3b2mdMUzJdTZ9/FSar7cRHmND6DLBSTLAMuB04DjgM+keS46c5q\n1HYBF1fVccA64II2j0uAu6pqDXBXu027byPwDmA98P02Ux14FwGPdrbNaJi+B/y8qt4OvIsmM7Ma\niCQrgC8CJ1XV8TQXBtiIGQ3BNTS/4659yeUK4HPAmvZrli+LP0TX8L+/0zuB46vqncDvgE1gTlN2\nDfP8TpOsAj4MPNkZM6cRGmShCJwMbK+qx6vqJeBGYMOU5zRaVfV0Vd3X3v4HzYvaFTSZXNve7Vrg\nzPb2BuDGqnqxqp6gubrSyZOd9fgkWQl8DLiyM2xGA5PkdcD7gKsAquqlqvobZjU0y4FDkywHDgP+\nhBlNXVX9CvjrbsOLyiXJMcBrq2pre3GH6zqP0X4wX05VdUdV7Wo3t9J8hhuY09Ts4e8J4DvAV4Du\nhUzMaYSGWiiuAJ7qbO9oxzRlSY4FTgDuBo7ufP7KM8DR7W3zm47v0hzY/9MZM6PhWQ08B/ywbRO+\nMsnhmNVgVNVO4Fs076Y/TfNZU3dgRkO12FxWtLd3H9fkfAa4rb1tTgOSZAOws6oe2G2XOY3QUAtF\nDVCSI4AfA1+qque7+9p3kbyE7pQkOR14tqrm9nQfMxqM5cCJwBVVdQLwT9pWuZeZ1XS157htoCnq\n3wwcnuSs7n3MaJjMZfiSfJXmlJbrpz0X9SU5DLgU+Nq056JhGGqhuBNY1dle2Y5pSpK8hqZIvL6q\nbmmH/9y2HNB+f7YdN7/JOwU4I8kfaFq1P5DkR5jREO0AdlTV3e32zTSFo1kNxweBJ6rquar6F3AL\n8F7MaKgWm8tOXml77I7rAEvyaeB04JP1yuezmdNwvJXmDbIH2tcTK4H7krwJcxqloRaK9wBrkqxO\nchDNybNbpjyn0WqvXnUV8GhVfbuzawtwTnv7HOCnnfGNSQ5OsprmxOZfT2q+Y1RVm6pqZVUdS/P3\n8ouqOgszGpyqegZ4Ksnb2qFTgUcwqyF5EliX5LD2+HcqzbnZZjRMi8qlbVN9Psm6Nt+zO4/RAZJk\nPc3pEWdU1QudXeY0EFX1UFW9saqObV9P7ABObP/fMqcRWj7tCcynqnYluRC4neZqc1dX1bYpT2vM\nTgE+BTyU5Dft2KXAN4CbknwW+CPwcYCq2pbkJpoXv7uAC6rq35OftjCjofoCcH37RtjjwLk0b9yZ\n1QBU1d1Jbgbuo/md3w9sBo7AjKYqyQ3A+4GjkuwAvs6+Hec+T3PFx0NpzpW7De03e8hpE3AwcGf7\n6Qlbq+p8c5qe+XKqqqvmu685jVNeWfmXJEmSJGm4raeSJEmSpCmxUJQkSZIk9VgoSpIkSZJ6LBQl\nSZIkST0WipIkSZKkHgtFSZIkSVKPhaIkSZIkqcdCUZIkSZLU8180OAKyUCwTxgAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "convout1_before output shape : (10, 300, 300)\n", + "convout1_before output shape : (300, 300, 10)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAFfCAYAAAAWKAL+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2MJMd55/nf093TPS8kRVGkKZovR+KO5wVlrNe6Aa21\nzwvdar2ivYYpHBYCdWeL5xOW9h3tlQ9e7JI+wLozTJyBM3wrrywZtMUVjdWZR/hlRQuyZS3X8gsg\nihpStPgyEjkkPeS8cF56Znp6prvr9bk/urJZWV0vWVWZFZGV3w8wmOqsrKyojMjMeDIiI8zdBQAA\nAAConoXQCQAAAAAAhEFACAAAAAAVRUAIAAAAABVFQAgAAAAAFUVACAAAAAAVRUAIAAAAABWVKSA0\ns6vN7A/M7NtmdtjM/qGZXWNmXzGzVzr/v7Nr/QfN7IiZfcfMPlhc8gEAAAAAk8raQvhJSX/m7n9P\n0vdJOizpAUlPuvvtkp7s/C0zu0PSPZLeI+kuSZ82s8W8Ew4AAAAAmM7IgNDM3iHpH0n6rCS5e93d\nL0i6W9KjndUelfShzuu7JT3m7jV3f13SEUl35p1wAAAAAMB0ljKsc5ukM5L+vZl9n6RnJH1c0vXu\nfrKzzluSru+8vlHSU12fP9ZZNtC1117rt9xyixYWpn+ksVaraWVlZedvd5eZTb3dcTQaDe3Zs2cm\n39VsNrW0lCUbw5vlfhlHbxm5ePGirrrqql3vjSpLyfvdn0+02+2B5Tsps5PkZbJPm82mzEyLi/k0\nxrdaraHbcnc1m80o8nNra0t79+4d6zN5Hjfd5WJra0sLCwtaXl4e+7O9uo+XkydP6t3vfvfQ8nfy\n5El913d9l2q1mvbu3auFhQWtr69rcXFRKysrqtVqO2WkVqupVqvJ3XXhwgXdeuutarVamfdjUsbP\nnz+vVquld73rXdrc3NT+/fszfX6YS5cu6fLly9qzZ4+uuOKKXfuy1Wqp0Wjo9OnT+u7v/m61Wq3U\nOT+E1dVVvetd79q1PDlONjc3tW/fPp09e1ZXX3212u22Dhw4MNH16dixY2q1Wrryyiv1jne8Q5ub\nmzpw4MDA/e/uOnnypG644YadspEsz/Ldly5d0hVXXDF0HXfX+fPndc011wxcJynPyblla2tLy8vL\n2tramrjcJPs1LxsbG9q/f//Aa1X3eXzYOX0WGo2G2u12sLLf/fuT/TbJZ/NKR3eeJdeEdrutzc1N\nSdKBAwdSnzt9+rSuvvpqbWxs6Oqrr870XcnvXFtb0zve8Y5Cfs/m5qb27Nkz8PrU+90hJOeOYeeQ\n7mvs2bNnde2116per2tpaWmqfXX58mUdOHAgU30yWXd9fV0vv/zyWXe/LnnPzHziRBTvy+5+16y/\nNEuNaEnSeyX9vLt/3cw+qU730IS7+7g718zuk3SfJN1yyy169tlnx/k4AAAAAAxlZkdDp2EM14b4\n0ixh+jFJx9z9652//0DbAeIpM7tBkjr/n+68f1zSzV2fv6mzLMXdH3b3g+5+8Lrrrut9uxDNZnPX\nskajIWn7Lmis3LPF2v1+H8JotVqpv0flTb1eLzI5E2u320PfT9IdQ9mLdR/OWm+e1Wq1QCmZTtb8\nLOvvq6recyMQQlL3i82odMWU7pjSMgkzi/JfKCMDQnd/S9KbZvY9nUUfkPSSpCck3dtZdq+kL3Re\nPyHpHjNbMbPbJN0u6elcUz2hfk3wSZPzqC4xIWUtIGXpOloFvd0tR+VN1i6Gszaqa0eS7hjKXqz7\ncNZ68yx0d8pJZc3Psv6+qsqrWzswjRged+hnVLpiSndMaZlE6MAvtoAway3u5yV93syWJb0m6ae1\nHUw+bmYfk3RU0oclyd1fNLPHtR00NiXd7+7cEgQAAAAQXMjgK0aZAkJ3f07SwT5vfWDA+g9JemiK\ndCGjMg0q06138B+UT+hBFVBdsQ5QNQrnPYRS1roC3kYe5ouAMI3aXMmV9eRApaj8CAYRShmDQYnz\nHsIpa10BbyMPUSRKFwAAAIBKCP28XowICAEAAABUBgFhGgEhAAAAgMogIEwjIAQAAABQGQSEaYwK\nAQAAAAAVRQshAAAAgMqghTCNgHCOMMcVQmm1WlpcXAydDAAAgKEYZXQ3AsI5QjCIUAgGAQBAWRAQ\nphEQAgAAAKgMAsI0BpUBAAAAgIqihRAAAABAZdBCmEZACAAAAKAyCAjTCAgBAAAAVAKjjO5GQAgA\nAACgMggI0wgIAQAAAFQGAWEao4wCAAAAQEWVsoWw1WoxETaASmk2m1paKuUpGyXHNReh1Ot1LS8v\nh04G5hAthGmlrF1wYQJQNQSDCIVrLkIhGERRCAjTqGEAAAAAqARGGd2NgBAAAABAZRAQpjGoDAAA\nAABUFC2EAAAAACqDFsI0AkIAAAAAlUFAmEZACAAAAKAyCAjTCAhReu7OgQ2gUmq1mlZWVkInAwBK\nh1FGd5vrQWVqtVrq70ajkfq/97UkbWxsFJ+wMV26dGlXOhONRkPtdltSnGnv1mg01Gq1JElHjx5V\no9FQvV6feHsnT57U1taWNjc3JUnnz58f+ZneMgHEJDmW8zLsvJF836B1Rsk7rb1GnRuK/v5xZNmH\nGxsbunTpkqTpzkNra2taX1/fCQbfeOON1Pv9tj1pHhchpnwbxN1DJ2FuZCnrzWaz7/JJy8qoc0et\nVpu47jEorXlot9tDy16R3z2JYfswSWty7smjfjpNfRGjWQwnvoMHD/qhQ4dCJwMl02w2mawbAIAZ\naLVaWlxcDJ0MYGxm9oy7H0z+Xl5e9uuuuy5kkgY6ceJEKq2zQm0apZUEg41GQ3v27AmcGgAA5hfB\nIOYJXUbTCAhRegSDAAAAyIqAMI2AEAAAAEBlEBCmzfWgMgAAAACAwWghBAAAAFAJTDuxGwEhSo+R\nzwBUDaMsIxSuuQilXq9reXk5l20REKZxNUHpcWFCKFSMEArBIELhnIdQ8goGJQLCXtE+Q3j06NGd\nSShrtZqOHz++83qYra2t1N+vvvpq6u9kYvTE+vq6vva1r2l1dVUXL16cagLfV199VWtra5Lymdi2\n+ze/9dZbQ9ddX1+PZvLhcSYgTSaVn0TvxPZbW1taXV0d+v1HjhwZObnruXPndvZlrVbbKUOjfpe7\n73zu4sWLOn36tKS3f+PRo0d3JqY+duyYNjY29Od//uc7ZUbazsdJnDlzRpcvX85tQuUzZ85I2j5e\nBv3uVqulVqs1VR7mZXV1VdLu479bMjF4HseJu2tjY2OnYuTueuutt3a23VvG3F1ra2s76Rxk0L48\ne/bsyDSdPn1ar7zyijY2NlITOq+tranVaqnRaOjcuXOq1Wpqt9taW1uTu+vw4cM6d+6c3nzzzZHf\nkThx4oROnz6tdrutZrOpdrutCxcuZP78MM1mU6urq3r99dd3ymGvRqOh8+fP5/J90zh79qzOnDmj\n8+fP68SJEyPXv3z5sqTpJmfvnZw5mZj+4sWLOnv27M53dDt16pQk7Zx/Rpk0fb3X12Hb7F43y+Tl\noww79osQwxzO48grvY1GYycve/O0t2y2Wq1M+dJdLrvPgefOnRv52bNnz+5cQ7vT033OTM5ttVpN\nly9f1qlTp3T48GGtra31PV4GuXDhgi5cuKCtrS0dO3Zs5/qXR9m7ePGiXn31VZ04cWLneB1k2HE2\nCxcuXFCj0dAbb7yhY8eOjVw/yZe1tbWR9a9h6vX6zraSa+nly5e1sbGxKw/q9bqee+45SYPrbkm3\n0dj+hcLE9AAAAADmUu/E9CsrK37jjTeGTNJAr7/+epCJ6aNtIRx0h7L3DlTVTXO3Zd7l3WIaSwts\nN3cv3Z3qKsijxaNbHnlcRDkJdUzEeCyWXehWh3EkLd6Yb3mUybzrSPV6PVg9lPpevkK3BMbWQhjt\nQwgLC/1j1Tz7D8+Daboezbu8J6zPe3t5oA98nFZWVnLdXh75XERZifGYwGTK9FzY4uJisPQmg/m0\n2+2B9RTkI488zvtZ25B10GR/UPamFzr4ilEpSlTMrYJF3rHJckc/xgA55vwq0rh3M6fdT0WWvXm/\n0VDVMpqXvFtAu2XJmzIHomVqicNuSYBRxgp51c97MbcqZ0lbEsCUsezFKHRLIC2EE4gx6EkUOdJb\nWe9exJxfRRr3bua0+6nIsjfvF5yqltG85N0C2m3e86ZMLXGYL/N+bI0S842kmNM2r8paxy5KKQJC\nzKc855MBAAAAsiAgTJvvZoAx1Gq1qLsTzKOig8Fh3dqKGGBjmm1S9marqP3dPV1JGZQlnfOkbN2x\ns3RxHbVOv/eT6UrKrAzdf2eRxiQf876uZnksYtQ68zoQS+y/K5mSKFF0ermWTY8Wwo4iu0AhjGF5\nWsSdoWm2SXeR2SpqfyfbLcv5pCzpnCdl646dpYvrqHX6vV9kl/dZKUP331mkMSnTeV9Xs5SRUevM\nQznrJ/bftbCwkDrXFZ3eSa5ltBCmZcohM/s7SeuSWpKa7n7QzK6R9P9JulXS30n6sLuf76z/oKSP\nddb/l+7+5dxTDgAAAABjCD2AS4zGuVX537n7P+iaLPEBSU+6++2Snuz8LTO7Q9I9kt4j6S5Jnzaz\n4LfRYm9er4pms6larSZ3z2XEs1OnTu28rvoIahit2Wzm0oXq1KlTOn/+fA4pwqTK2EVofX196vJ3\n7ty5nFJTrDJ0p6yCVqu1c82dVm89quxdfsuojPvc3adOd6PR0NbWVk4p2hZ6NNF5GmX0bknv77x+\nVNJXJf2bzvLH3L0m6XUzOyLpTklfm+K7phZ783pVLC0t7eRFHs8QXn/99TuvGaAGo+R1Hugudwgj\n6SJUq9VK0/X1yiuvnHob11xzTQ4pKV4ZulNWQZ5zNvaeP8vW/XkelHGf5xHo7NmzJ/dHPWghTMta\nslzSfzKzZ8zsvs6y6939ZOf1W5KSGtKNkt7s+uyxzrIUM7vPzA6Z2aEzZ85MkHQAQNWVJRgEACBW\nWW+X/7fuftzMvkvSV8zs291vurub2Vj9Edz9YUkPS9LBgwfzH/Kxo9FoMGBHpOY9b5hWAwCA2Wg2\nm/QGi1SMeUMLYVqmFkJ3P975/7SkP9Z2F9BTZnaDJHX+P91Z/bikm7s+flNnWRCDAg6ebwhvnoNB\nab67sLbbbZ7ZRBBlfHYQ8zG1Tr1eZzyCiA0KOMp2rSpberOILRiUeIaw18iA0MwOmNmVyWtJ/1TS\nC5KekHRvZ7V7JX2h8/oJSfeY2YqZ3SbpdklP553wafF8AzC5hYWFuQ54ES+6iJbTPNwAXF5ejrJi\ni+HKdq0qW3rLKHTQN01AaGY3m9lfmNlLZvaimX28zzpmZr9pZkfM7Ftm9t5R281yZrte0h93Erkk\n6f919z8zs29IetzMPibpqKQPS5K7v2hmj0t6SVJT0v3uHl1zXKvVIigEEJUyDZAyC+yP+THvjwgg\nXjy+gX5K3GW0KekX3f3ZToPdM2b2FXd/qWudH9V2g9ztkn5A0mc6/w80MiB099ckfV+f5auSPjDg\nMw9JemjUtkMiGMQg7Xa7lCN5AfOGYHB2iq40EwwiFIJBzJPOgJ4nO6/Xzeywtgfv7A4I75b0e749\n38xTZna1md3QNRjoLvR9AHoQDAKoGirNAKok4hbCa83sUNffD3cG4tzFzG6V9P2Svt7z1qAZHwgI\nASB2tIgBAFC8iAPCs+5+cNRKZnaFpD+U9AvufnHaLyUgBAAAAFAZEQeEI5nZHm0Hg5939z/qs8rY\nMz4QEAIAAACohNBTPEzDthP+WUmH3f03Bqz2hKSfM7PHtD2YzNqw5wclAkJgl2QOIJ6pQQiMgIxQ\nGI0RAKL3Q5J+StLzZvZcZ9kvSbpFktz9tyV9SdKPSToiaUPST4/aKAEhcjFPQ4pTIUJIBIMIhXMf\ngFGazeZczMdZ1hZCd/8bSUMT3xld9P5xtlv+HEUU5iUYBAAAQH/zEAxK5Q0IizIfuQoAAAAAGRAQ\nphEQFmSeulACo/DsEYCQuOYCGAcBYRozcBeECxOqhGAQQEhccwFgcrQQAgAAAKiEMk87UZS5Dwir\n1I2kSr+1DGq1mlZWVsb6DF0vAQCYDepN1UVAmDb3AWGVDvQq/dYyGDcYlOh6CQDArFBvqi4CwrSo\nA8J2u62FBR5zBFAd3LEGUDXU9zBrBIRpUQeERZ8cWq0Wk0ADiErRweDly5d14MCBQr8D6GdjY0P7\n9+8PnQxEqOj6HgEnehEQplX66CAYBFA1BIMIhWAQoRAMAsNF3UKIbOhiBgDAbHDNBcqNUUZ3IyCc\nA1yYAACYDa65QPkREKZVJiBkOH+EUoW7yRxfcXJ3LnpAQZrNppaWKlONKg3Gh0AWXBvTKnMmo7KK\nUOY9GJQ4vmLFBQ8oDsFgnAgGkQXXxzSesgUAAACAiuL2VknQJQ9A1VShuzXiRHdQhEJX/9lgH6dx\ntisJgkEgXjyzUgyCwdG4WViMUcEg89qhKKMCFcre9BhldDcCQgCYEsEgQiEYDIMKOUKh7OWDgDCN\nUtWjVquN/Rl3LyAl45sk7Xx/vlqtllqt1sw+F1osaW61WjPP/1h+exaxnKPyVK/XQydhx6zTEtNv\nl7a79jYajb7vFVH2ynTszUKW8hBbmZmFdrsdOgmFieUYGHTcj7vOuPL4/UkrYWz/QqGFsMfKysrY\nn4nlLsMkaef78zVpS1FZW5hiSffi4uLM0xLLb88ilnNUnmJqGZt1WmL67dLwrr1FlL0yHXuzkKU8\nxFZmZmGeW9JiOQaydOsvout/LL9/nhAQAj14Hmw8DL6AUDhW88NxDKBK5vFG6TQ4+wM9qGCOh0ok\nQuFYzQ/HMYAqISBM4woAAAAAoBJCP68XIwLCOcCcNQAAzAbdaxEKc7Pmh3pz2vw+cVshFGoAAGaD\nYBChEAyiKJzVcsAdG4TCpNQIiUFdUEWcd99WtX3RbDZlZsHOe7ROv23afUFjShqlKgcEgwilShdi\nxIdgEFXEefdtVdsXoYOx0N8fk2n3BQFhWjQlq91uz/WcMSjepGWoVqtFMYchqocWNkxr0h4qnPcA\nlFUeMQMBYVo0ASHBIKY1aRmiUoRQCAYxrUl7qHDeA1BWeQSDBIRpcxeFNZvNndeXL1/eeb2xsaGN\njY2dv9fX11Wr1SRt94Hv/ew4ks/X6/Wdf7Pm7jP/zl6jfne9XtelS5cyrZtVkodZ07K+vi5319bW\nVubvaDQamdbb3Nzc2W6/7ddqNTWbzZ1ymcc+SNLWaDTUaDRyLQe1Wk2tVmvg+/V6fej7IVy8eLHv\n8qx5mNX6+vqu88Xm5qbW1tbUaDQGpmNc45yTNjc3dy27ePGiGo2G6vX6Tpo2NjaizLtu9Xp9aJ4l\n7w86/mep3W5L2i4To+Sxz5PzR3IulaQLFy7svO6XjmazqVqtNjSNvWXN3dVsNqe6LrZaLbXb7Z19\nlGw3Men+SLbbarVyL8fdae0nhmttIvntg/ZBvV7fyce8dNejEu12e+A5ZdT+7Gec9Cbnid7P9Ds3\nNJvNidLTa1B5zsOw816z2cz9WlakZN/ksc/X1tb6bmvY/hinngfJYji5HTx40A8dOhQ6GQAAAADm\niJk94+4Hk7+vvvpq/+Ef/uGQSRroi1/8YiqtsxJNl1EAAAAAKBpdRtOiDQiZygGjUEYwrqoNkY7Z\nYWA0xIqyyT4oyqipH2K+5hIQpkUbEFLRxyiUEYwr1gsTyo/KJmJF2WQfFGXU1A8xX3MJCNOiDQgB\nAAAAIE+MMrobt0wAAAAAoKKiDQj7DTs87hDj/YZ+r9VqO8PWdg/ZL003JHhRo7WOGn7Z3XMZ0jdP\nIYdFzuO7e4dFH2do82S93vKQ5GOSX+6e23Dpo6aHmJS7DxymPvm+ZrMZxfQFRe2DcUxyDsj6mSzr\njTuNSa1WG5rH46SpiPNQnkPlF6nZbKper4+8PuVZPvPY18PKS/d5dNJrW+/2k/xsNBpqtVo7251k\n6pDesjcr3fslpuH/R5WtflNF5Pld3VNv5WnSct5dp+u3jWTZJNMSdG8vuZZjsKLPe731+HEkrYSx\n/Qsl2i6j/foljzuR7lVXXTV0G8kzaMn/00wSXVQmjuqfHboA9RPy2b48vrt7f45bJpL1e/Mkycfu\n/MprUvKiJpg2M1155ZV930vSPqp8zkoMk2xPchxm/UyW9cZ9ViPZZ4PyeJw0FXEeiqVsjZI1nXkd\n71I+z0MNKy/d59FJ87V3+8l+6j1HT3Ls9pa9WelOe0zPsI8qW/v37y/0u5K8zvt5sUnL+ag6XbLd\nvXv3TpUmnkscrejzXm89fhyx1Z1Dy1yazWzRzL5pZl/s/H2NmX3FzF7p/P/OrnUfNLMjZvYdM/tg\nEQlHueVxdzWmO7TTCt261U+MaRpmVHrz/j3dLRtZth3DJOqDxHiXO8Y0TSuPMlCr1VItMVlaZWJt\nbW00GtHlc5KmvFu7ipL1OpjH+a9s14RRYutdJW2naZ7qNjEL3RIYWwvhOLc3Pi7pcNffD0h60t1v\nl/Rk52+Z2R2S7pH0Hkl3Sfq0meV3iwBzIY+7qzHdoZ1WnnfR8hJjmoYZld68f093y0aWbcfQijlI\njHdKY0zTtPIoAysrK6mWmCytMrG2tu7Zsye6fE7SFPPoiN2yXgfzOP+V7ZowSowtfAsLC3NVt4lV\n6KCvtAGhmd0k6Z9J+t2uxXdLerTz+lFJH+pa/pi719z9dUlHJN2ZT3IBAAAAAHnJetvw30r615K6\nHza53t1Pdl6/Jen6zusbJT3Vtd6xzrIUM7tP0n2SdMstt4yRZAAAAACYTGy9E0Ib2UJoZj8u6bS7\nPzNoHd9+CGCsBwHc/WF3P+juB6+77rpxPgoAAAAAEwndNTS2LqNZWgh/SNJPmNmPSdor6Soz+w+S\nTpnZDe5+0sxukHS6s/5xSTd3ff6mzrKg2u12lP3FAaAojUaD51EAVAr1PWRBC2HayCPG3R9095vc\n/VZtDxbzn939JyU9Ienezmr3SvpC5/UTku4xsxUzu03S7ZKezj3lY+LkgFDKMlod5g/BIICqmbfR\nUFGM0C2BsbUQThMl/ZqkHzGzVyT9k87fcvcXJT0u6SVJfybpfnfn6MQueQ03HuuQ6omyjFYHoFjJ\nRNhUWBHKNNfdGKdp6IcbYfFot9uq1+tqtVra3NyceDuXL1/OMVXoZ6yxqN39q5K+2nm9KukDA9Z7\nSNJDU6YNcy6vOyGxDqkOAN2SibDnbfh+lMc01116WmFcCwsLOzfF9+3bN/F2Dhw4kFeSJCl4a1yM\nqEkDAAAAqAwCwjQCQgAAAACVQUCYRkAIAAAAoDIICNPoEA4AAAAAFVXJFsJ6vc7IjwiCeeEQUq1W\n08rKSuhkoGK45gKIDS2EaZUMCLkwIRSCQYREMIgQuOYCiAmjjO5WyYAQAGLSbDaZPgVApdBjASER\nEKZRAwGAwAgGAVQNwSBCIiBMY1AZAAAAAIicmT1iZqfN7IUB77/fzNbM7LnOv1/Osl1uSwMAAACo\njBK3EH5O0qck/d6Qdf7a3X98nI0SEAIAAACojLIGhO7+V2Z2a97bJSAEAAAAUAkVGGX0B83sW5KO\nS/pX7v7iqA8QEAIAAACojIgDwmvN7FDX3w+7+8NjfP5ZSbe4+yUz+zFJ/1HS7aM+RECIucREyACq\nptFoMNcpgmDqHITi7hMFdxEHhGfd/eCkH3b3i12vv2Rmnzaza9397LDPVXqU0WazGToJKEjswSBl\nD6G02+3QSUBBCAYRSuzB4MbGRugkoCARB3ZBmNm7rbNTzOxObcd6q6M+F/cRXLDYT2CYX5Q9hLKw\nUOn7gAAqaP/+/aGTgMiUNZA0s9+X9H5tdy09JukTkvZIkrv/tqR/Lul/MbOmpE1J97i7j9outVIA\nAAAAlVHWgNDdPzLi/U9pe1qKsRAQAgAAAKiECowyOjYCQgAAAACVQUCYxsMkAAAAAFBRtBACgTA1\nBkKh7CGUSYeIB6bF1BjoxnkojSMDCIQKOUKh7CEUKmEIhWAQ3TgXpXF0AAAAAKgMAsI0AkIAAAAA\nuWq321HOfcsoo7vFl0sAAAAASi3GYBD90UIIAAAAoDJoIUwjIAQAAABQGQSEaQSEAAAAACqDgDCN\ngBAAAABAZRAQpvG0JwAAAABUFC2EAAAAACqBaSd2i7aFsF6v913ebrczb2NzczPTNsfdbkzq9XoU\naW+322q1Wtrc3Ayanizf3Wq1JkpjrVabJEnBtjsLrVYrdBIkDT+2ZyVLPtbr9aH7rNFo9F0+zX4e\ntM1ptxvSsN8UQrPZDJ2EqQ36DeOcn3rXHbZfynreiyWvW62WarWaarVa9MfxqLx296m/o3cf5LHN\n2Lh7VHkdeh9n/f5B+ywJCmP7F0q0LYTLy8t9l48zp8m+ffsybXPc7cZk2G+apWT/9e7zUOkYZnFx\ncaJtr6ysTPS5UNudhUn3Zd5iOA6y5OOodO7Zs6fv8mn286BtTrvdkIb9phCWlqK9lGY26DeMc37q\nXXfYfinreS+WvF5cXCzN8Tsqr/OoBPfui3ls/TGzqPI89D7O+v2D9lno9MemnFFQgWK78zxPuu8S\nFrGfe1uEgVkpa2sHEBrX3OIUfc2NpbUU8Sm69TCPnmihWwJpIYxcbHee50n3XcIi9nPo1kmUQ9J9\nJK87ra1Wa+LWDnfnLuWUyrQP6/W6lpeXo0hzDGmQuOYWqfea22g0tLS0lEu+NxqNTHmXlPlu7Xa7\ntL2yYtFsNqNpre6nXxnLM9+zbGdUGY3h/BeTeEsTABQg7y4302yPC9L0yrQPk4pxDGmOIQ2YrTyD\n76zb6tdNnmBwejEHg4PMOt+52TSe8pUoAJhCrVZL3TmPpaUE8y/2u/qojlarFdXzaKiOfq3Gsxa6\ne2aMuDIBqJTe7p1cFDArvcEglXKEQrlDKKGDwQTX/jQCQgBzjRZAhDLqTvg0lXJaGwFUTW8Pn2lQ\nL0jjagJgrnHSRyhF3gknGARQNXlOV0PdII0nezE3GAIbZcJUFZhU9xQCoSeHBgCUXzQBYTIUfLd6\nvT70M6Pel/KfeyePuU+m2W6W31yUkBWPLL87tjvmIfMK8eu+09nv/BeTouaKYw66yXSPnjfJXW5u\nnpVD6Hz5C33FAAAgAElEQVQq4vsbjcZOXaL7vDfqBlmWG2h5pzd0fS/kTcOQ5+ZarTaT7w893yDz\nEA7Q71mKUd1tsnTHyXvY2aKGzc263ZAP44YsqLE8hDyOMqYZYcQ+wENRw3czLHgYsd08Q3+h86mI\n7+8+5rvPe6O6AmbpKph3ekPX9/LsHjmukOfmWfzu0MFXjEaWSjPba2ZPm9nfmtmLZvZ/dpZfY2Zf\nMbNXOv+/s+szD5rZETP7jpl9sMgfAAAAAABZhW4JLGMLYU3SP3b3S2a2R9LfmNmfSvrvJT3p7r9m\nZg9IekDSvzGzOyTdI+k9kr5b0n8ys//a3ePuEwUAAABg7tFCmDayhdC3Xer8uafzzyXdLenRzvJH\nJX2o8/puSY+5e83dX5d0RNKduaYaAAAAADC1TB2uzWxR0jOS/itJv+XuXzez6939ZGeVtyRd33l9\no6Snuj5+rLMMAAAAAIKihTAt05Ot7t5y938g6SZJd5rZ9/a879puNczMzO4zs0NmdujMmTN91+ke\nZajZbKrVaunEiRPjfE0mzz77bC6jU3X/jjxGDRz1W7e2tnZenzx5csia8ejdL3mMJNVsNlP7Ig9r\na2t9l+cxcujx48f7Lh+3bF++fFnnz5/ftfzZZ5+dKF2TWF9f1yuvvDJwf8VoY2NDUj6j5n7kIx8Z\na/1xRo07duyY3njjDTWbTf36r//60HWbzaY++clP7lr+J3/yJzvHxuuvvy5JOnXqlP7yL/9STz/9\ntB555BGdOnVKkvTCCy9kTtvLL7+88/rRRx8dsub4/vqv/3poGU7K2he+8AVJ4UdilKSnnnqq7/LN\nzU1J0re//e2+eZ+8P47Dhw/rd37ndyRt74uvfvWr2tra0sWLF3P7jkuXtjsFubu2traGnqebzaZe\neumlXcvdXRcuXJAkvfbaa7veX11d1dmzZ3deZ/XNb35z5/Vbb72V+XNZHT58eOQ6Dz/8sKTxjpmi\nPPfcc32XJ/meHN/dzp49O1G5kKRHHnlk5zrYbrd3jr/19fWBaRil37Uv+WyW47vf9yTbPHbs2MDP\njTuKZ3JcJOW9qJHEk+Omn6Su96u/+quFfPc4zp07N1Zd9/Tp02Md67266zvnz5/Xpz71KUnb+TJJ\nHTD0s4KxPUNo41aKzOyXJW1I+heS3u/uJ83sBklfdffvMbMHJcnd/6/O+l+W9H+4+9cGbfPgwYN+\n6NChSX8DAAAAAOxiZs+4+8Hk7xtvvNF/5md+JmSSBvrEJz6RSuusZBll9Dozu7rzep+kH5H0bUlP\nSLq3s9q9kr7Qef2EpHvMbMXMbpN0u6Sn8054Fr1zvQwLft29sDlnipakO4YJisu6D/M2zp3DmPdZ\n7PPjYbcs54EkXzc3N6M4b/QzquzFlO6Y0hKTed8v8/77yqxfy2KyLOb5T7PWB2LoGVF2oVsCY2sh\nzPIM4Q2SHu08R7gg6XF3/6KZfU3S42b2MUlHJX1Yktz9RTN7XNJLkpqS7g81wmjvXC/DdnTojJhG\n8jtjSH9R8/aUzThzEMa8z2KfHw+7ZTkPJPm6b9++opMzsVFlL4bzXSKmtMRk3vfLvP++Mus3J2Gy\nLOb5T7PWB0LPUYn5M7JEufu3JH1/n+Wrkj4w4DMPSXpo6tQBAAAAQI64oZPGLYaSazab3ClCEGUt\ne41GI+o7xJhfrVaLVveS4/wBzAcCwrTy1eaQUsYKOeZDWcselTmEQjBYfpw/gPlAQJhWzhodAAAA\nAIypzOOGFCXe0SwAAAAAAIWihRAAAABAZdBCmEZACAAAAKAyCAjTCAgBAAAAVAYBYRoBIQAAAIDK\nICBMIyAEMLVaraaVlZXQyQAAYO7V63UtLy+HTkZpMcrobowyCmBqBIMAAMwGwSDyRgshAAAAgMqg\nhTCNgBAAAABAZRAQphEQAgAAAKgMAsI0AkIAAAAAlUFAmMagMgAAAABQUbQQAgAAAKgEpp3YjYAQ\nAAAAQGUQEKYREAIAAACoDALCNAJCAAAwUL1eZyJsBNFoNLRnz57QycAcIiBMY1AZAAAwEMEgQiEY\nBGaDFkIAAAAAlUELYRothAAAAAAqIRllNMZ/GdL+iJmdNrMXBrxvZvabZnbEzL5lZu/Nsk8ICAEA\nAABURujAb9KAUNLnJN015P0flXR75999kj6TZaN0GQUAAABQGWXtMuruf2Vmtw5Z5W5Jv+fuLukp\nM7vazG5w95PDtksLIQAAAACEd62ZHer6d9+Yn79R0ptdfx/rLBuKFkIAAAAAlRFxC+FZdz846y8l\nIAQAAAAQNXfPLZCLOCCc1nFJN3f9fVNn2VCl6zK63SV2fO12u+/yVqs1cp2Q3F3NZlPNZrPv+7Gl\neVh6kvfa7XYh6d7c3Ez93a+sZPneQWVsUB6M0mg0hr5fr9dHrjPIpMdDFpP+3lCy7MNJ9/O46vX6\nTL4ni+Q3d//2mNI3iLunzs+DbGxszCA100mOpUuXLuW2za2trczr1mq1ib9nmmMmyb/ufBwn3SEk\nvzfLPptmv85Ksr/zOOaT683ly5czfybLMYy3jbqmz+oaFqtxgrhh+zL0wDFTDiozyhOSPtoZbfR9\nktZGPT8olbCFcNKdtbDQP/ZdXFwcuU5IZqalpcHZFFuah6Unea+oNO/bty/1d7+ykuW7B5WxYfkw\nzKiJdaeZ9LnIO1yT/t5QskxgPKtJjmOayDv5zd2/Pab0DWJmqfPzIPv3759BaqaTHEtXXHFFbtvc\nu3dv5nVXVlYm/p5pjpkk/7rzcZx0h5D83iz7bJr9OivJ/s7jmE+uNwcOHMj8mSzHMN426po+q2vY\nPBi1L8vaQmhmvy/p/dp+1vCYpE9I2iNJ7v7bkr4k6cckHZG0Iemns2y3XDU+AACgRqNB5RBBtFot\nAj0gEHf/yIj3XdL9426XgBAAgJIhGEQoBIOYB2VtISwKASEAAACAyiAgTKtMQJjnyEQAUAbtdju6\n54wBoEjNZrN0z8Bj9ogJ0ipzxJDxAKqGYBBA1RAMYpQcR/ScGxw1AAAAACqDgDCN28covarPy4Nw\nyjZXIwAAZVWGOXTLKtqAsHtCye7JfEdNQlyv1wdW0vpNkJps+9ixY5Imm2g2mez85ZdfTqVjWm+9\n9ZZqtVqmyYxDV0yT3zvuJNHTprtWq+0a8Wx9fb3vuvV6Xaurq5KKmdC9O5/a7fbIyXvr9brW1tZ2\nyuU0aUr2Y1IWp5WlzLVareDlTiomL7N+Z9I1qXe/T5qmV199te823nzzzZGffe211/TCCy9odXVV\np06d2knX+vq6Ll68qEajoRMnTujSpUva2trSU089pa2tLX31q1/VqVOndObMmczpfPnll3X06FFd\nvnxZJ06c0Pr6uo4cOZLLee/8+fP61re+peeffz51Tu3WaDR2zo8hbwitrq7qzTff1Jtvvqnnnntu\n4HrJcZJcX7Lk5yDJeSUpc2+88YbOnDmj1dVVnTt3Tmtra7s+8/zzz+vixYs6f/780G13H89nz56V\nlO1alnxufX1dp0+f7rvOG2+8sfM6Sfvrr78+Mk29zp07p0uXLqXS9eqrr+6kd1onTpwYeu6u1+s6\nceKENjY2ojj/jdKbxqNHj05Uz+nWWyaSY3Bzc3PXupcuXdLGxkbf9xK1Wi21z/uV4VFWV1d3lYHk\nd25tbe2cT1955RVJ2/tla2tr7O+p1+upuuS5c+dyKXtZrhnNZlNra2taXV2dOg/zMuxY2draSu2r\n1dXV3OooyXcn2+tX92y1WgPPR1K8k9OHYiEqU70OHjzohw4dCp0MAAAAAHPEzJ5x94PJ37fddpv/\nyq/8SsgkDfTRj340ldZZibaFcJA87kDnHQSHbMLu1+qJ6YzTwhyDUDd16LqRv0FlLI+WiCLuKIe6\nS03Zy1+R57dYWjPywCMK5ZJnixTiNe41MnQrYIwthKUbVGZ5eXnqbeS9w/NI06SS7pIML5+fQSOU\nxToZb6gTCOUtf4PKWB6j5q2srEy9jVlsM4vknMt5Lz9Fnt9ClZMi7NmzR9L2TYmQ135kM4/nB8re\nbpNcIxlUJq0UR8o4d4PHvRs07d2jGLrcSnGd9Obp7v04d82r9rtjHNo7a36V4dmfcVoixm21iOW8\n1c84x1xM572seVCGshezWMpuGSvksey7YcZJ46x/T5HH7jh10ZjKXtY8mKdeAvMqvhpdH+MU/nEr\nCNNWKLjDsFtMJ6tpjXPXvKq/OyZZ0x1jMNsraYnIe10p7vNWWcte1jwoQ9mLWcxlN3Zl2HfjpHHW\nv6fIYzemm1vjyJoHMfYSKMPxMEtcmRAM3R4QSqvVKm3ggXJrNBpjB/AAUGbuHl0AFlt6QivdLYks\n3XJGrdP9/jw9cBz7w+71ej2VxqIqRUkXhmFdFCbJ9yxdI0at0+/92PMti7J1RSrqQpCUq7LkaawD\nJc2zooPBeeq6jnIZdl2N4ZpbhutUVrH/FnefyTU3Mcm1LPTgMbENKjMyIDSzm83sL8zsJTN70cw+\n3ll+jZl9xcxe6fz/zq7PPGhmR8zsO2b2wTwTPOqufrPZHLlO9/tlbabvJ/YWj6WlpVQaiyr4yXaH\nde+YJN+zpHfUOv3ejz3fsoj9Tluz2UylsaiLabLdsuRpWdKJ7GLvdcFNiHCKDiKGXQcmueZmubkx\nap3u9+fp+d3Yb/yYWSqNRTe+DLuW9Sv3oYO+UgaEkpqSftHd75D0Pkn3m9kdkh6Q9KS73y7pyc7f\n6rx3j6T3SLpL0qfNLLdax6iTytLS0sh15ikI7Bb771pYWJhpGstS2Y093+ZB782BospGsl3yFOiv\nLOfleVR0ZTPv7Wd57mzUOt3vz1NX7RifyevVncaQ18TYb1jHYmQOuftJd3+283pd0mFJN0q6W9Kj\nndUelfShzuu7JT3m7jV3f13SEUl35p1wlF8ed4rL0jVvXsV+l3KQae9WtlotWjoQTOzdxeZdWa87\neZSbeXrMpozK2MqZxwijGxsbqb/zKMuhWwJjayEca1AZM7tV0vdL+rqk6939ZOettyRd33l9o6Sn\nuj52rLOsd1v3SbpPkm655ZZxkoEBYnxod5g87hTP0x2/Mkq6p5VtgKBp71bSyoGQynSen0dlve7k\nUW7o/RBWGUcpzqM1c//+/am/8yjLnEfTMpcsM7tC0h9K+gV3v9jzPI6b2Vjhurs/LOlhSTp48CC3\nO3NA4UYoZQoGAQBAtVFnTssUEJrZHm0Hg5939z/qLD5lZje4+0kzu0HS6c7y45Ju7vr4TZ1lQTSb\nzVLeUamCdrs913cbGV4eAAAgPgSEaVlGGTVJn5V02N1/o+utJyTd23l9r6QvdC2/x8xWzOw2SbdL\nejq/JI9nnoPBMvYl7zbPwaBU3m5FvXheCTHJ43kUAIjVoGdUy/rMPsohS7T0Q5J+StLzZvZcZ9kv\nSfo1SY+b2cckHZX0YUly9xfN7HFJL2l7hNL73Z3RFwowz8Eu4sFdNMSkDKPrAcCkBt1M5tGM/IQe\nwCVGIyMKd/8bSYP22gcGfOYhSQ9Nka7SDZCC+VG2AVKAecWxCAAoAjFGWrRNTK1WixYwBEEFFKHU\najVawLpwLAIAikBAmBZtxEUwCKBquEABAFA8rrdp8z2qBwCUCC1iAABg1miGAwAAAFAZtBCmERAC\nAAAAqARGGd0t2oCQSb0RUrPZ5DlWzFyr1ZK7U/YQBKN7IxQG1MKsca5Li7bWQTBYLu12e64mmqdC\njhAWFxdDJwEVRgUJoRAMYtY436VR60Uu5ikYBAAAwPwiIEyjFg8AAAAAFUUL4RzhuUtIPP+IcEJ0\nHW+1WnS1BQCMhRbCNGqNc4RgEBLPPyKcEF3HCQYBAONglNHdqDkCAAAAqAwCwjQCwj7mbcRMABil\nrFMO0FUeodBdOS48LoFxlPF6VySinj4IBgFUTVkvjgSDCIVgMC4Eg8Dkoj56ynrHGuVH2UMoTNAM\nAECxqOOlRR0QFplZm5ub2rdvX2HbR7lxokAoRQeD9Xpdy8vLhX4HAAAxo56XFnVAWCSCQQBVRDAI\nAKgyRhndrbIBIYDp8RA/QmHwLwDApAgI07iaApgYwSBCIRgEACAflanN8dwMQmFocoRCCy4AzB/q\ntNOjhTCtMjUFDhyEQjCIUAgGAWD+UKedHgFhGrUFAAAAAJVBQJhGQAhgKLodAgCAecEoo7vxVP6c\naLfboZOAOUUwiFhx3tu+YYPZq9froZOAiqLsbY/NgHxR05sTjLgHoGo473HDJhSe4UIolL18xmag\nhTBtLq+mrVZrorsHjUajgNTMTizpz3L3qog7XLH8/kk0m03VarWxP7e5uVlAasbn7kG/P9l3WVqM\nimhVCv37qyimlrFZ539Mvx0Iyd0nOv7q9fpE9ZDQvRJiaRmr1+va2NiY6Xfm/duTbqOx/QtlLm8t\nTnrnYM+ePTmnZLZiSX+Wu1dF3OGK5fdPYmlpaaI7/fv27SsgNeMLfadtZWVFUrYWoyJalUL//iqK\nqWVs1vkf028HQpr02Ju0DhK6V0Iso5YvLy/PvKUy79/OdTst2quKu5NZY2g0GqUOiGJC2UMozC2F\nUBg8ajztdjt4cDAvuOaOh7KXD8pcWrQliowaD8Fgfih7CIVgEKEQDI6HCnl+uOaOh7KHInAFAAAA\nAFAJoZ/XixEB4RyguwWAqqGbPEKhey1QftSb0zijzQEKNYCqIRhEKFxzgfLjOE6jI3IOGAIcoYSe\naoOy/7Yq7otYhkBH9YQse7GM9IgwOO/Nh9DTS0wz7YSZ3WVm3zGzI2b2QJ/3329ma2b2XOffL4/a\nJi2EOaDrCEIJ3UpC2X9bFfcFFWOEQtlDKJS9+VDWFkIzW5T0W5J+RNIxSd8wsyfc/aWeVf/a3X88\n63ZpIcTcmHRy6EkmpwW6TVr2arVazilB1UxahkJPsI3qmvR8CUCSdKekI+7+mrvXJT0m6e5pN1q9\nW9qYW7OeoBZITFr2VlZWck4JqmbSMsTQ9QilrC0zmB+RjzJ6rZkd6vr7YXd/uOvvGyW92fX3MUk/\n0Gc7P2hm35J0XNK/cvcXh33pXF8Rst4Bjb0/+KjfUZY7ve12e+fOYNH7fNA+2draKvR7E713QN19\n5zd3t0hOm3fJPm2327mXg9iPi34GpbnZbO4841fk8VKv19VsNvumY97vipexvMyLrGVrnNbESfKz\nNx3NZnPXslarlcux0L2NPI/pUWmLsZxneZY8j30+6nsmfaa9t5dOo9FQvV7P1Hvn3LlzA99rt9up\nZ7uLeOY+zzpFu90eeow2Gg3VarWoriWjzil59cC6ePGi3F2bm5s7y1ZXV0emw90H5nvoZwWHPEN4\n1t0Pdv17uO8PGO5ZSbe4+9+X9O8k/cdRH5jrFsKsd0Bj7w8+6neU5U5vdzqL3ueD9snevXsL/d5E\n750nM9v5zd0tktPmXfL5Iu50xX5c9DMozd3P9xV5vAxrbY74bmQuylhe5kXWsjVOa+Ik+dmbjn7P\n1eZVTrq/K89jetS+jLGcZ3mWPI/zz6jvmfSZ9t7z5jjbueaaawa+t7CwkCobRTxzn2edYmFhYegx\nGnrMgH5GnVPy6oF11VVXSZL27du3s+xd73rXyHSY2cD9VuJr8nFJN3f9fVNn2Q53v9j1+ktm9mkz\nu9bdzw7a6FwHhAAAAADQrcQB4Tck3W5mt2k7ELxH0v/QvYKZvVvSKXd3M7tT2z1CV3dtqUu0TUuz\nGMI9pmZ3jK/Mw/yXOe0xK/sxHWN3NMSlqDIyiwGOQk+Tg+kwCBYQnrs3Jf2cpC9LOizpcXd/0cx+\n1sx+trPaP5f0gpn9raTflHSPj6ggRdtCOIsh3Et8dwAq9zD/ZU57zMp+TMfYHQ1xKaqMzGKAoxi7\nvCE7BsHCPClzfcHdvyTpSz3Lfrvr9ackfWqcbVIrBQAAAFAJkY8yGgQBIQAAAIDKICBMi/YZwu6h\nalut1tTPTSTDwTcaDW1sbKS23W2aZ7uS5yPyHAJ72JC9Sdrz2D+zNKvnvCYd7rhf/o377ET30MjJ\n9tx9aJqm2S9Juc2zHIwqx3kNJz2Psp4D+k1PMqks565+eRbjuaNsz4LyTPBo7KP8zeM+Ta6TWa8v\n3fWgbsk1u3uak7zOK1tbWzvpy/u52EuXLvVd7u47+R3D+bHdbkd57RhH6Oklhkw7EcTIgNDMHjGz\n02b2Qteya8zsK2b2Suf/d3a996CZHTGz75jZBydNWPdQtYuLi1M/N7G8vKylpSXt2bNH+/fvT227\n2zTPdiXPR+Q5BPawIXuTtOexf2ZpVgV+0uGO++XfuM9OdA+N3D01RFHTEiTlNs9yMKoc5zWc9DzK\neg7oNz3JpLKcu/rlWYznjrLdueWZ4NHYR/mbx32aXCezXl+660Hdkmv24uLizvkkr/PK3r17d9KX\n93OxV1xxRd/lZraT3zGcHxcWFqK8dmByWWotn5N0V8+yByQ96e63S3qy87fM7A5tD3/6ns5nPm1m\npSkxMd7t6DeZecxG7UNGmSufIidyn6V5vJuOaupuIaBcI2axls8YWtl6xZimYUalN+9667Deff2M\nqruEbgksXQuhu/+VpHM9i++W9Gjn9aOSPtS1/DF3r7n765KOSLozp7QWLsa7Hf0mM4/ZqH3IKHPl\nU+RE7rM0j3fTUU3dlQbKNWIWa/mMoZWtV4xpGmZUevOutw7r3dfPqLpL6MAvtoBw0iP1enc/2Xn9\nlqTrO69vlPRU13rHOst2MbP7JN0nSbfccsuEyQAAAACAbEIHXzGa+taNu7uZjd3O7e4PS3pYkg4e\nPFiudnIAAAAApURAmDZpX7BTZnaDJHX+P91ZflzSzV3r3dRZBgAAAACIzKQB4ROS7u28vlfSF7qW\n32NmK2Z2m6TbJT09XRIBAAAAIB+hnxUs3TOEZvb7kt4v6VozOybpE5J+TdLjZvYxSUclfViS3P1F\nM3tc0kuSmpLud/cohu5st9tzMzgGAGTh7nSLAQCgB9fGtJEBobt/ZMBbHxiw/kOSHpomUUUgGJw/\nBPkYV6vVymU04fX1dV155ZWq1+tRjwDMBS8uGxsbWllZUaPR0N69e0MnBxXRaDS0uLiohYUFbW1t\nUfYQRGw3KGNKSwziHA8YyIBgEOPKa2qZK6+8UlJ5poNBHJJh02Oc4gjzq3u6J4JBhBJTABa6e2aM\nqFEDAAAAQEXRQggAAACgMmghTCMgBAAAAFAZBIRpBIQAAAAAKoOAMK2SASGjUyKUZrOppaVKHnYA\nAMxcbKNbIg6UibRK1kwJBhEKwSAAALNDxR+9GGV0NyIjoMPdQycBFVWr1UInAQAAVBTNFUAHd4sQ\nysrKSugkAABQGdT50ggIAQAAAFQGAWEaASEAAACAyiAgTCMgBAAAAFAZBIRpDCoDAAAAABVFCyEA\nAACASmDaid0ICAEgR81mk/kmAQCIGAFhWqVrLRsbG9q/f3/oZACYIwSDAADEjYAwrdI1F4JBAAAA\noFoICNMYVAYAAAAAKqrSLYQAAAAAqoUWwjQCQgAAAACVwCijuxEQAgAAAKgMAsI0AkIAADATrVZL\ni4uLoZOBCmo0GtqzZ0/oZCASBIRpDCoDAABmgmAQoRAMAoPRQggAAACgMmghTCMgBFAZdFcDUDV0\nlQR2IyBMIyAEUBkEgwCqhmAQSGOU0d0ICAEAAABUBgFhGgEhAAAAgMogIExjlFEAAAAAqChaCAEA\nAABUBi2EaQSEAAAAACqBQWV2IyAEAAAAUBkEhGlz/Qzh1tZW6CTMRLPZDJ2EaNRqtUzrDdtng96r\n1+uZ09G77rDvG2e7MYml3CXp2NraiiZNectarmPZ7iy02+3QSVCr1ZK0XQaT1zGbZJ8VtZ9jyL8y\na7VaajQaO69DyZKPSTrH5e6Z1x3n3D/OdhGvaa9fSSthbP9CmesWwr1794ZOwkwsLc11No5lZWUl\n03rD9tmg95aXlzOno3fdYd83znZjEku5S9Ixz8d71nIdy3ZnYWEh/P3MZF7LWI6FUSbZZ0Xt5xjy\nr8wWFxd3yl/I+VWz5OOk8yCOUzke5xikZWg+lPn6FSPOyJiZoltvLl26VOj2izavrVuxYT/vRmvN\nbLCfMU/K0CqO+ZRH75bQLYGxtRASEM6R2LtB9N7By/Ni0mq1dMUVV4xcL+bumWVpZSi7UPs55mCg\nzK01Zer2GnMZwPjKVPaKELJlsurKdC5ptVo79dM86mDunkvrYOjAL7aAkBroHClbN4g8LyZZt1XW\n7pkovzIHXTErU7chbvrMlzKVPcyXMl1PuutnedTB8qjrhg6+YsTVCUG0Wi3uLgKoFHenEgKgUur1\nepQ34zkXp5XnFgPmCsEggKrprYDwPCtCoexhVmIMBrEbLYQovWazSVcsANHZ3NzUvn37Br7PeQtF\noexhHjUajYlHre1FC2EaZwSUHhc2ADEaViEHikTZwzzKKxiUCAh7UZNGpcXatx0A+klGZ6bbPULI\ns4UGGMeoVu9xERCmzf0zhHn3ky9qaofYp4yQypHGcS0vLxc2FUWj0ch1e1Uue/Oou3x0T8Ey6pwV\n4tmfoobXz7rdkM875X0cj6Pf7+6ekHya7Sb7nrnk4hX6Ob9+359nMEjZwzjyDgZj/RdKYQGhmd1l\nZt8xsyNm9kBR3zNK3t0Ji8qsMtypKEMaJ1FUC2Hed1GrXPbmUXf56K7gjzpnhegiXdTw+lm3G7Jb\neMjWkKJ+99LS0s6+p6UxXqEfhyj6+yl7QDwKCQjNbFHSb0n6UUl3SPqImd1RxHcBAAAAQFahWwKn\naSEc1ehm236z8/63zOy9o7ZZ1O2fOyUdcffXOgl7TNLdkl4q6PsAAAAAYKSy9o7qanT7EUnHJH3D\nzJ5w9+4Y60cl3d759wOSPtP5f6CiAsIbJb3Z9fexUQkBAAAAgKKVNSBUtka3uyX9nm8PEvGUmV1t\nZje4+8lBGw3WQd3M7pN0X+fPS2a2KulsqPQgk2tFHsWOPIofeVQO5FP8yKP4kUfxq0Ie/Rfdfzzz\nzGbHkMIAAAX4SURBVDNfNrNrQyVmhL1mdqjr74fd/eGuv7M0uvVb50ZJMw8Ij0u6uevvmzrLdnR+\n3M4PNLND7n6woPQgB+RR/Mij+JFH5UA+xY88ih95FL8q5pG73xU6DbEpapTRb0i63cxuM7NlSfdI\neqKg7wIAAACAeTey0S3jOimFBITu3pT0c5K+LOmwpMfd/cUivgsAAAAAKiBLo9sTkj7aGW30fZLW\nhj0/KBX4DKG7f0nSl8b4yMOjV0Fg5FH8yKP4kUflQD7FjzyKH3kUP/KoRNy9aWZJo9uipEfc/UUz\n+9nO+7+t7fjrxyQdkbQh6adHbde2B6ABAAAAAFRNUc8QAgAAAAAiR0AIAAAAABUVPCA0s7vM7Dtm\ndsTMHgidnqoys5vN7C/M7CUze9HMPt5Zfo2ZfcXMXun8/86uzzzYybfvmNkHw6W+Wsxs0cy+aWZf\n7PxNHkWmMwnsH5jZt83ssJn9Q/IpLmb2v3XOdS+Y2e+b2V7yKCwze8TMTpvZC13Lxs4TM/tvzOz5\nznu/aSWegTpGA/Lp/+6c775lZn9sZld3vUc+zVi/POp67xfNzLvn4SOPEDQgNLNFSb8l6Ucl3SHp\nI2Z2R8g0VVhT0i+6+x2S3ifp/k5ePCDpSXe/XdKTnb/Vee8eSe+RdJekT3fyE8X7uLZH702QR/H5\npKQ/c/e/J+n7tJ1f5FMkzOxGSf9S0kF3/15tP5h/j8ij0D6n7f3bbZI8+YykfyHp9s4/5hzL1+e0\ne59+RdL3uvvfl/SypAcl8imgz6nP/jSzmyX9U0lvdC0jjxC8hfBOSUfc/TV3r0t6TNLdgdNUSe5+\n0t2f7bxe13YF9kZt58ejndUelfShzuu7JT3m7jV3f13bIxndOdtUV4+Z3STpn0n63a7F5FFEzOwd\nkv6RpM9KkrvX3f2CyKfYLEnaZ2ZLkvZLOiHyKCh3/ytJ53oWj5UnZnaDpKvc/SnfHjXv97o+gxz0\nyyd3//POlGOS9JS25z2TyKcgBhxLkvT/SPrXkrpHlCSPEDwgvFHSm11/H+ssQ0Bmdquk75f0dUnX\nd81d8pak6zuvybsw/q22T+btrmXkUVxuk3RG0r/vdO39XTM7IPIpGu5+XNKva/su+Ultz9H05yKP\nYjRuntzYed27HLPzP0v6085r8ikSZna3pOPu/rc9b5FHCB4QIjJmdoWkP5T0C+5+sfu9zh0i5ikJ\nxMx+XNJpd39m0DrkURSWJL1X0mfc/fslXVanm1uCfAqr8xza3doO3r9b0gEz+8nudcij+JAn8TOz\n/13bj6B8PnRa8DYz2y/plyT9cui0IE6hA8Ljkm7u+vumzjIEYGZ7tB0Mft7d/6iz+FSn24A6/5/u\nLCfvZu+HJP2Emf2dtrtX/2Mz+w8ij2JzTNIxd/965+8/0HaASD7F459Iet3dz7h7Q9IfSfpBkUcx\nGjdPjuvt7ordy1EwM/ufJP24pP/R357kmnyKw3+p7Rtgf9upQ9wk6Vkze7fIIyh8QPgNSbeb2W1m\ntqzth1qfCJymSuqMHPVZSYfd/Te63npC0r2d1/dK+kLX8nvMbMXMbtP2w8ZPzyq9VeTuD7r7Te5+\nq7aPlf/s7j8p8igq7v6WpDfN7Hs6iz4g6SWRTzF5Q9L7zGx/59z3AW0/N00exWesPOl0L71oZu/r\n5O1Huz6DgpjZXdp+nOEn3H2j6y3yKQLu/ry7f5e739qpQxyT9N7O9Yo8gpZCfrm7N83s5yR9Wduj\nvD3i7i+GTFOF/ZCkn5L0vJk911n2S5J+TdLjZvYxSUclfViS3P1FM3tc2xXdpqT73b01+2RD5FGM\nfl7S5zs3ul6T9NPavgFHPkXA3b9uZn8g6Vlt7/NvSnpY0hUij4Ixs9+X9H5J15rZMUmf0GTnt/9V\n26Ms7tP2s2x/KuRmQD49KGlF0lc6MxM85e4/Sz6F0S+P3P2z/dYljyBJ9narPgAAAACgSkJ3GQUA\nAAAABEJACAAAAAAVRUAIAAAAABVFQAgAAAAAFUVACAAAAAAVRUAIAAAAABVFQAgAAAAAFfX/A+6o\nR+qijTXlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAFbCAYAAAA9aqSfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3ctvHMl9wPHfcPgmRVISKWul9a4QB0YMBAGCKIgP+cdy\nzr8QIIcgNwMBkktuySGAncCHNSyv7V1hH1rtrsQVySGHj3m/Hzmse7Y5nO7p7qqaqur5fi4Sh8Pq\n31TXdPevq7qqMB6PBQAAAACQzYrtAAAAAADAZyRVAAAAAKCApAoAAAAAFJBUAQAAAIACkioAAAAA\nUEBSBQAAAAAKSKoAAAAAQAFJFQAAAAAoIKkCAAAAAAWrad58eHg4fvbsmaFQgGhv3ryRy8vLQtx7\naJ+whfYJl9E+4bIk7VOENgp7krbRVEnVs2fP5MWLF9mjitDpdGRzc3Pyc6VSkYODgzvvK5fLcnR0\nJN999538+Mc/1h7HIrRaLdne3pbBYCCrq6mqf6k9f/587ntMtc9gnwV6vZ6sr69Hvr/b7UqhUIh9\njy39fl/W1tZsh5HYvLp2hc32ORqNZGUlftBBuE22220REdna2tIei6p5+3s4HEqxWJTxeCyFwtzz\nm3HtdtvJepxms31Oq9frcu/evdj3JGnTLnMlflfimCdJ+xRZXBudZfq7Xq1WZX9/30oscZJeW05f\nd9viaj1OS9pGnbiqn96xsxIqEZGjoyMREW8TKhGZXJyTUPkjnFCJyNyL/I2NDZPhKPEpoRKZX9eQ\nRBdN4TbpchIwb38Xi0UREScSKhG369JV8xIqkWRt2mWuxO9KHHkw/V13NRFIem3pQkIl4m49ZsU3\nDgAAAAAUkFQtUKVSsR1CZicnJ7ZDgGG9Xs92CJl1Oh3bIQCRGo2G7RBgWL1etx1CZv1+33YIQKxu\nt2s7hERIqhYoalijD54+fWo7BBjm81A7V4YyALPs7u7aDgGGJRnW6CrfhoVj+bj8WEUYSRUAAAAA\nKCCpAgAAAAAFJFUAAAAAoICkCgAAAAAUkFQBAAAAgAKSKgAAAABQQFIF4I5ms2k7BAAAYECtVrMd\nQi6RVAG4Y2dnx3YIAADAgL29Pdsh5BJJFQAAAAAoIKkCAAAAAAUkVQAAAACggKQKAAAAABSQVAEA\nAACAApIqAAAAAFBAUgUAAAAACkiqAAAAAEABSRUAAEilWq3aDgGI1Wq1bIeAJWM0qbq8vDRZPKCk\n2+3aDgEAvLS3t2c7BCDWYDCwHQKWjNGk6vDw0GTxgJKNjQ3bIQCAlwqFgu0QgFgk/lg0hv8BAAAA\ngAKSKgAAAABQQFIFAAAAAApIqgAAAABAAUkVAAAAACggqQIAAACQe8Ph0FjZJFUAAAAAcq9YLBor\n24mkqlarzXw9nE32ej0plUoi4vYq2eVyOfJ3w+FQ2u32AqNRV6/X5eTkRD755BOp1+vy2WefZS7n\nl7/8pXz11VeT1/7xH/9x8v+bmxt59+7dnb+7ubnJtL1A1AK/adrQ9HubzaaIiHQ6nVvvCbZVqVSk\n2WxKr9dLG67RBYnDMc4S/jyNRsNYHGnE3VGq1WrS6/Xk+PhYzs7O5M2bN5mPDd988418+umn8vXX\nX8toNBIRkfF4nKmsNKK2EXVMTOLq6kpEbu/DVqs1qct+vy9XV1fS7/dTl22yTmq1WuzxsdFoTL57\nwb+2xX3Hr6+vZTgcyunpqXS7Xbm8vMy8nVevXsmbN2/k5cuXmfabbioxvH79WkS+PycEut2uVKvV\nO+9xSb/fl2q1eivusKjXbTo/P4/8XafT0Xacr1Qqk//P+g6PRqOZbSY41pqQpjci6rwYfn0wGEzO\nLyZ7OlTMu8YMf55FnN9Uha9JTk5OpN/vx15jx6nVatLtdu+UGRiPxzPPu2nrqZDmD54/fz5+8eJF\nqg0AOjx//lxevHgRu9ok7RO20D7hMtonXJakff7pfbRRWJG0jTrRUwUArsjSwwgsigs9VQCAu0iq\nACBkfX3ddghApLW1NdshAABmIKkCUuAuMVzmyrNGwCzhZ28AF4WfuQHSIqkCUuAuMVy2s7NjOwQg\n0sHBge0QgFibm5u2Q4DHSKoAAAAAQAFJFQAAAJSFp8YHXGRyWSaSKgAAACjb39+3HQIQa3t721jZ\nWpIq3Q/2zbrT8fbt25nv9W0xXRGR09NTq4vHTdfvH//4x9j3n5+fy2Aw0LZ9kwv+zaJrkbvphY/j\nFiZut9tSq9Xk5cuXicsfDodycXGROT5dXFjYMO0iyEG9xS12mVTUZA+LbLdJ2s0vf/nLWz/3+30Z\nj8d3FtF++fKlHB8fTxYFFvl+seO0k1qEF+5OE2dS8xZvHo/Hk+nubU57X61WJ3UX9/nD8aoKJniY\nPj6cnZ3Jp59+OrPegnOj6gLqsyRZNHb6ePnxxx/PfN/Z2ZmI3F7w+tWrV6kXAP7Nb35z57V557Y0\nfvWrX819T7AfVBbv1iGII+3ESqoTiZRKpVs/DwYD6ff7M9tn8B1qtVpWF6L9/PPPJ///8ssv577/\nX//1X+Xq6ko6nU7q71ZwXhuNRpP2/e2336YqI05wjpp1rJ6mshi5buF9MEs4VpVFthuNxq3vRLlc\nlv/6r/8SkfhzSprrERb/hRdYvBIuo33CZbRPuIzFf+E664v/Mq4WaTFdOfA9V4+fPo4MWAbj8Vjr\naAJfsaSAu2z2RgFJ6HjWylhSNW9cbdpuUxeGJMVJM8xj0cPfdFhE/bs0XXnaIa2j0UjpC9nv91MP\neTPFxwsT1fp3RXAc0f1cgupwpOCCaGtrS0c4d/i875Ic+00PBysUCrK6ump0GyLuruETDAkytaRA\nkuGOrnJlnxUKc2/ya+HKeRTJubLPdDxrZf4oHOH+/fup3l8sFg1Fosf6+nri966s+Dc/iOv1r1va\ntSpWVlaUvpAuJZQ+rnWkWv+uSHMcSWNvb0/p701fEPm875LsM9X6d4Wra/jcu3fPaPm7u7tGyzfJ\n1X1mysbGhu0QkFKe9pl/V/ewxsQDz4AurtyRBQAAy4ekColx0QqXLVtvKvzi8xBHALDNh0dnjCVV\n5XJZy3sC4Qv6k5MT7yc1SPPZXXF4eGik3GBfnpycRL5H90OuSb6cWb/AnU7H+4fGfTh4TTM1RG0w\nGEin08nNTQWfnw/xmckhjr1ez/v9GjzL6fu5HbPF7VcTk1gkeQ583nvCz/oMBoPJz648A6TC9XkK\nZjH96IyO/WrsmaqjoyMt7wmExwU/ffo0U0wuSfPZXWHquZ+g3Lj9qvuCOcmXM+sXOA9j2H187s/U\ng/qrq6sLmQRgUXx+PgSzra+vG3seb1GCZzlder4U+sTtVxM3xJKMXJj3nvCzPuHzQB6eAWJkx106\n9quTV055vlPl22er1Wryu9/9TkTie5KS+PWvf33rZx97Q0TE+16ovBkMBtLr9bT0JIWfG7S5wCxm\ns72oahaDwUDG47GWnqTw56d9usfX54673a72axNf6yLvfLsGHQwG0mq1pNfrKfckNZvNW7Mbm1i6\nxMnbr3m+U+XbZ9vb25O/+Zu/ERH1HsK///u/v/Wzj70hIuZ6RJCNzv0RnpXU9zv/eeTjLHpB+9TR\nQxj+/LRP96Sd1dgVJnpefK2LvPPtGlTnSJHpmY11L10i4mhP1TJ49+6d7RAAAIBmvvUGYPn42Ovv\nA5IqS95//33bIQAAAM186w3A8vGx198HziRVZ2dnuZlda5bz83PbISjzcbYYXfr9fq6nRM7Dc2J5\nPn7M02q1vH1GMYlOpyP1et12GEp8n50P+eb790tVno+feeHDrIvOJFXvvffezFnT8nIiysOMcMs8\nW8za2trMKZF9vJCfdfLIw3NiefiOZbW9ve3tM4pJdLtduXfvnu0wlDDrIlzm+/dLVZ6On+HJGMJ8\nT5x9mHXR+VaUlxORiQfiYJ+PF/J5OnlgOXD8BIBkpidkCCx74rwIyldXprvj8tJTBTva7bbR8n3s\nqQJc5vvdVADAclJOqkxfVOalpwp2bG1tGS3fx54quMPEOhm+424qAMBHykkVwzIAIBuOnwCQHT3b\ncAkPVwAAAMA79GzDJSRVAAAAAKCApAq5l+f1peC3Xq9nOwQAAKCBclJVLpd1xAEYk4c1mJBfpmeo\nBFSwKCpcx4Q/cIVyUnV0dKQjDsCY9fV12yEAM62vrxufoRL6LVPvN+va+WfZbtQw4Q9cwdESAIAU\ntre3bYcAROJGDWAHSRUAAAAAKFj6pGo4HFrZLs+iIQnTi2sDKhqNhpXtMsEHkmANI7iu2+3aDgEa\nLX1SVSwWrWyXZ9GQxObmpu0QgEi7u7tWtstzkkiCNYzguo2NDdshQKOlT6oAk5bpgXYAAIBl5UxS\n1e/3bYcAaOfrA+0Mr/LLYDCwHcJCcb7wy3g8th0CEIsboNDBmaRqbW3NdggA/oThVX5ZtrXYOF/4\npVAo2A4BiOXrDVC4RUtSZWuyByAJFq+Ey2q1mu0QAACAIi1Jla3JHoAkWLwSLtvb2zNaPjOgAQBg\nHlebAJBjzIAGAIB5JFUAJpigAi5jggoAgKtIqgBMMEEFXMYEFQAAV5FUAUCO8AwVACAO5wkzSKoA\nIEd4hgoAEIfzhBkkVQAAAACggKQKWDLdbtd2CECk8XhsOwQAAFIjqbKg0+nYDgFLbGNjw3YIQKRC\noRD7+8FgsKBI3MZ5xE03Nze2QwBiseD890zMdkxSZcHm5qbtEADAS6urq7ZDcALnETfdv3/fdghA\nLNMLzvvCxGzHVpOqZrMpzWYz8veXl5exf+uzuM+2CEH9DYdDazHYrgNVJobRVatV7WVmMRqNbIdg\nHXXgHh97Z3TG7OPnj8IwT9g2HA5jr4HienSyXjvZ7ml3ZS3KNPWnM2bTn9/qLb+dnZ3Y3x8eHmb+\nW9fFfbZFCOqvWCxai8F2HagyMYxuf39fe5lZrKzQiU0duMfH3hmdMfv4+aPMG+YJmDbv+ieuRyfr\ntZPtnnZX1qJMU386Yzb9+ZWvGmxn3T66uLiwHcLSoLcBLmOtELjM9xEhNjAR0GJxjk+v3+/bDiG3\nlJMq21m3jx49emQ7hKVBbwNcxlohcJnvI0JsYCKgxeIcn97a2prtEHKL1ggAAAAACkiqAAAAAEAB\nSRUAAICiPM3OCCC9pUuqWJgPLrN9UuYh69uoDwBJ5Wl2RgDpLV1SxcJ8cJntkzIPWd9GfQAAgCSW\nLqmCO0wsPNxqtbSXieVkYqreuMUkgTRMtCWmWobrTFw3ALqQVMEaEwsPb29vay8Ty8nEVL1xi0kC\naZhoS0y1DNeZuG4AdHEiqQr3LlxfX0/+Hyw8OB6PtW8zKLvdbmspL7irPa88XdtTFcSxqIXzqtVq\npr978+aN3kAyCNdRo9GY/D9u4eusi2IPh0MZDAYyHA6135HzaaHuXq+XKF4T9TQt+K7MuovvwsKT\nJo6PtrY9rzybn9WmWq02+ezhOkja9nV9R7I885lk29PlqhyrBoOBjEYj7QsXz4vJ9vOw05LUoa46\nur6+juw5DY6fphY6D5+TRb6/nmw0Gnden+XVq1eRv5s+tk+PglFtoyLff5ezXhtFlRtXXqvVkmq1\n6kxvX1APcftK1zF/MBjI8fGxjEYjubq6mrz+xRdfTNpoVN0Nh8PE53onVu4N9y48ePBg8v9g4cFC\noaB9m0HZW1tbWsoL7mrPK0/X9lQFcSxq4bz9/f1Mf/fs2TO9gWQQrqPd3d3J/+MWvs66KLbJu3A+\nLdS9vr6e6H2LuGsZfFdm3cV3YeFJE8dHW9ueV57Nz2pTuFcqXAdJ27+u70mWZz6TbHu6XJVjVfC3\nuhcunheT7edhpyWpQ111FL5umxYcP00tdB4+J4ukG63y05/+NPJ308f26XJ1tNFCoZD52iiq3Ljy\nXBvJE9TD9D4M03XMX11dlQ8++EBERB4+fDh5/S/+4i8m/4+qu2KxmPhcb/+KAAAAAAA8RlIFAAAA\nAApIqrCQGcnCz8rlDTMOmhVXv9T9fMw4aI+uurc1K5+p52DCmHHQHp11v4i2YosrzyDlVdx6kL7V\nPUkVFjIjWdyYa9+5Nk45b+Lql7qfjxkH7dFV97Zm5TP1HEwYMw7ao7PuF9FWbGHGQbPi1oP0re5J\nqgAAAABAgXJSVSqVdMRxx+XlpYj8MOVieOrPUqkkw+Fw8p6s2u22chlhcXURxF+r1bRP9ZrV5eWl\nHB8fL3SbcV25p6en2rc3Pe1ps9lMXf+zhjUE03yGp9kM3hdMzxnXpR0nGNLW7/czlzHLvClgXRtK\nNxqNnBoapGMYwvS0rCpTss+awnn6tXDbDfa/zjalkwvT0+tWLpcXsh3XpvNOKnwsnp56W8dUyrqm\nY04yPbeP8rhEQa1WSzzsttfricjtY2Kv17u1fEFwXBoOh1KpVEREJv9mHd4bnGtbrZb2IcJnZ2cz\nfz8cDifb9WlI3aKWIQragirlOZYfP36sI447Dg8PRWT29KjBNoP3ZLW1taV1ivO4ugjid2kojmr9\nZRHXlfvkyRPt25ue9jTLFLKzhjUE03yGp9kM3he0qbgu7TjBkDbdw2LmTQHr2lC6lZUVJ6YsD+gY\nhjD9eVQ+36wpnKdfC7fdYP9nbZemubSvdTk6OlrIdlybzjup8PF4euptHVMp65qOOW7KZ5/lcYmC\nNNdYwdId4WNieDmPQqEwqaNisSgHBwciIpN/s17PBedanefc4Hrhvffem/n7YrE42Z5PQ+oWtQxR\n0mVc5snfWcyii4sLaTQaubnjqvvuXJZeB18ffnWphyWs0+l4dZcqrh6Du/M67mTNKiMv3+NZmLxC\njyT1aKp9JuHTdz1sNBppXRRVB1d7eOMkOYbpap/dbjfXx8xZXBvd4ep1hyodx4JqtSr1ev3W6IEk\no5bSXoP6sxqoBx49emQ7BK10353L0vPi68Ovrj587dsd7bh6DD6LjjtZs8rIY89JwKUec58lqUdT\n7TMJn+5Ih62srGhdFFUHV3t44yQ5htlsn75zbXSHq9cdqnQcC4IywteUSUYupb0Gze9VAwAAAAAs\nAEkVAAAAACggqQIAAAAABSRVAAAAAKCApApISdd6BoAJi1rXA8hi2WaIg39cm3kS/iCpwlzBQneq\nfF2gcpqu9QygR7VaVV7Eu9/vT8pwbZrctJZ1Ji7X9Xo9ubm5yfS3eVqkNc+zavoquFGYdbFqX5c+\nieLazJP4gevLRHB0w1zBATPrAVfk+8Ts1atXukICJvb39yeLMWY1Ho8n02PPWyQZSKPRaEySqfv3\n72cqo1AoTC586YmEbsGNwgcPHiiXRU8kdGu1WlIqlUREbZmIoG2a7Ink6gFz/fjHPxYRkaOjo8xl\nHBwcKF/4AlFUE6Fw7yM9kdBJ13p/QbukJxKmZL1gDa/lQ08kdNve3tayJljQNk32RNL6AQAAAEAB\nSRUAAAAAKCCpAgAAAAAFzidVeZkxDgAA/IDlKQDkifNJ1ebmpu0QAACAZkwKAyBPnE+qgCyY1hUu\nq9VqtkMAAAAaZU6qsi5iCCwC07rCZcGaWACA9HxfpB35lPnKM+sihgAAAEBWOtYtAnTjdj4AAAAA\nKCCpAgAAAAAFJFUAAAAAoICkCgAAAAAUkFQBAADAiPF4bDsEYCFIqgBF/X7fdghAJC5o4LJ6vW47\nBBhWKBRshwAshBdJ1eeff247BCDS2tqa7RCASFzQwGX37t2zHQIAaOFFUvWzn/3MdggAAAAAMJMX\nSRUAAAAAuIqkCgAAAAAUkFQBAAAAgAJvkqpOp2M7BAAAYECz2bQdAhBpMBhIt9u1HQYct2o7gKQ2\nNzdthwAAAAzY2dmxHQIQaXV1VVZXvblkhiXe9FQBAAAAgItIqgAAAABAAUkVAK8xzh0AANhGUgXA\naxsbG7ZDAAAAS46kCgAAAAAUkFQBAAAAgAKSKgAAAABQQFIFAAAAAApIqgAAAABAAUkVAAAAAChw\nIql6+/btnddqtZqFSMy7vr62HYKI/BDHcDi0Gse7d+8SvW8wGGQqP2oNo1arlbiMdrud6u97vV7i\nsl3iynpPQd22Wi25vLy0HI1Z4/F45usmj3++ts/xeCz9ft92GFKr1aTf70utVpNGo2E7nESi2llW\nJvfDrOMtkgv2jQvflSQx1Ot1I9tOc23T6XTuvObK+TCPgn0zHA5TXYuZoPtcu6q1tIw+/PDDO6/t\n7e1ZiMS8Bw8e2A5BRH6Io1gsWo3j/fffT/S+1dVsTTVqDaPt7e3EZWxtbaX6+/X19cRlu8SV9Z6C\nut3e3k61n3xUKBRmvm7y+Odr+ywUCrK2tmY7jMm+cSGWpKLaWVYmP/us4y2SC/aNC+0zSQz37t0z\nsu001zabm5t3XnPlfJhHwb4pFovWz/G6z7VO9FRlYbuHZRkEvUim6vqTTz4xUq4LZt35ghnUdXq+\n9LDkAXWdnqneC/wg6EUyVdd5Py7Tk2Ve0Itkqq4rlYr2Mr1Nqmz3sKhyoWt+nqAXqVgsyunpqTSb\nTW1lN5tN+au/+qu57zs9PdW2zUWadecLZmxublq7yeLrzZ3d3V3bISjxaXi473Vtg6nei0W5ubmx\nHcJcQS+SqbrO+znQ954sH65Bg16koK51nm+Hw6EcHBxoKy/gxPC/ZeRC13waT5480Vrezs6Ole0i\nn2zdZPH95o6v8jo8HPlw//592yEAsXy7BhXRe741de72tqcKi5X3CQPgt9FoFPsz4BKfetoAAMmQ\nVCGRw8ND2yEAE9NDF1ZWVmJ/ToOEDKrmzWqq0tNGQgYAbiKpwkxff/21sbJ9GG8Ot5kcuqCSkAEi\nyWc1zYKhjwDyrlwuGyvb5DTuXD1gpp/85CfGyma8OQAAAGY5OjoyVrbJadxTJVW6FxDE8jE5WxrD\ntgDk0Xg8ll6vd2vhZs7HcA1DU+E60/MDONNT5dOQMF+nUXaBydnSVlZWjHXrmlhzw1SsJJduCu+X\n8MXxvLaVtO2Fy3RZ0gsvm+vc2F5jZ3r7hUJB1tfXby3crHtB39FoNDkPm/j8tusU5i1yaKqJtYtY\neyr/TM8PkCqp0n0QD/NpSBjTKLvLVLeuiTU3TMXKM0FuCu+X8MXxvLaVtO2Fy3RZ0gsvm+vc2F5j\nx8b2V1ZWJudhE9u3XafIFxPrRPm+9hTs4+oLAAAAABSQVAEAAACAApIqAAAAAFBQSDODUKFQKIvI\nW3PhAJE+HI/HsXNs0j5hEe0TLqN9wmVz26cIbRRWJWujTMsKAAAAANkx/A8AAAAAFJBUAQAAAIAC\nkioAAAAAUEBSBQAAAAAKSKoAAAAAQAFJFQAAAAAoWE3z5sPDw/GzZ88MhQJEe/PmjVxeXhbi3kP7\nhC20T7iM9gmXJWmfIrRR2JO0jaZKqp49eyYvXrzIHlVC1WpV9vf3b71WLpfl6GjuulvW9ft9WVtb\nm/u+SqUiBwcHC4goH54/fz73PabaZ6PRkN3d3cnP3W5XNjY27rwvaKPffPON7O7uyqNHj7THoioq\n9kDwGWq1muzt7S0wstkuLi6crMdpNtvncDiUYrE4+XnePh4MBiIisrqa6vC/EO12W7a2tua+r9Vq\nyfb29gIiijcYDJysx2k222cSzWZTdnZ2Jj9fXV3Jw4cPrcSSJ77UY5L2KbK4NurL93qWedegSa9R\ncVvSNupkq5lOqETEi4RKRBI3VhIqf4QTKhGJvGAN2uif/dmfGY8pq7iLbZEfPoMLCZWIeJFQ2RZO\nqETm72OXLxaSJFQi4kRCJeJ2XfoknFCJiBeJgA+ox2x8/l7PuwYloTKLZ6oAAAAAQAFJ1QJVq1Xb\nIWR2enpqOwQY1u12bYeQWalUsh0CDPO5fQIu6/f7tkPAAgRDv33ky/GfpGqBZg1r9MWTJ09shwDD\n5g0bc9njx49thwDDfG6fgMsYErYcfB7W6Mvxn6QKAAAAABSQVAEAAACAApIqAAAAAFBAUgUAAAAA\nCkiqAAAAAEABSRUAAAAAKCCpsuTk5MR2CECkZrNpOwQAAABvkFRZ8vTpU9shAJF2dnZshwAAAOAN\nkioAAAAAUEBSBQAAAAAKSKoAAAAAQAFJFQAAAAAoIKkCAAAAAAUkVQAAAACggKQKAAAAABSQVAEA\nAACAAqNJVa1WM1k8AORWr9ezHQIQqdVq2Q4BiMUxFItmNKna29szWTygpNls2g4BiLS+vm47BCDS\n9va27RCAWBxDsWgM/8PS2tnZsR0CAAAAcoCkCgAAAAAUkFQBAAAAgAKSKgAAAABQQFIFAAAAAApI\nqgAAAABAAUkVFo61IwAgG9aHAgA3kVRh4Vg7AgCyYX0oAHCTclJVKpVmvt5utxOX0el0bv381Vdf\niYhItVqdvPb69Wu5uroSEZGrqyv56quvJj+nERWvDu12Wz777LPIRWWr1aqcnJyIiMirV6+MxZHG\nxcVF5O+++eYbefXqlfzLv/yL/Pd//7f8+te/lpubm0zb+cUvfiE///nP5R/+4R/k+PhYRET+7d/+\nbfL7k5OTO+0geN0ElXYQtLvwHeOzszOp1Wp33uOSUqkkrVYrMjYX74AnPY589NFHIiLS7XYzbefs\n7Ez6/b6IiIzHYxERefny5a33mDh2RMU7GAwSlxHEa+r9YVnrN4ngM6vE56J6vS7tdnvm8S2poN5V\nysii0WjMfL1cLmcuc9Yx/bPPPpv8v9PpyMnJiVQqldRlR8WrQ7lcluvra7m8vJy7/W+//dZYHGkE\n59pZarWaHB8fy7fffiuvX7+W6+vrzNv5/e9/L//0T/8kX3755eT6LXyeiWovKu0ooON4kbSM4H0q\n27R9fLO9/bSCeEejkYiIDIdDbWWHr3nG4/HMuklbX4U0f/D8+fPxixcvUm0A0OH58+fy4sWLwpz3\n0D5hBe0TLqN9wmVJ2uef3kcbhRVJ2yjD/7BwLvbiAAAANVl6GIG8IKnCwj18+NB2CAAAQLODgwPb\nIQDWkFQBKUQ9Lwe4wOQzTwAAIBpJFZDCzs6O7RCASBsbG7ZDAABgKZFUAQAAAIACkiosXHjqcQBA\nciyeDpe5uDQHEGbyGEpShYXb29uzHQIAeInF0+EyFqeG60weQ7UnVVkXtT07OxORH6bjDBb4Oj8/\n1xLX//3FJjVDAAAWP0lEQVTf/03+H6zNpXPSgbhFdAOVSkVev36tbZumVSqVyYJrqoKFVRctvKhk\nFr/4xS/uvBZemDVop0G7/fd//3f5+OOPU28naOfdble+++47+Y//+I8s4Ub653/+Z63lmRQscJpm\nAVwdpr/DQduPWvBa13cjLLiDNr3w8Cy//e1vJ3/TbDbliy++kNFoJKVSSW5ubqTb7cr5+bk0Gg25\nvLycTGJxdnYmn376aarFjGu1mnz66ae3Xvvqq6+0Ls79P//zP/Lq1avJuWDaaDSSSqUi/X7f6oQc\nrVZLPv/8c6nVavK///u/kXc9Zy1W+fbt20zbDBaVDX/uoEfgm2++kVqtdieOwWAgH330kXQ6He3f\npbgFcMP+8z//885r4XN6UE6wYGzWUQynp6ci8n39np+fyx/+8IdM5UQJPofq+WQRgkV8v/jii4Vt\ns9frRbaxYGH2RUvSlsILHg+Hw1uLzQfXLNVq9c7ftdttqdfrIpK816Ner8v5+fmtxWSvr68n5ejQ\nbrelUql4MaFWcMwaj8dzj0+j0WhyHNVx7A/2Qfic3+12Z16nBksAJT3fs/gvvJB18cqLiwt59OiR\n0dgAFleFy7K2z263y+QnME5l8d9er0fvLYzLxeK/Se+G+cLEne28MLVgYFRCFfSGqDBxt5w2AhE9\nzyWY6OlbdO9hmI7vbF6ZOm5EJVThO/xZsT+hg8mEyubxzoRwTxzMsJZUlcvlue85PDyc/L/T6Ti9\nUneSLuCVFadz2Fim63/RCwZubm7G/j5J+zRxB9dUGwkPQYK7gpO4jucSVldXJ//XNWQiXOaizfvO\n2pLkwsv0cMVFn1sePHigXIbu/RkM0zHBh+FU+F7Sc12S7234eKd642I0GhlN0pI8YrG1tSUiImlG\nqC1Ckn3myw1na2fIo6OjVO/f3Nx09qQqkv+Hh12vf93Stk/XFYtF2yEgAVNJi44bAIXC3JEPSynJ\nPmMInXkPHz40VjbrE/oj6bku7bFW9cbFysqK0Zsfa2trid/r2rE8yT7zpVPCjyjhhCS9N4AttE8A\nAPLJh+GYJFVIjCFkcFneehcBAMD3bA4/T8rLpCqYPhVmhcewXl5eyuPHj41t6927d7H71bUxwCK3\n75qMx+NJfZVKJaef/8uj6+trY3UelJtmCnLXcYNk8UzV+fRU0IuQZCKVtJOtBN8zW8tv6OTbArim\n67xery98vybp1Zj3nlnLFIh8/4ykD70mcXyIf/o5KlMxh/erKvfTvhmePHliO4SlEB7DGp40xIT3\n338/9veujQEWuX3XpFAoTGI0mXxiNh0PzkcJJlHJ037lGbvFM1XnxWJx8gD6oiSZSCXtZCvB9yzN\nsyGu8m0BXNN1fu/ePaPlz5KkV2Pee6aflQ/en4dnJL3o9Zl6jspUzDr3q5c9VVis09NTGY1GSj2E\nwQKqv//973WFZQ29UO64ubmZLCaq0pN0fn5+566YzoVtFynPvVAu9lgnoesOqw93l+Gf4+NjpZ6k\n4G/D1wjTi6n7JM/fMx8/W9Dzq9KTNBwOZTAY3GrnJmb1dD9VhXVBz6BKD+H9+/dFROSv//qvtcRk\n06Knf0e0oF2JqPUk/ehHP7rz2tOnTzOXZ1Oee6Fc7LFOQtcdVh/uLsM/H3zwgdLfBz1d4WuEqDUi\nfZDn75mPny3o+VXpSZp1XjQxqyc9VZaw8CFclqfnhwAAwA987fV3HUmVJcu05hP8k6fnhwAAwA98\n7fV3nTNJVd7vjOdhxsJqtWo7BKsajYbtEIwJnnnzmW8zbumW92epln3/AkBWeT4/uMSZpCrqznge\nLvZE8jFj4f7+vu0QrNrd3b3zWjBJgu+2tra8XzzXtxm3dMvzs1Ttdnvp928e5WXSn+vra6nVarbD\ngAHT06r7YFbMeT4/uMT5J9bCD6IDrpk1wYGPNjc3GZIKZ5FQ5VNeJv0xuaQD7JqeVt0HPsacF870\nVEXJS08V8ikvPVWwgyFtd1EnyyMvPVXILx97qmCP80kVPVVQYXqWxbz0VAGuoFfKHdfX10bLz0tP\nFfKLXh+k4XxSBaio1+u2QwAikUDAZT6uaQMAtpBUIdeOjo5shwAAXtrb27MdAgB4g6QKAAAAABQo\nJ1W9Xo+HTQEAALBQrL8ElygnVevr6zxsCmeVy2W5uLiwHQYQaTAY2A4BiHR1dWU7BCAS6y/BJTyF\nuqSurq7k4cOHtsMwjmeq4DomA4DLluE8AQA68EzVkuJECQAAAOhBUgUAAAAACpY+qapWq7ZDACK1\nWi0r2y2Xy1a2CwAA4KOlT6r29/dthwBEsrU4LM+iAQAAJOd9UsV07gAAAABs8j6p8nU6d6apBQAg\nf7jZCywn75MqXzH7HgAA+ePrzV4AarQkVZ1OR0cxALB0ut2u7RAAwFuj0ch2CICIaEqqNjc3dRQT\nqVarGS0fAGzZ2NgwWj5DkeCyt2/f2g4BnltZMTvoiqQNSXkx/G9vb892CADgJYYiwWUffvih7RCA\nWKaTNuQHLWXBmKACAID8oVcYWG4kVQvGBBUAAOQPvcLAciOpAnBHuVy2HQIyarVatkMAlhrPgQPL\niaQKwB1HR0e2Q0BG29vbtkMAlhrPgQPLiaQKAAAAABSQVBlQKpVshwAAXmLdLris0WjYDgGINR6P\nbYewtEiqDHj8+HHs71nzAHAfF092mF63Ky86nY7tEJbS7u5u7O+5KQDbCoVC7O+5BjWHpMoC1jwA\n3Dfv4gmwaXNz03YImIGbAnAd16DmLF3NunIX6eTkxHYI1rleB41GI7a3otlsxv6tj1yJO00cOmN2\n5fOb5PNdSpd6Z0ajkQyHw7nv0xmzS59/nkqlkmndpsFgkHm9J5/qx6RKpSKDwYCZQA3x+RgaSHLs\nMm00GlmtSxN1sKq9RMe5chfp6dOntkOwzvU6mNdTsbOzk/lvXeVK3Gni0BmzK5/fJJ/vUrrUO5O0\nHnXG7NLnnyfrmk2rq6uZ/9an+jEpqL/V1aW7xFsIn4+hgWKxaDsE6/Voog78bxlADO7UpVetVm2H\nAETq9/u2Q1garLcEAMmRVCHXWLMnvf39fdshAJHW1tZsh7A0WG8JAJIjqQIAAAAABSRVAAAAAKCA\npAoAAAAAFCxdUlUul22HAESifQLRxuOx7RCcQn245erqynYITqE+7hoMBku9fdforo+lS6qOjo5s\nhwBEon0C0QqFgu0QnEJ9uOXhw4e2Q3AK9XGX7WnubW/fNbrrI3VS1W63tQaA5WViocZSqaS9TEAX\n7hJCFxML2dNTDmBZmFh4OHVStbW1pT0ILCcTCzU+fvxYe5mALtwlhC4mFrKnpxzAsjCx+LByibMy\nvdFolCoDfPny5eT/v/vd7+T4+Fg6nc7k9e+++05ERE5PTxWj/aEn4/z8XOtduevr68Tv7fV62rab\n1dnZmYh8H3fUvjo+PpZyuayl9+fy8lLG47G8e/du5u+jtvHxxx9Lr9fTVmdp9nkQazjmV69eSbvd\nvtPGy+Wy1Ov1yc9Z6+z6+nryt/1+X5rNZqZyZimVSrHllctlrdtTcXV1NbcO2+229Pv9VN+9KK1W\nS16+fCm1Wu3Wfn3z5o384Q9/EBGRTz75RHk786QZCRBub3FqtdqdclVGHLTbbRkMBlKv17X2lrTb\n7djygt+7sqB3kjpMuo+SCBblvrm5mbx2cXEhV1dXMhgMZn4P+v2+tFqtzD2k0/EPh0Op1+uZP9fr\n16+l3W7LmzdvJuf1oNyLi4vJz1nb1bw2lFWz2Zxb7nA41L7drK6vr6Xb7Uqz2YzcV0H71Tn66O3b\nt3deq1ar0mw2Z55bTIxWSdPWg4XEk/yN7lEGo9FIer2e9sXM48obDAbeLZ6u69qv3+9PjqFp8pO0\nbbSQ5kHX58+fj1+8eJFqA4AOz58/lxcvXsQ+QED7hC20T7iM9gmXJWmff3ofbRRWJG2jSzdRBQAA\nAADoRFIFAAAAAAqUk6pFPIPBjINmxY0Z1VX3nU7HyvM6i1gngxkH7dFV981m08qaKotYZ4gZB82K\n24c6697GmlSXl5fGt8GMg/borPtFtBXk0yKObYt65lF5KqqdnR0dccRixkGz4mbh01X3Jmb6S2IR\n62Qw46A9uup+Z2dnIceyaYtYZ4gZB82K24c6697GmlSHh4fGt8GMg/borPtFtBXk0yKObcVi0fg2\nRBj+BwAAAABKlJOqYIrCwMnJiZycnKQq4ze/+U3s74NhOdPbysrUlJLz4uv3+0ame80q7X4ywfSQ\nq+ku36ipXWdpNBp3ymg0GtLpdKTX60mn05lMV9xoNCZTAgdDKnQMd9Q1ZPL8/FyGw+Gt5QvCgs9a\nrVYn//dBeBpmE4LhW7rqJOkwhyRTvs4attvpdKTT6ch4PI4d1pt1KEQ4Lp0LJwbHZBeWm9BJ9/E+\nar/pmpo66fIEqsMag7ZTq9VERKRSqdz6bFmnzbc11LVSqcz8v21v3ryJ/b3ua6G4/aZj6Ys0TCzs\nqqP88N/ZGNLrEhvLEMTtNx3fB+WxCfv7+7d+fvr0aeoy/u7v/i7298EQrultZbW2tqalnGnz4jO1\n3ayy7CvdTA/Pm+7yTTPEa3d3904ZwWuz3hv8LhhSoWM4ma4haT/60Y9EROQv//IvZ/4+iF3Xd2xR\nHj16ZLT8YPhW1H5PK+kwhySLEs4aUht+LW7IbdahEOG4dC6cGBwb19fXtZXpAt0L9EbtN13Dqx88\neJDofarDGoO2s7e3JyIiBwcHt36/vb2dqVxbQ13D8U9/FpuePXsW+3vd1yRx+y1p29LFxMKuOsoP\n/52NIb0uWdSQvLC4/abj++D18L/gLpdLwgsz+i74LDruMF1fXzuzsOyyqlarcn5+bvwO3qKcn5+L\niJ67S/1+36k7zKYFva0u8W1RSpFkPUQ66jkow7V9Zkqj0XBmkecw344RcT3suj/L9fV16h5Tn0ZF\nTOv3+05+H12MKU7ccT/4LDquWUajkQyHw1ttzkRdef0Ec3CXyyX379+3HYI2wWfRcYdp0XepcNf+\n/r53PVFxgt43HXeX1tbWnLrDbJqtiWPiuNaTn0SSetTR+xaUkbeevCi6eoZ18+0YEVePuj9LlnO8\nq/s5CVePV74dI+LqMfgsOnodgzLCbc5EXXndUwUAAAAAtpFUAQAAAIACkioAAAAAUEBSBQAAAAAK\nSKqAlEyvjQSosLVWD5CE6bUJAcAWkirMNRqN5Pj4WNv0k75NSzvN9NpISIeLtNtsrdWD+Uh4za9N\niHTCy8CoLGuge6FrINButydTorfb7UxljEajhSzrQ1KFub788kv54IMPlKafrFar8tFHH4mIf9PS\nwm337t2TRqMh5XI583oW3W5X6vW6iNATCb3G4/Hk/1kT3m63O7mYIDGDTvfv35fj42MRUZsmPFjo\nmptc0G1ra0tWVlakWCzK1tZWpjJGo5Hs7Oxojuwubmlirp/97GfKZezv78vPf/5zDdEAt62vr8v6\n+rrSmicbGxuTiwJ6IqFToVBQLiNomyL0REK/Dz74QFtZ9ETCRYs6btJTBQAAAAAKSKoAAAAAQAFJ\nFQAAAAAocD6p0jXjHAAAAACY4HxSpTLjHAAAAACYljmpOj091RkHoJXKehuAaZ1Ox3YIQKRqtWo7\nBCAWo5jgosxJ1ZMnT3TGAWilst4GYFqxWLQdAhBpf3/fdghArPD6b4ArnB/+BwB5Q9IPANmF124D\nXEFSBQAAAAAKSKoAAAAAQAFJFQAAAAAoIKkCAAAAAAUkVXACU/QDAADAVyRVcAJT9AMAANeMRiPb\nIcATXiRVNzc3tkMAIjUaDdshAJGGw6HtEIBIXLDCdSzWjqS8SKru379vOwQg0u7uru0QgEgsNAyX\nrax4cRmCJba9vW07BHiCoxkAAAAAKCCpAgAAAAAFJFUAAAAAoICkCtBgPB7zwDUAZFSpVGyHAMQa\nDAa2Q4DjVm0HAORBoVCQQqFgOwwA8NLBwYHtEIBYq6tcMiMePVUAAAAAoICkCgAAAAAUkFQBAGDI\neDy2HQIQ6erqynYIQCyfnmUjqQIAwBCetYTLHj58aDsEIJZPz7KRVAEAAACAApIqAAAAAFBAUgUA\nAAAACkiqAAAAAEABSRUAAAAAKCCpAgAAAAAFyklVqVSa+Xq73U5cxtdff33ntU6nE/n+VquVuGyX\nlEql2M+1KO12WzqdjrTbbbm5ubEaS5L6aDab2td6iWq3y67ZbNoOQUqlkjSbTSmVStLtdq3HMs/V\n1ZWMRqNM5Ud9PtV1OfK4NpLtthAI9s1gMJBer2c5mvlU2kKj0Zj5erlcTlzG5eVlqm2muXZwSVRd\nLVqwb8rlcuq6t0E1Rh3HuuFwaKRc14zH45mf1QZX4tC9n5Unf3/8+PHM17e2thKX8ZOf/OTOa5ub\nm5Hv397eTly2S6LqatHC+ybNfjIhbj8HdnZ2tK/14sq+cM3Ozo7tECb7xqVY4jx8+FBWVrLdn9rY\n2Jj5uuq6HHlcGymqrhYt2De+rJ2i0hZ2d3dnvn50dJS4jMPDw1TbtH1OyiqqrhYt2Ddp9pFNadvH\nNB3HumKxaKRc1xQKhZmf1QZX4tC9n70d/letVm2HkHtBL5Kpun79+rWRcl3ga2+qT4JeJFN1fXZ2\nZqRcAMg7V3ru4C/TvYVZR5jE8Tap2t/ftx1C7gW9SKbq+s///M+NlOsCX3tTfRL0IgV1rfMk3mg0\n5L333tNWXsDEQXwZ+To0x/X9rzrsFH66vr6WSqWibf9XKpVEPXfX19epy3b9O+QLH77r4V6kfr8v\nInr3f5IRJsF2k/Jj/AIAzKFz+I2poTxZhwniNl+H5ri+/30Z0gi9Hjx4oLW8g4MDY9t1/TvkC9++\n62trayKy+P0fbDcpWicSOTk5ufXz6emppUiA+dLeXQIWyYUJi4AoPF4B10xPbOHqJEEkVZjpt7/9\n7a2fnz59euvnJ0+eZC6bhAyq5s1SmPbuUhgJGVRVKpXY3yeZoCcKCRlUvX37Nvb3KkP+ScigQ71e\nv/Xz9MQW6+vrmcs2mZCRVGGmv/3bvzVWtkpCBoiYnRlQJSEDRMy2IVdmzYK/PvzwQ2Nl87w7dDD5\n7JzJZ3JJqgAA0IikHwCyM5mcm1yeg6QKC1GpVO7ceZg3RAbIE2atQlZB2wkvgEx7AgC3pEqqxuOx\n1Gq1O69fXFzE/t2834ukW6E9KVMX7UnHtCf53KbY3Pas7R8cHNyZtSXpDEEuMNE+sVzC7d/EdLY+\nTJErcjsxQDJB2wnfYdU9CxZJGlw3Ho8nQ7fCExfMO6YkOeYMBoM7kyG4Kul31eax1vZx3tb2U82p\nWCgUZG9v787rjx49iv27eb8XMbP6t6mL9qQPGSf53KbY3LYL29fNl9Xp4QcT09n6MkWuyaEXyI6p\nquG6QqEwWU4h/GzhvGNKkmOOL8dPkeTfVZvHWtvHeVvb5ygKAAAAAApIqgAAAABAAUkVAAAAACgo\npJmvvVAolEUkftU4wIwPx+Nx7INNtE9YRPuEy2ifcNnc9ilCG4VVydqoyUWwAAAAACDvGP4HAAAA\nAApIqgAAAABAAUkVAAAAACggqQIAAAAABSRVAAAAAKCApAoAAAAAFJBUAQAAAIACkioAAAAAUEBS\nBQAAAAAK/h/tI8hTI9JAAwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHKCAYAAAA+Up11AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmMI9l94PlfkEnmfVVntrqq1YfarV5JK/mQU7axa/j4\nb2awwOiP/WMHkAcY2GhAGMAzxgL+YwF5LAvwH7Zhw7PGuiFoB7KkdcMyZMiS0LLUtttStxs6svqo\nKtV9V+VRyUyeyZuMt39UBZtk8oggI+LF8f0AiWQygxE/RsSL9+LFOwyllAAAAAAAAACYXEJ3AAAA\nAAAAAEDYUckGAAAAAAAATIlKNgAAAAAAAGBKVLIBAAAAAAAAU6KSDQAAAAAAAJgSlWwAAAAAAADA\nlKhkAwAAAAAAAKZEJRsAAAAAAAAwJSrZAAAAAAAAgCnNjFvAMIwXReRFEZHFxcWf/9CHPuR5UEAc\n3L59Ww4PD41Ry5D+AG+Q/gB97KQ/EdIg4BXyQEAfu3lg3BiGoTxa9XeUUv/Go3UPZChl/7tsbW2p\n7e1tD8M5KZfLyfr6+lTraLfbkkwmXYpIv0ajIel0euxyYf7eYY7drq2tLdne3rZ9gdWR/mq1mszN\nzZ14v16vy+zs7MDPVCoVWVhY6PxtmqbUarWe9+LANE1JJBLSbDYllUrpDseROByzMKQ/EfvX+0GO\nj4/FNE1ZWVlxOSo9arWamKZp67wsFouysrIiSikxjHCVY63Yo8xp+nv0GS1pcFg+OEx3uTWM5984\nx8fHsrS0ZHv5Uqkky8vLHkaESYQlDxxV3gTCapI8MA48rGQ7q5Ta8mjdAwW+u2itVpNarXbi/Var\nZevz9+7dk3q97nZYWtm94bK+dz6f9zIcT0TtmIVVMpmUSqVy4v1RBZ7uG+B6vS6JREJmZsY2mg2F\nZrNpe9lE4uHl1cmDjKCI0jELs0qlMvA4jDqnuq+dyWRSFhcXpVqtehKf3xKJhO2K38XFRRGRUFZw\nROmYRcGgCjbTNIcu3/1g2Dr/Ri0fNnHJG6J0zMLKNM2B5c1B94WWQdfOQqHgaly62L33jYKoHDM4\nZxiG6z86BD6nPH369MD37WbyTz31lJvhhIp1M7K2tqY5Euei3IImTFKp1FStsKzC0aQtcYJmkn0R\n1u8e1rijZNh1cFSBofuGZH5+vud32Dk5J8PcEjqZTEbmmEWV9RDFq+WDzEmrPhEJbSu2KB2zsBp2\nDEadg4Ounaurq67FpFNcKrhFonPMEF/xSa0AAAAAAAAIHC9anunoVcRjGgBwUbPZpLszoEkYu2cD\nUVIqlXSHAACAVlSyRVA+n49Vv30gSJRSsR2kd9Q4KYAfDMOIbUVbo9HQHQIgIoxnBuhEWQxhxphs\nCKwwjsEGREWcxzIL2yyqiKYwTnbghjhfexAcYR2DDYgKp+MmAkESlTIcLdkAAK4I82DzAAAAADAt\nWrIBAAAAAABAC53dO91GSzYAAAAAAABgSrRkAwAAAAAAgDZRaclGJRsAAAAAAAC0iUolG91FAQAA\nAAAAgCnRkg0AAAAAAADa0JINAAAAAAAAgIhQyRYLBwcHukMAAABAzNTrdd0hALHVbDZ1hwA4YhiG\n6z860F00Bh5//HHdIQAAACBmZmdndYcAxFYqldIdAmCbzkoxt9GSDQAAAAAAAJgSLdkAAAAAAACg\nDS3ZAAAAAAAAAIgILdkAAAAAAACgES3ZAAAAAAAAAIgILdkAAAAAAACgUVRaslHJBgAAAAAAAG2i\nUslGd1EAAAAAAABgSrRkAwAAAAAAgBaGYdCSDQAAAAAAAMBDtGQDAAAAAACANlFpyUYlGwAAAAAA\nALSJSiUb3UUBAAAQaYVCQXcIQGxVKhXdIQCAb3ytZDs8PPRzcwC61Ot13SEAAKDFysqK7hCA2Gq1\nWrpDABAC1uQHbv7o4Gsl28bGhp+bA9BldnZWdwgAAGgRlS4oQBhRyQ0gThiTDQAAAAAAANpE5YEY\nlWwAAAAAAADQQmf3TreN7S5qGMaLhmFsG4axnclk/IgJwCOkP0Af0h+gF2kQ0If0BwCTGVvJppT6\nvFJqSym1tbm56UdMAB4h/QH6kP4AvUiDgD6kPwB+Y+IDAAAAAAAAACLCmGwAAAAAAADQKCpjslHJ\nBgAAAAAAAG2iUslGd1HAof39fd0hAAAAAAB80m63dYeAkKAlG+DQ6uqq7hCA2Go0GpJOp3WHAQAA\ngBhJJpO6Q4g8WrI51Gq1XFtXpVIZ+f9CoXBieaWUa9vXpdVqSTabHbtcrVbr+Tufz3sVkmfGHeNh\nur+7aZpuhSN7e3tSLpdFRGR+fr7z/vXr1+XOnTs9y9br9aHrqVQqI/8/qXHftdFouLbe/vNrHKfL\nj+LmMXVq0n0YRm4cM6+uuf0VbLlcrufvarU68vPj/h8G3dfH/mtlqVQa+5mw0pn+g6parXb2y4MH\nD0REbJUTdCgWi56uf9Q15/j42NX1dl9H+q8pmUzmxPLNZtO1a4+u8uzx8bHtNBiFtGqV+UYxTVMy\nmUznmFj3H81m0/XjZOV1/enISXp3szwG/zlpRWXn/IW/aAUXL65Wso0qQM3MTN5orn+949bVXQlS\nqVRkZmbG1VpRrwuKw8zMzEi73ZarV6+OXC6VSonIewW/7v0RFk7Pl1KpJDs7O7K9vS2lUkkePHgg\nly9fdi2epaUlee211+TatWtydHTUef/ll18+cVM7qIBtqdfrI/8/qWazOfImetJK7kHrTafTPRVO\n/ZVP3cvn83lJp9NSLpddqaQa9z291Gq1bFWQ1mq1nmtEGCu50+m0rcJAsViUfD4vjUZD7t69K4eH\nh3L79m158OCBq5VZN2/elEuXLsmNGzfk3r17nfeVUrK+vt6z7LjrnRfXw3E3U5PmGYPWe3R01LnG\ni0jPa5Hep6zNZlOOjo5OfGZSOh9WFYtFqdfrY9Pg8fGxZLPZzg3G3t6eH+G56ujoyNb1MpvNdh4i\n7u7uymOPPSaHh4eytrbmajxXr16VYrEoFy5ckJ2dnYnXs7Ky4mJUJ40q583Ozrq2XtM0e64j/deU\n/u9pmqbcuXPHtWuPrqf8s7OzQyvxu5VKpZ7zd3d318uwPGGapq2K2UajIZubm53rjdXTIZVKuXqc\n8vl8pxzXf371XxObzebQ9aTT6ZH/n8aoa/M0lQtOH0x3l3e9qNTw4kG5He12WxqNxtjvVK/XpVar\nyeLioojou2f1Q61WO3F/02w2pdVquXqvZeV/tVqtJ/3s7OzIwcHBiWWHSSQSkT4ebjAMw5MfLd/F\nSaF5a2tLbW9vexgOEB9bW1uyvb1tO+WT/gD3kP4AfZymv0efIQ0CLiEPBPSZJA+Mg3Q6rTY2Nlxf\n797e3lml1JbrKx6BMdkAh2q1mszNzekOAwAAAACASGBMNiCm3Oh2BWAyjCkD6DPN2GYApmenyy4A\nb+jqLhwnUekuSiUb4BAzywD60IoU0GdpaUl3CECsLS8v6w4BiK1pxvdEvNBdFAAAAAAAANrQXVQj\nr2bGAQAgqJRSE88UDMAdOmfZBeJO1wzzAOBEKFuyMSYWACBuDMOQmZlQZttAZETlKTsQRgsLC7pD\nAOChqOSxlNYBAAAAAACghc6JCtwWyu6igE7Mrgbow+yiAAAAAIKKlmyAQ8yuBujD7KIAAABA9NCS\nrU+j0ej5+9133+28LpVKcuXKFdvr2t3dlWw2e+L9w8PDzuv+1kRf+cpXOq/PnTvXeX3hwoXO65s3\nb9qOoZ8Vf7Valfv378tv//ZvT7wup7785S+LiMjOzo688847cuHChRP7e5hB+zGoHjx40Hl99epV\neeeddyZeV7PZlEKh4EZYIvLeQMc7OztDl3nrrbdGrmN/f19eeeWVE+ucViaTGfj+/fv3ReThOetE\n/znTbrcln8+LSO+kIwcHB53XuVyu87parcr+/n7ns27o3++NRqMzALxb2xgmm83KnTt3bC/fbDal\n1Wp10mhYWj5OMqB+s9kUpdSJc3lvb8+tsERk+EDHrVZL7t271/Oe34OS/+3f/q1897vflZdeeqnz\nnmma8nd/93ci8vD4v/HGG7bXt7+/L6+++qq8/PLLcuXKFbl69aqcP39e3njjDSmXy9JqtWRnZ0de\nf/11uXfvnpTLZdne3pb9/X3J5XKSy+Xkz/7sz+TNN9+UL33pS/L7v//78uqrr8rBwUFPfujEtWvX\n5Jvf/KZ873vfkwcPHsj29rb8+Z//uezt7cm3v/3tnjzXbTdu3JA//dM/lS9/+cvy8ssvy1/91V+N\nzBvK5bJUq1V59913pVAoyPXr1z2LzU21Wk2+9a1vyZtvvilvvPGGfP3rX5cvfvGLIz9TLpelVqtJ\nrVaTcrksxWJRRER++MMfyptvvulabEdHR5003b0/X3/9dXnppZfkwoUL8vrrr8u1a9fk7t27Q9fz\n13/91/I7v/M7cu/ePanX667FZ51/3WUIEZHt7W0RESkWi519Y8f9+/elXC53/r59+7b86Ec/ku98\n5zudvFCkN1/61re+JSLS+Vx3Ge1rX/uavPPOO0PzajsuXrwo586dk7t37/bktyIiL7/88sTrtUsp\nJa+99prcv39fzp49KxcvXhy6bD6fl3q9Lq+99prs7OyEJg8UEXn77bcdLZ/P56VSqZzIo9566y35\nxje+4VpchUJBbt26NfB/n/3sZ3v+7i6b9bt796589atflb29PdcmkSsWiz3pontbbrhy5YpcvHhR\nDg4OelqyZzKZTrrO5XLSbrfl/PnzopTqpEeRh9dWt+6FSqXSifuva9euubLuYfrLuPl8/sS1rlut\nVpNqtSp37txxdO8dBP3XyFHnssh7xzabzZ7IUy5fvuxaXNVqdWge8tprr/XEeXh4OPS+q16vy927\ndz0tMyFArBskOz8///M/r4Luxo0b6vbt2+rv//7vPdtGsVhU//qv/+rZ+vv9y7/8y4n38vm8rc/u\n7Oy4HY5n7H6nYfb3912KZLRyuTx2mUajMXaZR+nJtfRnJ65p/OQnP5n4s5VKRRUKham232q11IMH\nD1S73Z5qPW64d++ereVarZbHkbirVqsppZQ6ODiYel1up8dmszl2mXa7Pfb8ME1TKeVe+nvllVdO\nvLe3t9fz9/nz58fG3u2f//mflVK9abrRaCjTNHuuk/fv31e7u7s927hz586JPOPGjRvq+PhY3bx5\n01Ec3a5evaqUUiqXy6m/+Zu/6fmf0+/nxOuvv66UUurWrVu2rnHW8a3X657F5IV8Pq+Oj4/VjRs3\nlFL29qlpmqper3e+qxvpdpBcLte5/vbLZDJqd3dXnTt3rvPeoLRaqVQ6r7PZrOP0p0akQev7Hx0d\ndd7rP1dKpdLY79nNyu+613n27Fml1HvXSWvbVt5mpcVBrly5oq5du6ay2ayjOLr94Ac/UEopdXx8\nrA4PDzvvN5tN9c4770y8Xrtee+21zms7ZRyvyyResGKu1+u2vmO/7vMsl8u5FpdSD497f95iaTab\nPfFa18H+z1vK5bL6+Mc/rpSLZVC3z8GLFy/2lKEuX76slHqY/rrzsmHH6Qtf+EInnVSrVZXNZqcq\nP3ane6WUunbtmqpWq0opNVXeald37NPeLwWdlQ6Hne+DZDKZnr+LxaKrMSn18FzrvvZaea5VDrTi\nHXftq9VqE+WBcfhJp9Pq2Wefdf1HRLb9/i6GUvaf+m9tbSnrySCA6Wxtbcn29rbtNrGkP8A9pD9A\nH6fp79FnSIOAS8gDAX0myQPjYHZ2Vj355JOur/fWrVtnlVJbrq94BN8mPhjVtHVabjV5tsPqBhdk\npVLJ130CvSqVytjuw5N0BQwq0zR1hzCS0+65CLdisTg2/Xk5WYOTbnBh3J5Tx8fHgY8R7mo2m1qv\nu/3dN+OuWCyyT2LE6yE7xuF+5yT2iT7cA8DiWyWbl4NVp1Ipz9bd74knngh84WF5ednXfYJefmdu\nCwsLkk6nRy4zM+PdHCfDxsvySiIR7EmR5+fnA18RCPesrKyMTX9ujj/Vb3l52bN196tWq7KysuLb\n9iaxtLQU+BijTMcDnVQqJfPz875vt3v7fukeKy6oVlZWPC1zYDQnPZTckEwmfd1eP7+vOX6XeSfB\nPaA+fqe/KDIMw/UfHTy7W+2viFpdXfVqUyd4/VRlfX3d0/UPYneig35hv9kPeoXmIEHI3LxsOdNv\nYWGh528vzrlms+lpRYXbrIrAMNwQjTLJeRSGAqgfuq/ZTvI/p9f6/sKDF624rEKjjoqMWq3GORUi\nQapcmTQfdPo5P2YcL5VKIiKyuLjo+bYGcTp5gZ+V/+gVlJn5Ji2zOf2c3/lSf5kX6Mb5AYtnlWzW\njFeTfnYaXtyM5/N5rV3uxrWUGCborX7G8bOyKEqSyeTEN6bT3tB6cc4ppWR2dtb19doxTctEXTdE\nbpnkCXWQbrJ1qVQqE++HafefF+ecYRjans4mEonYFlonuRbTVeU9k/ag8LLnxTR0PjTlum5f2B9u\nu8E0zYnLbLrKeuPouh+J0nAvTk2SlgqFggeRwC9etGLT9eDBs1zz9OnTE3922gKOFwXytbU119eJ\n8aY5j+IslUpN3KIuiDe0k1YyuyEILRN1meS76zxWQTFNGpq2ktqrrju6CilxPp8mOY90dpuEd3S3\nDAtqxWMQhf3hthuiuA90pYE4V3BPch752XMOGCV6V0HEXhi7mAJRQetTQK9Jh5cA4A7yQUCfMA0v\ng5Oi0pKNSjZEzjRdlQFMZ5quygCmM01XZQDuoOUfoMc0XZURDFSyOZTJZDxbvn/Z7gqWnZ0dEWE6\n4yjrP/4bGxtaCjjWOWadc+P4OcaR03ENnCw/alkrLcZ5TImo6z/+hmFo6XJsnWNUsL/H6WDlCL+F\nhQWtXbU453pR9oTf7J5zfpVB6/W6ownpnC7fv2x3eZMWTdHfB/3HX3dX5ajvb9jny5lYKBQczb7k\ndPn+ZbsrWNbW1sQ0zViPqxTlQSCbzeaJ46/rWFvbtTt+n581604zHSfLj1o2zukuLnQXaPoF7Zwr\nFouObmacLj9qWT9mPQw6L2ZbDQqn54ofgnjOZbNZT5fv113Rb42RGOcHTdPuz7DRdayt7dodl9Ov\nMmgymXRU+e50+f5lu7vLWy2a4pz+vBqnNQhqtdqJ4687/dGKbnpRacnmS58Cp4MQOl1+1EC/YZ/d\nzw1RHgRymgH+vcI59x4rc6f7UnzoOtbWdoNWoFxZWfF0eV2Fh7Bwuj/DJMrfzU2nTp3ydPl+3Q96\nrYcQcc4Dp92fYaM7Dwzag6+ZmRlH9yFOl+9fdlBL+jinvyh/97m5uRM9l3SnP8ASrCsxXFMqlWLV\nTaFYLMrZs2cll8vZ7q45qS9+8Yud10zVjkGq1aruEHznR3fNXC7X0z2cAd4xyPHxcaRbsA1ipT8v\nu2sWi0XJ5/Odv0l/GKZYLMZ2Eiqvyt6DWgTGdR9jvDjdA7Zarc5YwF521yyXyz1l0Cj3FNOJlmwa\nmaYZuCc1QaN7unc/maYpKysr8swzz8j6+rqk02nXt5HNZuXUqVNyeHgov/ALv9B5n/MQg8zPz0ul\nUtEyNpkOzWZTWq2WzMzMeNqydGlpqWf9XqR1hN/S0lLgulF6zXqK7kV3TaWUGIYhS0tLPXke6Q/D\nrKysxGp8vlKp1Cl3e9Ga+ujoSB577DFpNBo96W59fd31bSEaWq1W4Hr6eKVcLsvq6qoUi0XPWnjn\n83lZW1vrKVsEcXiEsNNZKea2UNYQULHhTNRn+rPOh42NDRHxprum1d1hY2NDPvKRj7i+fkRPXCrY\nRB5227a67XvZXTMuBUZMzyqkxa1FmxesfUnZC05YN6BxmIym+8G2F+nkscceExEqtmGfVSZzMolE\nWFldhr0cQsEab7u7Yi1ow5MgWMbmBIZhvGgYxrZhGNtOZwhFMDDTSXiR/gB9SH/hx7hl4UYaDD8q\nhsKL9Bd+PBxB2ESlu+jYlKeU+rxSaksptbW5uelHTHAZzcnDi/QH6EP6A/QiDYYfN/nhRfoLv6h0\nvQPCJjQ5H4N7wq44dE3wG/sU0ItB5mFX1IeI0IV8EHbFcfIjr9ErB4iH2LRkC4parUYBB7YwbpP7\nkskkN26wpVarUSHkskqlwvTwNpVKJd0haHV8fEwe6JG5uTndISAESqVSZzwsuMM0TZmdndUdBkKA\nytjwo5LNZ6dPn6aA02V3d1d3CIHFQJTuS6VSsRrIf5w4DCQ7qbm5OcbgcdnCwgJdrmyK08zag/TP\nwAvAX3G/BnmB/A92URmLoODReEidOXNGdwhAbFGRCwAAAADuico4gq48GqhUKtqbZx4fH2vdvp8e\nPHigOwQEjO7xP+LUlbvVaukOAQFSLBZ1hxArcbrWwB7OCUAfWvYDwEmuVLLV63U5f/68G6ua2NLS\nktbt+4lus+ine7ymOJ2Tuvc1gmVlZUWazWbsxwLzi+4HegiedDrNww9Ak0QiIYVCQXcYACLAi/HY\nQj0m2/r6unzwgx90Y1WwYXV1VXcICBjG4AH0qVQqjMPjE/I/9EskEjz8ADQxDENWV1d50AQglAzD\neMowjNcMw7hoGMZPDMP4LwOWMQzD+O+GYVw3DOOcYRgfH7deV0olhUKBgi8AIHbI/wAAcVYqlXjQ\nBMAVGlqetUTk/1RKvWUYxrKInDUM41Wl1MWuZf6tiHzw0c8vishfPvo9lCuVbNxgAADiiPwPABBn\nVLABcIvflWxKqT0R2Xv0umQYxiUReVJEuivZ/r2IfEkppUTkB4ZhrBmGcfrRZwdiTmQAAAAAAABE\nzYZhGNtdPy8OWsgwjGdF5OdE5Id9/3pSRO51/X3/0XtDMYgFAAAAAAAAtPGoJduhUmprzHaXRORr\nIvJflVLFaTfoaks2pnEG/FepVERExDRNzZEA8dRoNKRYnDo/BjCBXC6nOwQAABBShmGk5GEF2/+n\nlPq7AYvsiMhTXX+//9F7Q7lWyZbJZKRer7u1OgA2LSwsiMjDGdYA+MvK9xYXFzVHAsTT+vq67hCA\n2KpWq7pDABAhhmG4/jNme4aI/L8ickkp9adDFvuGiPzHR7OM/pKIFEaNxybiYnfRzc1Nt1YFAEAo\nzM7O6g4BAAAt5ufndYcAICLsVIp54H8Vkd8QkfOGYbzz6L3/S0SeFhFRSr0kIq+IyL8TkesiUhGR\n/zRupYzJBgAQkYfdHtPptO4wgFhqNpuSSqV0hwEAABALSqk3RGRkzd6jWUX/s5P1UskGABARoYIN\n0IgKNgAAEGcaWrJ5gkGcAAAAAAAAgClRyeaSWq2mOwQAAWTN/goAQNww+ysAwC6/Jz7wCpVsLqGb\nB6BPkCu5rdlfgag6Pj7WHcJQzHqOOCiVSrpDGIrZXxF1Qc5nmP0VYUMlG3okk0ndIQCxNTc3pzsE\nILaWlpZ0hzAUs78iDpaXl3WHAMRWkPMZZn8F9GDiAwAAAAAAAGjDxAchFcfxkYLclQ4A4I92u607\nBAAAHKHLI4CwCU0lW7PZdGU9cRwfifHiAH2o5Ma0Wq2WK+uJ47AGQR4vDuGhlNIdQmgFebw4hAPp\nb3JBHi8O6OfFeGyMyTYGFUWTi+ONFRAUjBeHac3MMLLDpII8XhzCIyrdV3RgvDhMK44NJNwS5PHi\ngCij5A5ESKVSoTACAAAAAAiVqDzUCk1LNgDj0eIF0IdxYwC9TNPUHQIQW4VCQXcIAEKO7qIAAied\nTmvbNuOuIO7m5+d1hwDEWiJBsRbQZXV1Vdu2GXsMQJDQ7AWAKxh3BQAAAH5j7DEgGuguikBjRkMA\nQFxVKhXdIQCxRvd5AEBc0ZItopjREAAQV0wAA+hF93kAgFNRaclGJRsAAAAAAAC00DlRgdtC2V30\nwYMHukMIFWb7gZtarZbuEIDYYigAZ8j/AAAA4KdQtmSjK6QzOmf7QfTMzITysgFEQr1eJw90gPwP\nAAAgHGjJphGFZgBAHJH/AQAAAME1tpLNMIwXDcPYNgxjO5PJ+BETgEdIf4A+pD9AL9JgMCmldIcA\nH5D+APjNGpfNzR8dxlayKaU+r5TaUkptbW5u+hETbCgWi7pDgA9If8FUqVR0hwAfkP4AvUiDwRSV\n7jwYjfQXTPV6XXcIgGdiU8mGYFpZWbG1HINke293d1d3CPDZwsKC7hDwSLvd1h0CAopJWrxF+QLj\n5HI53SEAkTM7O2trORpkeKvRaOgOAQHGCOYRl06ndYcQeWfOnNEdAgKqXC7L4uKi7jAiLZlM6g4B\nAcUkLd5iAg6Ms76+rjsEILbsNsjAZLjH9kZUWkoHtiXbwcGBHBwcjF3u+PjY1v/trCuKEomElEol\n3WHY1n+cTNN09Hmny0+iext+bE+nZrM58v/jWjK43dKhWq26uj4vmaYZygo265g3Gg1HrcRM0/S8\nVZkf2wiSoD2FHpffBlHYzpegHfO4qtfrUq/XXcnjC4UC3btCwjrmUS/bBV2z2Rxb/rSrUqm4tq4w\nKZfLIiKhuge0jtMk4/9Z39dLfmwD0RHYSrbFxUVbN6hLS0tj/394eBjKm123LC8v6w7Btu7j1G63\nZX9/39HnnS4/ie5tZLNZz7en07im0ONaMszNzbl6cxGmptmJRGAvryNZ+9jpEzo/vm//NqJ+IxS0\np9Dj8tsgsSr4w9bScWVlZaLz2o+um3HqHjo7Oyuzs7OuXNdWVlZsd++KojBVzlvHPKz5d1RYx8CN\nhw6tVsu14xmmIQhSqZSIhKvF8TTH3Pq+XvJjG3HnxXhsulrGBbYvhZuVYhsbG66tC97qPu7JZNJx\nV0w/um52byPq55Yb6dDNm4vV1VXX1oXB+tOgE35UaHRvgxshDBOmG4t+k5zXfnzfMO9TnaLS9WVS\nYaqcRzBY+bwbD5rcfFgVpiEIrAelYaoYSiaTEx8vP7pu0j0UTrh6hxLH5rhAEISpGyUQNaQ/QK9q\ntUqXTECTQqEQqm6JAIIrKi3ZXKtka7Vaoaotj4u4jkUXN3HuihJ0PHyIvjB1IYkbxjiLB9M0yQcD\nyK1x7RBsy8vLoRqaJi4ofyKMolLJ5lq71zA1oY2Txx9/XHcI8AHd5oKLhw/Rx81FcAVtXDt4I87j\n7gYZFZ+DLxthAAAgAElEQVTxQBk0mCh/AvpQMwYAAAAAAABtojKOKY8eAAAAAAAAgClRyRZhjUZD\ndwgAAPiqVqtJpVLRHQYQa8fHx7pDAACEDGOyIfCYahjQo9lsMhYGoEkikZC5uTndYQCxxljNgB6t\nVov0h1DSWSnmNlqyOZTL5XSHAMRWrVbTHYJt9Xpddwix0Gw22dc+CkMLaSq4/aOU0h1C7IQhHyyV\nSlR0+6RUKukOIVbCUN6ggg3Qj0o2h2q1WigKOPl8Xlqtlu4wYoF97Z9kMhmKbmBKKWZV8wn72j+V\nSiUUhXfDMKj88Qn72n9hqbwyTVN3CLHBvvaHaZqhKW+E4V41KtjX7qK7aEydPn1adwi2rK2t6Q4h\nNtjX/kmlUqFopUJXbf+wr/2zsLCgOwTbotLdIAzY1+i3vLysO4TYYF/7J5EIT9uUsFTGRwH7GoOE\n52oBBFC73fZ1e5VKJRTdtQA/mKbpa8vGYrFI+gMeKRaLvm+z2WxKtVr1fbsA/C/zAoifqLRko5IN\nmILfYzMsLCzQcgd4JJFI+Np9cWVlhfQHPLK4uOh7hVcqlZL5+XlftwkEmZ9dRZPJpG/bAsKgUCjo\nDiFyqGTrMqwvsvX+JH2Vm83mwPffeecduXTpkty6dauznPU09caNG53t7ezs2FrfJPb390VEeraR\nyWRcW/8wzWbT1nas/Z3JZELXT3x/f7/nWI17Uq6UksPDQ7l+/bqIyInj7iYrru6bioWFhU5FW7lc\nlv39/ZExv/rqq3L16tVQHZdBsbbbbVFK9YxF1/26/zNujVlXq9WkXq93xka0tuNHIbPVajnaThzG\nSGm1Wp0xCXWNV2lVetnZtpv5gF8GVeSPa01wfHzsSSyNRkPa7bY0Gg05Pj6mVV8AZLPZzrHw6rgP\nk0wmA1PhVS6XR74/7P9u6t7/flxrrG0EsXWRFVPUrxGmafaMSagjjxnUhXHc+d5oNFwbS7HVag3M\np6z3h/1/mHK53FNx0b1PrfNpVOxOtzcpaxuFQsG3NGhnO61Wy9eY3NQfs517h2az2TnfvTru9Xpd\nCoXCwHS1sLAgzWZTlFLSbrdHnn+M3x0vrlSyDeuLbL0/SV/l7nGXursDPf300/LhD39YPvCBD3SW\nW1lZERGR5557rrO97nGyTNN0dRwna1waaxtKKVlaWnJt/YNY38HOdubm5joxha2f+OrqaudYmabZ\nObbDGIYhKysr8vzzz4uId+OjFQqFTlz9hSjr/cXFRVldXR0Z8wc/+EF54YUXQnVculvuWDcRg54M\ndLco8mrcNGtMtu4fEf/GyXCynTCN3WHpvyEad8MwMzMj8/PzYhiGtvHyrEKZUkoajcbImJPJZOgK\nOYNazo1rTeBVfpROpyWZTEo6nZalpSVJp9NSr9d9G/je7nb8jEm3U6dOdY6FV8e9+8HRoBu3SW7m\n3LwBrNVqsri4OPT9Yf8fpv9h3aBYrbyw+3pi7f9arXYijbp53bHisbbh1zXN7nZqtVpn2bC3/B03\nc2cikRDDMDo331619Mpms0P/Zz18tx4Al0qlsed7Op12rXXHsHzXen9cvtyv1WrJgwcPOn93lyus\n88kwDDFNs/OAr3+7/ZMTeJFGrG2YpunLA45Wq2VrO41GoxNT2Cra+tOPnYcjqVSqc1/u1aQUyWRS\nHjx4MPChUiqVkhs3bnSu++Vyeej5bt0ntdvtWDyIn1RUWrKFYuKD7sGWT506NXS57p3YncG4fbNr\nVaJY2zAMw/OnudZ3sLsdP2LyQnfMdo9bdyHOSUHaidXV1c7r/kq07jjH7fNnn33W1bj80P39rJsI\n671hXfX6M0q3uvTp7KoQhlkVp9V/Q2Sn0kz3TFvWOWHnepdIJEJX+Rn0QeX9PP5294XuczJquvO8\nQdfgSa7Lbl7L3X7Q++STT/b8PShWKy8clC8M2p6b+YcVj3Ut8+t8t/sdwvQQcRy7kwpYZU+v8pdR\n9z6bm5si8l4e6PdECMMmxJl0opzV1dWeMvcwVn7ef14O2q6X5bf19XXP1t1tZmbG1n5ZWFgI1SRF\no9j5viLel5NmZmbkhRdeGPr/D33oQ53XdmJOJpOhK4vCuejfNQIAAAAAACCQdLY8cxvVqAAAAAAA\nAMCUXKlkazabks/n3VjVVMI21g7c4/WxD/KA6UEZeyjqAxzHkd0xI7w+9kE5x4fxe5ZhAL1GjVnl\nF78nnkBwxPnYx/m7Ix44x/0VlTHZXKlkK5VKng0470QcxkzCYF4f+3GD3+oUlGa1rVaLiraIsVu5\n7HUld1DO8UGazWYgxgArFoukv4ixW7k8bhbuaQX5IZNFx6Qr/WZnZ3tmH0d8BCEP0MXrid/sCtsg\n/3CP18c+KOd4XESlks2VmolRA3ICUcA5Pl5UBlrFe+zeOMT52Afh5l7k5IQsCD+7BUOvj31QzvFR\n/B7sfRBdMyxDP467fjonxoJeHHsEEU2/AAAAAAAAoE2Qe684wcQHAAAAAAAAwJRcq2Tb39/v+btc\nLruy3kFjgezu7koul5PDw0M5PDyUy5cvd8YE2t3d7dm2FVe73ZbDw0NXYrp9+3bPuqrVqmvrHsX6\nLlevXh27bLFYlGKx6Npx0OHu3bu6Qzih3W7L7u7uyGWm/f8kBo2JVS6XXTn+/ePRWWMfKKXENE2p\nVqudAfL7x0XoHp/GzcHhu9fVbDZ9GXje2sf917p+lUql57oV1jQY1HGYxo294eXYHMMmgrA7QYRd\ntVrN0fvDxoys1+uRmZTB7X0cZMOO8zCZTMajSN7jNCY/BWFQ6mHX+e606eYELv3r8npyGKf7OMjj\n2I4zyfmkc3Iev8///mvBoLJCu93u3IdMwhpftFar9eRh1vvd663X6z35Q3cZIJ/Pd46NW2NX5nK5\nnnVVKhXfxsXc29sbe7wrlYocHR2JyHvHIUyazabj8WX9GAtzWExBLSuHGWOy9XniiSd6/l5cXHRl\nvYPGOThz5kzP3xsbG0P/Z8WVTCZ7lpvGs88+2/P3/Py8zM/Pu7LuUazv8sILL4xdNgrj8zz99NO6\nQzghmUyeOMf6Tfv/SQya+MGtNNg/1o019oF14eo+9/vHRej+n5sDA3evy6+xUKx93H+t69c/Pplb\nx8FvQR1jZtzYG16OzZFIDH4uNez9Sc3NzTl6f9h4VFEajNvtfRxkw47zMJubmx5F8h6nMfkpCINS\nD7vOd6dNNwv6/evy+ibC6T4Owhh5k5rkfNLZvcnv87//WjCorJBMJqe6D0mn0wO3Zb3fve7+fK67\nDNA9KZ9b90Xr6+s9f/sxJq21j0+fPj122YWFhU5M0x4HHSYpe/pxD26de/2CWlYOK52VYm6LRan1\n4OBAdwiuODg4CMQTWz/YPWb9+8PLJwrWtvpbVDhpYVEqlWLVIsMSlSc9QW7N4TY7x6x7f3j5JLFa\nrXa21f2U2jRNZhSzIWxPsuH8mHmd/twQ17RqtbQpFAq6Q5mK1aIoDmWY/tZRo1jHtVqtetZy2EqD\ncdj3brPKMpVKRXMk07G+hx8tl3Vzcs9gHddCoeBZC1orjffve6c9VcLcwhfOxaKSzXrC6EeXTi8t\nLi4G4omtH+y2/llaWuoc11ar5dkThVar1dn3/d0Fx3Uf7La8vCzZbNbV2MKg0WhEottakFtzuM1O\nc/25ubnOcfWy1dTs7OzAfT9J66Y43qSE7Un2KHE5fk6P2aAhA9xirbt/3zt96BDXGeBmZ2clkUiE\nPh1a1/g4tCq1jpkd1nE1TdOzfNBKe9Pu+7g8qO+WSCSkWCx6eo30QxzSncU6ZnZYx3V5edmzFrTD\n1uv0njNO9xDToLtoiFgVNm51F9UlrN3OJuHku1rHdVCXSbd0r7u/u6fT7p9hPw8nEadzNyrsHjM/\nbry6191/o+70xj1OBdUo4vgN5mX3PGvd/fueGwZnotIFBr2s4+plOcetdcflQX23MHaZHMQq6/gx\nPIBuTo6ZtZwfZdD+fT+sC+kwdC2Nl1hUsgEAAAAAACCYovJAamy1r2EYLxqGsW0YxnYc+oEDQUL6\nA/Qh/QF6kQYBfUh/APwWle6iYyvZlFKfV0ptKaW24tBEFQgS0h+gD+kP0Is0COhD+gOAydBdFAAA\nAAAAAFrobHnmNkYQBgAAAAAAAKYUypZs7XY7tlPBA7qZpskMf4AmxWIxEjOlAQAAAN1oyaZRvV7X\nHQIQW1SwAfosLi7qDgEAAADAEKG8W15YWNAdAgIon893Xh8fH3u2nXa77dm6gbAqFAqd126nkWaz\n2Xltmqar6w4bWnFjmEwmI41GQ0REcrmca+tVSnVeF4tF19YLRE13XuXmbJylUsm1dQFxwL1aeMVm\ndlEgLEqlkmSzWclkMj03BW7I5/OdijtaUgInra6uSqVSERH304hSSlqtlojQkhIY5Pj4WNbW1kTk\nYX61vr7u2roNw+ikP1pSAsOlUqnO61OnTmmMBIgXq/wpItJoNFx/IBn3B7x+ikolWyjHZAMGeeqp\npzxbt3XzIkJLSmAYK224nUbS6bSr6wOiZmlpqfPai/QyM/OwuEhLSsAeN9PK8vKya+sCoqi73OlF\nHsgDXjhFJRsAAAAAAAC0YeIDAAAAAAAAACJCSzYAAAAAAABoonMMNbdRyQYAAAAAAABtolLJRndR\nAAAAAAAAYEqRqGTb39+XWq2mOwwAAADETKPR0B0CEEvtdlt3CABcZHUZdfNHh0hUsq2ursrc3Jzu\nMIBY4uYCABBn6XRadwhALCWTSSraAAROJMZkm5+f1x0CEFvcXAAAAECHZDKpOwQALonKmGyRqGQD\n4sg0TUkkItEYFQidYrEoKysrusMAAAAAIiEqlWzcoQMhRQUboA8VbAAAAAD60ZINAAAAAAAAWuic\nqMBtNIUBAAAAAAAApkRLNgAAAAAAAGgTlZZsVLIBAAAAAABAm6hUstFdFAAAAAAAAJgSLdkAAAAA\nAACgDS3ZAAAAAAAAgBAyDON/GIZxYBjGhSH//zXDMAqGYbzz6Of3xq2TlmwAgEgwTVMSCZ4dAQAA\nAGGjqSXbF0XkL0TkSyOWeV0p9b/ZXSF3IwCASGg2m7pDAGJLKaU7BAAAAEeUUt8Xkayb64xUJdul\nS5d0hwAA0GR2dlZ3CFrl83ndISDGojKOCoBwajQaukMAMAXDMDz5ccn/YhjGOcMwvm0Yxv88buFI\nVbJ9+MMfllwupzsMAAB8Va1WZW1tTXcYQGyVy2XdIQCx1mq1dIcAYEoeVbJtGIax3fXzosOw3hKR\np5VSPy0i/7eIfH3cByI3Jtv6+rruEAAA8NX8/LzuEIBYW1xc1B0CEGsLCwu6QwAQTIdKqa1JP6yU\nKna9fsUwjP/HMIwNpdThsM9ErpINAAAAAAAA4RHEoScMw3hCRB4opZRhGL8gD3uDHo36DJVsAAAA\nAAAAiBXDMF4WkV+Th91K74vIfxORlIiIUuolEfnfReTThmG0RKQqIv+HGjPbE5VsAAAAAAAA0EZH\nSzal1H8Y8/+/EJG/cLJOKtkAAAAAAACgTRC7i05i7OyihmG8aM3EkMlk/IgJwCOkP0Af0h+gF2kQ\n0If0BwCTGVvJppT6vFJqSym1tbm56UdMAB4h/QH6kP4AvcKYBmu1mu4QAFeEMf1VKhXdIQCYkGEY\nnvzoMLaSDQAAAMB4c3NzukMAYmthYUF3CADAmGwAAAAAAADQJypjslHJBgAAAAAAAG2iUslGd1EA\nwNTq9bruEAAAAABAK1qyITJarZbMzHBKAzrMzs7qDgGILaVUZJ7+AmFkmqYkErRdAHSo1WqMhxkR\nUSnLkBsgMqhgAwDEUVQKpUBYUcEG6EMFG4KGWgkAAAAAAABoE5WHhjx2AQAAAAAAAKZESzYAAAAA\nAABoYRhGZFqyUckGAAAAAAAAbaJSyUZ3UQAAAAAAAGBKtGQDAAAAAACANrRkAwAAAAAAACAiPlay\ntVqtiT/bbDZdjCQ+wrbfWq2WNJtNyefzukNxpFKpSL1et7289R2VUq7FYJrmyP83Gg1X1ztue3Fm\n7Rs3j68fGo1G6GK2VKtV28uG7TtWKhXdIcBHTvKSICgWi44/49V3HJW2j4+PJ17vsOtL2K4lfgrj\nvrHOkWw2KyIipVJJZzi21Wo1x5+xviOia5prni5hjLndbjta3vqO3EcNZ01+4OaPDq5Wso0qbM3M\nTN4zdXd31/H24q5YLIamgGCZmZmRUqkka2trIuL8wqVLvV6XTCZje3nrO7r5/ZrN5sib8UkruZvN\n5sAbjHHbs0xauRdm1r4JW3PnVqvViblUKsnh4WFojt/8/LztZb04LuNuKCfNq5RSsrCw4Hh7lrAc\nPzdZ+yZsD5mKxaI0m02ZnZ2VWq0mx8fHoTh+Kysrjpa3vqMXlTCj0vbs7OzE6x12fbFzLXHyACBK\nwpb/ibx3jqRSKRERWV5eDsXxS6fTjq931nd006jK82nKu8MqEcP2QMJP9XpdlpaWdIfhSLvd7ok5\nLA8YE4mEozKe9R0TCToTDhOVSjZXx2RzWtiy65lnnvF1e1EQ1n1z6tSpzutkMqkxEvvW19dlfX3d\n9vLWd5ym4rnfuBuIQTfq06zX7g1LOp2eaLthNs3NnE7d58jy8rIsLy9rjCZcxmXgk16Ph63XboEh\njunP2jde3ER6qfscmZub0xiJt6zj4nehV9f54OQBAPTqrlyzhOH4JRIJxzfsXuTvo8o+05Tnh10P\nw1rW8kMY903/OTLpfYvfDMMI7T03vBWbatRJmlMj+LqfZOk4xrlcjqdpiC3dT/mVUtpjAILC7yf/\n5H1AL7/zI+5tAESJF63YItFdNMjC9lQb9nR309RxjO/du+eoq2hcURCMpu6n/LVazffubYZhhKKl\ngW5hHOcEzhwfH/ueB4axtYQuYRu+A/Z0d9MslUpa8qOwdY3XgQcC0dTdTVPHMc7n8wxdhaEmqmQ7\nPDx0Ow7PhaXroReiXLh7//vf33ltHeNyuezLtsvlsvz0T/90TwzjDBtf0IkwFhai3P1pnLi0tJqb\nm+t0T/QrDToVlnEe3Ra2sVncFJcKxqWlpdic32EcVD/O3e+jfBPaXbGt4xjPzc35XrkexuPJA4Fo\n6u6mOTs7K41GQ9rtti/naLvdlrW1NbqKeiAqLdkmGhRqY2PD7TjgobgV7hYXFwO7nTNnzky9XQoL\n4RLHllZ+pUGn4vywJa7iVMEYl4cZYRxUP864CY0WjieCynrQ68c5SnnSO1HJ42PTXRQAAAAAAADw\nCpVsiLz9/X3dIQAAACDC4tI9HQgixieMhqh0F6WSDZH3xBNP6A4BAADfxWVMSCAIBnVPD+oYpUDU\nMMkhgoRKNoTWjRs3dIcAAICvstms7WXdHhOSSjtA5ODgwPaybo9RSqUdIJLJZHSHAI/Qkg3Q7Kd+\n6qd0hwAAgK9OnTqlbdtxnMgF6Pf4449r23ZQJxYC/LS5uak7BGAkKtkAAIHWbDalUqkMfB+At8rl\nshweHp5oQUOLGsAf+Xxe9vf3T6S5fD6vKSIgPmq1mmSzWSkUCifep3W3u7xoxaarJduMk4WVUl7F\nAYRCu90+MW1zs9n0ZRwA0zQ93wYQRKlUamAaY/wNwHsLCwuyuLgojUbjxPutVktmZhwVJQE4tLa2\nJiIixWLxxPtKKW03kUAczM3NydzcnBweHp54f9ADYEwnKtczRy3ZaDWAuOuvYBPx70Y/kaDhKQDA\nX1aBN51On3jfzwo2HvQi7lZWVk6859cNabvd9mU7QFBtbGyceG9hYUFDJAgDR3ftVgHLGmywVqu5\nH9EQe3t7vm1PV600teFwYprzxWmF+bDuel7pbzGBeAj6g5x6vd45N6dpWer0/K5UKr61ZG2321q6\nP3ADp18UrrtOyol+lmGdClPL9SDvR0sYYrQENdZkMula3tBqtRwt73d66O8WiHhwel7CG7HsLmqx\nBhucm5tzNZhRTp8+7du2dNVKUxsOJ6Y5X5y2vhvWXc8r/S0mEA9B7/45OzvbeT1Ny1Kn57efeUMy\nmdQyuP2gVsLwV9Cvu3YKyk7KpX6WYZ0KU8v1IO9HSxhitAQ5VrfyBqctYP1OD6urq75uD8HA0Adw\nE2cTAAAAAAAAtInKmGxUsgEAAAAAAECbqFSyhac9OgAAAAAAABBQtGQDAAAAAACAFjonKnDb2Eo2\nwzBeFJEXH/1ZNwzjgrch2bYhIoe6g+gSpHiIZbggxfM/jVsgwOlPJFj7kliGC1I8QYrFafo7Ngzj\nSIITf5D2ZZBiEQlWPMQy2DOGYbyolPr8qIUCnAcGaV+KBCseYhkuSPFQBnUPsQwXpHiCFMvY9Idw\nM5RS9hc2jG2l1JaH8dgWpFhEghUPsQwXpHicxhKk2EWCFQ+xDBekeMIeS9jj90qQYhEJVjzEMlyY\n88AgxSISrHiIZbggxRPm9CcSrHiIZbggxUMswXfmzBn1W7/1W66v93Of+9xZv/c33UUBAAAAAACg\nTVS6izLxAQAAAAAAADAlpy3ZRo6d4bMgxSISrHiIZbggxeM0liDFLhKseIhluCDFE/ZYwh6/V4IU\ni0iw4iGW4cKcBwYpFpFgxUMswwUpnjCnP5FgxUMswwUpHmIJgai0ZHM0JhsAAAAAAADgljNnzqgX\nX3xx/IIOffazn2VMNgAAAAAAAMRHVFqyMSYbAAAAAAAAMCVasgEAAAAAAEALwzAi05KNSjYAAAAA\nAABoE5VKtrHdRQ3DeNEwjO1HP+6PRAdgKNIfoA/pD9CLNAjoQ/oDgMk4ml10Y2NDPfvss95FA8TI\n7du35fDw0HZ1PekPcA/pD9DHafoTIQ0CbiIPBPSZJA+MgyeffFJ9+tOfdn29n/nMZ4I9u+izzz4r\n29vbXsUyUCaTkc3NTUefKRaLsrKy0vm7VqtJrVaTtbU1t8Pz3cHBgaytrUk6nR67bK1Wk7m5OR+i\ncl+UjtkwW1vO0npY0l/UtdttSSaTusPAlMKQ/kREWq2WzMz0ZtVKKVvN6VutlrTbbZmdnfUqvMCq\n1+uh/d5hjt0up+lPRF8aHOTo6Egee+wx3WFoUS6XZXFxUXcYmFIY8sBWqyWGYZwocw3KFy3d+WO9\nXpdUKiWJRDTm+avX65JIJCSVSo1d1jRNSSQSnd9hEsaYnZokD0S4BP4MbrfbA9/P5/NDP1Ov13v+\nnpubi0xlzfr6uq0KNhHpVLAVCgUvQ/JElI5ZmG1ubsrx8fGJ94vFoq3P37x5UzKZjBwcHLgdmhb1\net12BVsmk+l8JmyidMzCblBlWrVatf352dlZabVaboakjdPvLRLO9BelYxZVoyrYyuXyifeOjo68\nDMdXcalgi9IxC6uZmZmBZa5hFWwivXnm7Ozs0PvIMLJbwSby3v2zaZpehuSJKB0zOGdNfuDmjw6B\nn/jgiSeeGPj+qAqYKLe8sXtx7ba6uupBJIiLpaWlE+91txQd5bnnnnM7HK2ctC6xrkNhbJES5Wto\n2Ay6wVhYWLD1WetGZNQNSZjMz887/kwY059IdI5ZHA2qhIprq7cw45hFwyT3TUHl5LtYy4YxL4nS\nMYNzsZn4AAAAAAAAAMBoVLIBAIDIcDKhEwD30dUS0MM0TYYbQGh50VVUV8s4KtkiqFAojByzLsru\n37+vOwTEXL1etz1mHQB31et1R2O3RUlcvzeCJ65dLUulku4QEHOmaYayiygQNaTCCIrzGGxkLNBt\ndnY2tONATSubzcqpU6d0h4EYi2vaE5lszDoA7qEMCt04BxF2URmTjZSISBk2UQYA71HBBgCIKyq6\nAWA6Ualko7soAAAAAAAAMCVasgEAAAAAAEAbWrIBAAAAAAAAEBFasgEAAAAAAEAjWrIBAAAAAAAA\nEBFasgEAAAAAAEATwzAi05KNSjYAAAAAAABoE5VKNrqLAoCHCoWC7hCA2Go2m7pDAAAAQIzQkg0A\nPLS6uqo7BCC2UqmU7hAAAABgAy3ZAAAAAAAAAIgILdkAAAAAAACgUVRaslHJBgAAAAAAAG2iUslG\nd1EAAAAAAABgSrRkAwAAAAAAgBaGYdCSDQAAAAAAAMBDtGQDAAAAAACANlFpyUYlGwAAAAAAALSJ\nSiUb3UUBAAAAAACAKdGSDQAAAAAAANrQkg0AAAAAAACAiNCSDQAAAAAAABrRkm0CxWLRz80BABAI\njUZDdwhArFUqFd0hALFFHgggTnxtybaysuLn5gB0KZfLsri4qDsMIJbS6bTuEIBYW1hY0B0CEFvk\ngQDGMQyDlmwAwoUKNgAAAABAEFkVbW7+2Njm/zAM48AwjAtD/m8YhvHfDcO4bhjGOcMwPj5unVSy\nAQAAAAAAIG6+KCL/ZsT//62IfPDRz4si8pfjVsjEBwAAAAAAANBGR3dRpdT3DcN4dsQi/15EvqSU\nUiLyA8Mw1gzDOK2U2hv2gbEt2QzDeNEwjG3DMLYzmYzjoAFMjvQH6EP6A/QiDQL6kP4ARMSGdS17\n9POiw88/KSL3uv6+/+i9ocZWsimlPq+U2lJKbW1ubjqMB8A0SH+APqQ/QC/SIKAP6Q+A3zwak+3Q\nupY9+vm819+D7qIAAAAAAADQJqCzi+6IyFNdf7//0XtDMfEBAAAAAAAA0OsbIvIfH80y+ksiUhg1\nHpsILdkAAAAAAACgSVf3Tr+3+7KI/Jo8HLvtvoj8NxFJiYgopV4SkVdE5N+JyHURqYjIfxq3TirZ\nAAAAAAAAhjBNUxIJOgJGjVLqP4z5vxKR/+xknZwlgEN7eyNbhwLw0NHRke4QAADQIpvN6g4BiC0q\n2Lzn0cQHvnP1TNnd3XVzdSPX232j1X/TdXh42HltZUa3b9927ebMq+9px7lz56Rer49c5ujoSK5c\nuSK1Wk1ERK5cueJHaK47Pj4eu8yVK1ekVCrJ0dGRZLNZ+aM/+iM5PDyUH/3oR65Whl28eFH+8A//\nUO7evStf/OIXO+//0z/9k+RyOdvr2dkZOUZi5FjnIMLn4UMbe7qvuV577LHHfNuWXe1227f1jktT\n/Ygflz4AACAASURBVPmDm2nQq+9pV61Wk1KpNHIZ67y1YjVN0/O43DbJMSuXy528qNFoSKVScS2e\nUqkkhULhxM39hQsXTuR/o7Zbr9ddjSuoxpXRwkz3NSCo7t2759u2Tp06NfFnM5mMi5G8p9Vqjfz/\npNfhQettNBq2P6+UkkajIc1mc6Lt24nHL6Zp2iqX9ccYxnK4k2Ms8vC6ZB1jL/IY637UaVyYDJVs\nffb390de+KvVqmvrHfcUJ5/Pd14rpSSbzbp2gR33Pb1UrVZlZmZmbGY+MzMjqVSqU6k4Pz/vR3iu\nymazti6UqVRKCoWCHB0dyde+9jXJ5XJy+fJl2dvbk7m5Odfieeutt+R973uf/OVf/qU888wznfcP\nDg5OVAaOy9B0ZHj7+/uurevGjRsj/99duTk3Nyc3btyIROuj/f19qVQqYytV+89bPyug3HLjxg3b\n52mj0ZCNjY0T77t5o7m3tydvvPHGifcvXLggr776as974851N9OCpdVqjSz8TlowH7TedDo98jOz\ns7Od10qpsctPG49fWq2WzM3NyfLy8sjlrMJUMpkUkXA+dXZyzLorE9fX16VWq0kikZCFhQVX41ld\nXZWFhYWe4//Rj35U1tfXe5Ydtd3Z2VlX4+o27qHcpJULg9abz+d7ypndr0V688harSb5fF52dnZO\nLOdWPH7JZDJSKBRsVbQVi0WtsU4rn8/L3bt3xy5XLBbl2rVropSSW7duyVe/+lXJZrPy9ttvuxrP\n22+/LRcvXpQrV67I+fPnO+8fHR0FouIzmUyOzBsmvQ4PWu/MjLORjqx7IjeM+55eSiQSYhjG2ApL\na/9Ycbp5L+QXp8c4kUhIKpWSRqPRyafcTBdLS0sicjJvHnSfOur8UEppO3/gP8PJwd7a2lLb29se\nhgPEx9bWlmxvb9uuXif9Ae4h/QH6OE1/jz5DGgRcQh4I6DNJHhgHzz77rPq93/s919f7m7/5m2eV\nUluur3iE8D3iBTSLQqssAACc4ik8ACCudHYZRrgwuyjgkNNmzADcU6lUPOtyBmA0XWObAACgG/eA\n3otKOYOWbIBDq6urukMAYosKNgAAAABBRXUsAAAAAAAAtNA5G6jbQlfJls/nZW1tTXcYAAD4yjTN\nUM6WCQAAAIwTlUq20JXWqWADAMQRFWwAAABAsIWuJRsAAAAAAACig5ZsQEzlcjndIQCx9eDBA90h\nAACgRT6f1x0CEFuNRkN3CAgJWrIBDq2vr+sOAYit973vfbpDAGKLcQEBvZaWlnSHAMTWzAxVJ16j\nJVufP/mTP+n5+/79+53X+XxednZ2bK/r1q1bJ977zGc+M3DZ4+NjERH59re/3fm9vb0tH/7wh0VE\n5Dvf+Y5sb29Ls9m0vf1B3n777c7r/f39TjxvvPHGVOu146WXXuq8vnfvnoiI7O7ujvzMtWvXRETk\n7Nmz3gXmst3d3Z7jdO3aNbl06ZLtz7/77rud1+12W65fv+5qfCIie3t7Pefn7du3RUTklVdekStX\nrojIw5uQw8PDE581TVN+93d/V0TcbQ33x3/8xyfOwwcPHsiFCxc62x2UpoZptVo98b377rud9FUu\nl+XOnTsiInLu3Dn5whe+IJcuXZJ6vS5f/vKX5cKFC3Lz5k15+umnB6774sWLjr6bpV6v9/z93e9+\nV0RErl+/Ls1m09H1xalXX32187pcLo9dvlwuy97enhwfH3f2VRhYx/x73/ueiDy87nRfxwcpl8ty\n8+ZNuXnzpty/f1+y2ayIyNjPOWVd927evNmTttrttrz66qvyjW98Q46OjkREpFQqycHBwYl1NJvN\nznX8+9//vmuxnT17VkqlUs/1R0TkBz/4gYg8PHed7I9isSh37tyR7e1tefDggRSLRWm329JoNDrp\nIJPJyNWrV6XZbEq9Xpe9vT2pVCoi8nCfZDIZ2dnZke3tbXnzzTelWCyKiDi6nnbLZDJy/fp1uXv3\nrrTbbWk2m/LNb35T2u22PHjwoLNtLzQaDfnGN74hOzs7cu7cObl8+fLIdGjtI6vF497enmexuUkp\nJffu3ZN79+7J3t6enDt3rpOPD9N/XbRauFy7dk3a7bZrsVWrVanVaiIiPWnr4sWLnTS1t7cn9+/f\nH9nK5tatW53rqZvxDeJmawPru/ezrnfd27OuQ8MMujZF2bRlb51+/OMfi2matpevVquen9f5fL6T\nH4qcvAaIDD8Hy+Wy7O/vux5To9GQ4+PjnnyuWq12XrdarZ60Mk6tVpPDw0MpFAqda71pmj3f6/Dw\nsCdd9u8T63Pnz5+XS5cuSS6X61mfU6VSSfL5vOTzeanVanL//n2pVCrSbrelWq2KUmqi9dpRLBYl\nm83KjRs3ZHd3V27dujX2OmNpt9uen5NuabfbcnBwIM1mU+7evSvnz593XJa00mupVJJCoeBabEqp\nTjnMqncQeZjWrHMql8tJpVIZml80Gg155513OveNTq4tcWLNLur2j5bv4uTCsLW1pba3t20vf/Xq\nVXnhhRfk8PBQNjY2bH/u0qVLnUoyy97enpw+fbpndtF2uy3JZFJEHhaovWzh8P3vf19+5Vd+ZeD/\nrl+/Ls8//7xn2xZ5WDB7/PHHbS2bz+dlfn5e7t27J88//7zkcrnItr7K5/OysrIiIr2Dgv/whz+U\nX/zFX3RtO81mUxKJROd86/bWW2/Jxz/+ccfr3Nraku3tbdspf1T6u3jxonzkIx/p/F0ul2VxcVFE\nHhY4ZmdnbcdVKBRkdXVVvvKVr8inPvWpgctcuHBBPvrRj3b+7k6LVhr96le/Ks8///xE+6aflb6t\n73L79m358Y9/LL/8y78sp0+fnnr9o9y6dUv+4R/+QT796U9P9HlrfwZdrVaTubk53WE40t2qJpfL\nyfXr1+UTn/jE2GVF3Et/7777rvzMz/yMXLt2TT74wQ+KyMNC8dzcnKTTaWm1WnL58uWe9DJKtVqV\nCxcuyCc+8Qkpl8uSSqWk2WzKvXv35IUXXugUGHK5nMzPz0sikZBcLieLi4uytLQkh4eH8pOf/ER+\n9Vd/Vfb29uTatWuyvr4um5ubYhjGRPmkVfH3sY99TA4PD+X8+fPy67/+6yIicufOHZmZmZEnn3zS\n8XrtuHz5snzoQx+Sf/zHf5Snn35aFhcXJZlMyhNPPDFweavgWiwWZXFxUVKplCdxua1SqcidO3fk\niSeekFQqJWfPnpWf+7mf6+Rvg3Sf01bl59zcnGQyGalUKvLMM8+4Ept1U5FKpaRWq3WuZ5VKRW7c\nuCEf+9jH5ObNm/Lcc89Jo9GQdDp9Yh2tVku2t7dlYWFBXnjhBfmlX/oleeeddxyVfJ2UQZvNZufY\n12o1OT4+tl0OtcpMX//61+WTn/ykrc90l3Ota0GxWBx5/JzY3d2VM2fOyJ07d2RtbU2+//3vy1NP\nPSU/+7M/68r6R/nWt74lrVZLPvnJT54oa9hRqVRkYWHBo+jck81m5dSpU66sq7tM5IZh6arbD37w\nA3n/+98v73//+22t080yqMjDhzGbm5sn3m+1WlKpVGynhWq1KtVqtedYWBUc8/PznfesNF6v13uu\nS/3runv3rpw5c0aWl5fl1q1b8oEPfMBWHN1KpZJUKhV5/PHHT9ywK6Xk+PhYlpeXHa/XiWq1KvV6\nXdbW1ly9tgRJ9/dSSjmqHDFNU8rlsiwvL0sul5OFhQVH9z52dZ/ng+7Nu/OefkdHR6KUko2NDfn4\nxz8ub731VjSabLnoueeeU3/wB3/g+np/4zd+46xSasv1FY/gaSUbgOHcLuAAsI/0B+jjNP09+gxp\nEHAJeSCgzyR5YBw899xz6nOf+5zr6/3Upz7leyWbK91Fq9Xq2O4i47o3hoVpmoH/LgyKqtegrqJe\nstP8PyqTNTSbzcB3P6EJuF5+d8dqtVpjl/GyK4mX6x5kWFeIoKjX677vE+iVyWR6uqdFWblcdrUb\nFOAHL7ss2smD3dJoNAI/8H2r1fJ1nwAYzJVKtvn5+bFNwc+cOePGprRLJBKB/y4rKyudMXjgPydd\no90wrNtUt+4m9mGWTCYD3/2LQcH1stut3i12BsH1sgLAz8qFVqvlahcoLyilYlPhgoc2NzfH5nFO\nxoQKssXFxVAMPwB08zLf8LPMlU6nA/8Qp9lsMjg/Qi0qY7J5dmXKZDJerXqsoD9pd+rg4MDRk5NE\nIhGZvvqTnEe05Du538I21tYwuiqwwjJwrNt0XsfDrvtJspPxiJw+ge5f96CBsN2glJKZmZnAV3LP\nzc2FYvwn+MutsbZ0sjvYuRcmHTAe8dRqtSYuNzn9XH+50IveBKZpdvJmL8b5GqVerzvqwdH9wCHo\nFYLj0CIvnqhkG0PnTakXFQqFQkFb5c36+vrYAU+japLzyJoYI842Nzd7ZsBxYtLPWbyomKnX69pa\nZ9br9cC33vHKoEGMx4nb7HnDTJqpT1sY8OIGoF6va2sdRqs0Z7gpia7HHntM27atiZQwns7K0KCY\nmZmZuNw0bXnLi/tP0zS1tQ5LJBITP9zSVbngFlrkIcw8O3vtdGELE53N84PecsBLUTuP/LS0tOTr\n5yyTVMyMMzs76/vTw+5twz6/u2sGla4bDC/oTANR6eruF25KAL10VobCm3smndfVON8DIp7CXjls\nYfAgRA5d3AB9SH+AXrRmAwDE0TRdlQE38cgTkcPFFdDH6qo8bYtIAJOJylNgAACcoDV3uOkcQ81t\nkW/Jtru7K4eHh7rDgEcGDXCqu4vp7u6ureX8GpDUaauGaVtBdH+v/f19yWazsZ6MIm6tSvL5vJYK\nNusc29/f933bQceDh/hot9tauhwH/RyrVCqeLT9q2Waz6WjQcoSP03PLa0E73xqNhqNykNPlRy1r\nTQQUt3JYNycT54VN94QUFl3H2tquV5NPIXx8qWRzWsnlZqVYMpnUNiNhUES5kjGIN9RBG1Op0Wg4\nmhnM6fL9y3afb0888YScOnUqcjP+OhHlAo5S6sTx13Wsre3qrmQfxGmhy8ny/ct2TxRgFfqifA7G\nWa1WO3H8dR1ra7t2b3C8mAFwFKczzjpZvn/Z7grHVColjUaDG68I82uG53Gs7QZtDC/DMBw9VHa6\nfP+y3dcga1/EuXVTVFoFDdN//HUda2u7QUt/YRSV2UV9ORM3NjY8XX6U973vfa6tK6zc3J9Bc+bM\nGd0hnGD3nPMr0Xt5cyFyctaxQRMfBLHiwy9O92eYGIZx4vjrOtZBPsecThzgZPn+ZbsnCrAKfUwe\nEE2DZlLXdayt7dq9wYnyw8/+B23MzBkvTNLUy2mlw7TLd1+DonydsSvKlT6JRCJwxzho8YRRVCqG\nQ3kmRLllllvi1D3POh+sbpp2u2s6kcvlRETk7bfflvPnz7u+/jDJZrP/f3v3EiJJdi52/Dv5rqzq\nenZ193TPleclGY0HgUSjsbzyxqB7MWjjxXhhg8EM16DV3dwLBu8MXhpzLxazuAuD4C6NMLK98ErG\n8mhalnVpC1rq6RmYruqqysqszKqszIp8HS+6IicqKx8RmSfixOP/g6KrM7MivowTJx4nvnOO7RBi\nL+osDZsajYacnZ3J8fGxiISTXeouW0Tk5ORk/PvBwYHxdSH5HMeJrDt+lmS5y5VX3Lrjwa7J/SGM\n/aPf70un05HDw0P54osvxq97z4eAazAYZO547XbbDiOT1M1O7vf7N+pckF4/yJ5ENrLRSrxYlg6u\n7v5wfHwc2ng0tVpNrq6u5NmzZ/LWW2+NXw+jQS/udnd3bYcQe1m6Cdvd3ZWvvvpqPOFBGBllbnbo\nL3/5S7l379749UePHhlfF5Ivn8/f6Dabdo1GQ4bDodTr9dDO/b1eTwqFwo1G9Kw2ZNL9erEsDRHh\nDrFxcXEhw+EwlMyhYrEoo9FIHj58KG+//fb49c3NTePrQjpk7V65UqmI1jqU+uc+OB8OhzcyRslS\nDgfdRS3iJn8xbxfRg4ODVN+MuvvDd7/7XREJp4vwt771LRER+eijj268HsfuqrAvrt02wvKd73xH\nRCT0CQ9+8IMfhLp8pEOhUBh3GXIcJ/X10T0H7u3thbaOUqkkIje7ZaelS0dQ3Fgt5u3KXKvVpg4j\nkRZR7Q/Tzq/TuowDWRyDzm1UDOO85DbcVSoV6hx8W9jMrZT6WCn1RCn1pFarRRETgGvUP8Ae6l/y\npb2BLe2og4A91L/ky2rGMZIrLZlsCxvZtNafaK0fa60fp/lJVJqlOYst7ah/gD3UP8Au6mDyUW7J\nRf1LvqxmHCOZwmhgi20jW1zwBAV+1et1qdfrtsNIFeofYFeWxtnE8shaAJA2g8FgPPg8MA/XSoiL\nxDSycXCFX1kciyBs7qD2wCLuDE8wi6fR/mR9/2M/AexrNpu2Q0iVQqEQyqRmSB/uAZOPTLaIhTFj\nHdJpa2sr1AGgsyrsQe2RDtVq1XYIqTTvBsOd+Qrsf7Aja9kTjUbDdgixtr29bTuETMnaOTBLM9gD\nSUVzLwAACebOqgXAjqxlT7gz2gJxkLVzoDvbJZBGacnIN3JUOjg4MLGYlZydndkOITKHh4e2QwBu\nOD4+th1CZLJ0rMFijuNkvotilBhzDJPiMGYo3QMBe3q9nu0QIsPwSUg7uotOePHihalFLWVnZ8fq\n+qP08OFD2yEgZn73u99ZXf/9+/etrj9Ka2trtkNAjJTLZalWq1Yb2rLUVabb7doOAbglS8Mp0FUU\nXlpr692ls5RJyth0QDIYOSo9evTIxGIALOmdd96RWq0mTLEevkqlYjsExEyn07E6FliWusow5hom\n7e/vS6PRkEKhIJubm1ZiyNJNPl1F4aWUsr7/Z+kcCKQd3UUBxMLV1ZVcXFzQwAZYYLuBDcg62w1s\nAAAAXtl59AakVKVSIbsKsIQGNsAuMqsAAEg+m2OomUYjGwAAAAAAAKxJSyMb3UUBAAAAAACAFRnJ\nZDs/P5dKpSKj0YhuawCAzHEcR8rlsu0wAACIjNZaRqORKKWYgADAyshk83AcR0qlEg1sgCW1Wk1q\ntZrtMIDMooENsOPy8tJ2CEBmKaUkn8/LcDi0HQoAxIaRTDZmNQTsog4CALJofX3ddghA5hWLRdsh\nAEgBMtmAENTrddshAAAAIGOazabtEAAAKcDsooiVvb092yEAAAAgY7a3t22HAACZlpZMNhrZAAAA\nAAAAYIVSKjWNbHQXNSTO3RzPz89thwAASCmtte0QAACwYjAY2A5hJs7PgB00shlSKMQ3KdBxHNsh\nAKHqdDq2QwAyKy1PHQGYx+yvSLs43wNyfkbSuNlsJn9soJHNkK2tLdshzMTMk0i7arVqOwQAADCB\n2V8BAFkT36Z3AAAAAAAApF5asi8Tk8l2enpqO4TEivN4cUiGk5MTI8up1WpGlgMAfjAeDQBARKTf\n79sOIXJxHi8OmIbuohG7e/eu7RASK85jBSAZ7t27Z2Q5Wey6zHhxgD1peSIKAFhNsVi0HULkuAcE\n7KDmZUCcx4sD0o7x4gAAAABgvrQ8HDWeydZsNk0vEgAAAAAAAIg1441s29vbphcJwCdTY6cBCI6x\nTwC7GIMWAIBkCmM8NsZkM+DTTz+1HQJglamx05YxHA6trRuIA8Y+Aeza29uzHQIAAFgSjWwx9OGH\nH9oOAcisfD5vOwQAAAAAAKzhsXtKuV0meKoLAMgSrXVqBs4FACCIwWBAZj0SKy3Xb9TAlKJxDQCQ\nRWm5QAMAICga2AD7qIUAAAAAAACwJi0PShM5Jtvh4aHtEIDMOjs7sx1ColxdXdkOASmitbYdQqJ0\nOh3bIQCZ1mg0bIeAFGGSLQBJkMhGtocPH9oOAcistbU12yEkSqVSsR0CUqTb7doOIVGq1artEJAy\nNBoFs7u7azsEpAiTbAHplpnZRZVSHyulniilntRqtShiAnAtjvWPRiNkRRzrH41GyJI41kEajZAV\ncax/ANIrjAa22Dayaa0/0Vo/1lo/3t/fjyIm+ECX2Wyg/gH2UP8Au6iDgD3UPwBYDhMfJBRPUgEA\nWaS1Ts3AuAAABME5EGmWln07kWOywX+XvdFoFHIkAGBHu922HQIsSMsFWNIxqQsWcRzHdgipxxiB\n2eP3HMg9YPj6/b7tEBBTZLKlXC5HOyqAdNrY2LAdApBZjM+JRcrlsu0QUo+eLZiFB1LhKxaLtkNI\nnbTst4lvgTk7O1v4/vn5eUTRIGtOT09thxCKVqslrVZr4eeOj499ve9nWbBvspyCPgWN4qmpdx2L\njv9J1e/3pd/vG8kU6vV6xp609no9I8vBdG6ZJ2U7ZyFLaVG2bLPZXPh+p9MxGVLiJC3juN1uJyZL\ns16v2w4hVIvOXYuOlb1ez+jxNElZS71eL5GNFf1+X9rtduByi+K8mZRzc9JlZuID2w4ODua+v7Oz\ns/D9zc1NY/Fk4aLStkVlHidp3R/y+bzk83m5vLyc+7n79+8vfP/y8jKTU667NxaLGiLjxC1zN+Yg\nmbDtdjv0zNnJdSw6/idVsViUYrG4MFNoUaPmaDSSUqlk7ElrqVQyspwouDfJSbopcst8OBzKcDgM\n9LdRNApMriPNWUrNZlOazebCbFk/71er1YWNcX4lpfHHK0kZx26ZVyoV6XQ6gbtiRtF107uOvb29\n0Ndn06JzV6Ewv0NWoVAwet5KUtZSks7XXsViUTY2NqRQKAQ6f5dKpdDP95PrCHqeRrbEvrvoo0eP\nbIdwQ5ovKuMibmU+T5JiDcLkRfH6+rqxZSWJuw0XNUTGiRvzMmUWxY1Ukm7WorCoUTPLwwW4DZRJ\nuilyra2tBf6bKLpuZql76Pb2tq/P+bnJD7K8RbJUBjZ4y6larUq1Wg3091F03aR76Nc4B6ZXLpcL\nXH5RnO+968hiAkEUkpiBOY2xo0+j0ViY9QIgHP1+39iTcgDB0IUAsI8B4AE7RqMRWT0A4GGskW13\ndzfz404AtvT7fWNPymEOY9FlQ6lUkm63azsMTDA1rh3i7/z8nCyvmEramGwILpfLkdUTU0kaMgEI\nYzw2W5lxRruL7u/vm1wcAJ+CdmlANLa2tmyHgIgs08UP4XLHtkP6mRx7F2bRzR+wh3MgkobuogAA\nAAAAAABEJAETHwAAAAAAACC9yGRDrJ2cnDAYN2ARgwADALKKydAAOxzHYSw2wDIy2VJqZ2eHfviA\nJY7jSLlcth0GkEndbpcx8gDL1tfXbYcAZFIul+MeEIlFJltG1Wo12yH4wsEVaZSU+kcDG9JqMBjY\nDmGhtbU10VrbDiMz2NaYpl6v2w4hM9jW0RgMBonopZDP5xNxrk6D0WjEtk4BpdQPlVLPlFLPlVJ/\nMeX9f6iUaiml/u/1z79ZtEwy2QJKwsFVRKTVaonWWra3t22Hknps6+js7+9Lu92O/WxljuOI4zjM\neBcBtnW0kvCE0XEcGQ6HzLocAbY1Ztnb27MdQmawraNRKCTjtnk0GiUm1qRjW5sX9XWmUiovIn8l\nIv9IRF6KyGdKqZ9prX838dFfaK3/sd/lslcE9ODBA9sh+LK1tWU7hMxgW0cr7g1sIq8z2chmiwbb\nOlr5fN52CAuxP0SHbQ0A8UKjT3TY1mYppWw8zP2+iDzXWr+4juFvRORHIjLZyBZI4O6i3W5XOp3O\nKusEUuPq6kqazWZk6zs6OopsXQBuoksA8DXHcSJfZ61Wk263G/l6AQDwGo1GtkOAf3eVUk88Px97\n3nskIl95/v/y+rVJ/0Ap9bdKqf+qlPp7i1YYuPmVwYSBr1UqFalUKpGtLymZlEAUarWaaK3l3r17\nkayPJ5bA18rlsgwGg0jrxf7+fmTrApKgXq/TXRSwYDgcSi7H8PamhZTJdqq1frzC3/8fEfmG1rqt\nlPoTEfnPIvLNeX+QiD1jMnun3W7LwcHBrc99+eWX498PDw/Hv5+enhqL5eXLl/Lb3/5WXr58KYeH\nh/Ly5Utjy55n2e/Q6/UMRxI+t2z9fOcXL17Ir371K+n1euMyCdsqTy6ePn0qIq/LxdQTEK311GW5\nr896fxY/034/ffpU/vCHP0zN4tNa36izjUbDaLafuw3ddUSRTRHkO2itrWR4mNZoNOTs7Gzh57rd\nrrx69UpEwsu0dDPIJgdY995wf/HFFyIicnZ2NnN/j+p4bdK8uut3jFBTY4m6GUST/0YhKeOhRklr\nPe5ZYCu7y21gs33Mm3V8dl8Peg7yDiR/cXFx6/3hcDj3GsV7HvVzTvXr4uJCLi8v5eLiQvr9vlxc\nXEiz2Qy9h4n7HfyuJ4qYwuan3BzHGe8rbpmEpV6vT82m3tvbk0ajceO1Wft7WGUyK8vbfT1oFrj3\nXO89B3q372AwuLFc7zli8nhkMgvdXY+7jk6nE0mW++T3nSeqmExb5r5oOByO95ewzkO9Xk+01tLr\n9W7sg+4kg+fn53J1dTWOf9a273Q6ZL/F04GI/JHn/29evzamtT7XWrevf/+5iBSVUnfnLdRYI9us\nncZ9PchONXlj572Q+fWvfy2vXr2SdrstV1dXNz7nHSvG+7vJVuZCoSClUkkKhYLk83kpFApycnJi\nbPmzBP0OUcQUhlevXo3Lzs93LhQKUi6XpdVqjcskDO4++PLlS/nNb35z471f/OIX49/dxoZZ+3uv\n1xtfkJk6AZ6enk7dVu7rs96f5eDg4EZjhPf33//+9yIi8sEHH8i7774rV1dXcn5+fmu93oy73d3d\nW3V1WY1GQz744ANpNBry4MEDaTQaksvl5PLy0sjyZ3G/g5/1uNs77JjC4L2x3N3dla+++mrOp1/f\n2FcqFbl79+64TMLgNqJfXFzcurFtt9vy5ZdfSqvVknq9Ll999dXM/f3NN9+UFy9eGI1tVuPGsg1R\njuPcuKmf/C71en18Iek9nrj1sNvt3jq2mHrY4mayr62tyWAwGP8/igaWXq/naz3u9nYcJ5E3+d6y\nm7xxnqSUkmq1KhcXF+MyCYu7T04rg5OTE2m32yIyP+Z+vy/1et34DeBwOJx67ndfn/X+PN7M9xTn\nFgAAFYdJREFUoDt37ox/f/78uZydnYnjONJut8cTr0yu1zvDu999149CoSDFYvHGv9vb26FPPOF+\nBz/rGQ6HkcQUhkajMT5393q9hefx0Wg0HpfXLZOw7O3tTU0wuLi4kN3dXWm1WuP4Z+3vuVxufJ1q\nyqxsVvf1oNmuk8cH7/W0u30dx5FCoXBjue53HgwGt8rBZLatm2XjriOq2awLhYKv9bjn5iTO+rzM\n/Xoulxs3fIVV/5RSMhgMpFQq3apbnU5HNjc3pVKpjOOftb/lcjky33xwx2Uz+bPAZyLyTaXU20qp\nkoh8JCI/m4jpgbpekFLq+/K6DW3utM4qSCV8/PixfvLkie/PA5jt8ePH8uTJE985sdQ/wBzqH2BP\n0Pp3/TfUQcAQzoGAPcucA7Pg/fff1z/96U+NL/d73/ver+d1F73uAvrvRSQvIn+ttf63Sqk/FRHR\nWv9EKfVjEflXIjIQka6I/JnW+n/NWycDzAAAAAAAACBTrruA/nzitZ94fv9LEfnLIMukkQ0AAAAA\nAADWhDTxQeSMdQw2ObkAgGRK6liAwLJsD/iO9IrLZA/s4/6xrZA1cTlOjUajRE72htn8jt0Z9mQC\ncdnHkSxGGtmurq7GAyDb1O12EznQMWbzO1th2DOrmRq4PwyXl5c3Bqy35ejoSO7du2c7DFgQ1qyi\nrjhPIlEul2MxwHASZxLDfH7LNOyyL5fLoS7fhDg86K3VaswclzLuhB6L1Gq1kCPBIrlcTkqlku0w\nYJDfCWuYTCA9wpj0wFZmnJHuopVKxcRiVhaHhj6Y5Xe2wrDLPi77+DTr6+uyvr5uO4zQZpZE/IVd\n9nHYv+eJQ2q7ydnTEA9+G7coe5G7d+/aDkH29/dthwDDNjY2fH0uy2UfdOZewK84XFuJsI9HLS7l\nviqafgEAAAAAAIAV8fgTAAAAAAAA1mQ6k23amBOtVuvWmAQHBwdycHCwXGQen3766a3X3DFwDg4O\nxuNlecel8sZyfn6+cgxx0Gq1RESk2WzO/Vy/3xeRrwfgNVEGtiRlnAubY6IdHx/fGpSz3W7L5eXl\n0mNZueOQfP755zeW7b7earXGA8wOh0PpdDrjcYG8Y5h4y8/UuFrHx8e3lhX2mF3uNn769Kmvz794\n8UJarda4HJLk+PjY9zg0rigmvJgV0/HxcWTjkWmtb4376R5v540LGXScplljQHpfnzcOnDeWRqNh\nbNDeye8xGo0iGYPK3cZ+B7VO8uDX/X5/XM5+xxqNYrD9q6urqfuRWzZ+rVo2jUZj5nveujl5nWTy\nGOHG4N333evMRqMhzWbzRizTjhvLGgwGN9Yb97EYF12vxtmXX37pu9yC1oNldTqduXVAZH4dEbFz\nT2TyPOHd1sPh8MayZ5WDqfVPOwdGPSZrHMaAzarRaLSwri96n3E7s2OpTLZpAwxubW3deu3Ro0fL\nLP6WDz/88NZrbiundx17e3vj373jI2xubhqJwzZ3G29vb8/9XLFYFJGvx3MxVQ42JGWcC+++F7X7\n9+/fes3vOCKzuH//7rvvTn3dW9/z+bxUq9Wp6/aWn6lxtaZ937DH7HLX+cEHH/j6/DvvvBNmOKGa\ntn0XiWLCi1n79DLxLkspdWNfF/n6eDtvXMigg/LOGgPS+/q8J33eWHZ3dwOte57J7xHVYMPuNvY7\nqHWSB78uFou+9imvKCYmmLVPurH6tWrZzNufvXVz8jrJ5Lh1bgze/d+9zpwW37TjxrImv0fcx+Nb\ndL0aZ2+99ZbvzwatB8uqVqsL96VFx3wb90QmzxXebT05VtascjC1flvnQK+0ZPkkUS6XW1jmi44F\nTNKwWFr28UyVdBoy2s7OzmyHECtnZ2c3niCHlTXUaDSMbfs4zIIWJTcDM+larZYcHx/bDiMSfsvM\nuz36/X5oWQv9fn+8rmlPkoPI2jHUzYxKcnaXSPBstiTzZrMt4m6PMLeLyXVEkXUXR+1221g2m03N\nZjPWs62b5CejezJrcVEW2SpMbPt2ux2L2eij1u/3U3Hu6PV6gXsaJJWf7NBerzcu19FoZCxrf9Jo\nNJq67dOwTyE8mWlkOzg4SEVG287Oju0QIuOnm+vOzs6NJ8hhXcTu7u4a2/ZZu8nI5/MrdV2Ni3w+\nL/fv389EQ5tbZovcv39//Ll+vx9a1kK/3x9ve+9TwHa7Heip4PHxcaaOoSKvn6pWKpVEZ3eJvP4e\nYV5Ex4lbZouMRqNxuZZKJd/dS4MqlUpTt33QG/5+vx9J1l3cNJtN2djYMJbNZov7PeI827op7ndd\nxFuu5+fnoW2b8/Pz8bafbMgL0rC3sbFhteeFLcViMfHnQJHXmaur9lRJCj/ZoYVCYVyuuVwutFlA\nc7nceNt7G/9KpVLgruJZuIZZlVLK+I8N8c4zNyjJXSazapkyS0L30qzti2m5IHC/R5TdE20JUmZu\nV90wbyDdZU9u+6D7VhbKLs1yuZzvLpRZMNnAHOa2mbbtgzYoRNWlLm6S3GXSKy3fww+/39XbXTfM\nB/neZU92BzU5JADija6GN0W5Pdx1TZ7Hgp7XwmoITAubjWKmUVsBAAAAAACAFS1sZFNKfayUeqKU\nepKUmR6BtKD+AfZQ/wC7qIOAPdQ/AFFLS3fRhY1sWutPtNaPtdaPk9AVD0gT6h9gD/UPsIs6CNhD\n/QOA5WRmTDYAAAAAAADET1rGZKORDQAAAAAAANakpZEtkRMfBJ02HgCANHAcx3YIAABYMRqNbIcA\nAAslspEt6LTxAMxh8FvAnnK5bDsEAACsGA6HtkMAEKLMTHwAJIX7dKvX68nTp09DW0/WMykZ/BbT\n1Ot12yEAmXZ5eTn+fTAYGF12v98XETIpgVnOzs5u/N+tM6a0222jy0uqYrFoOwTEULfblV6vJ8Ph\nUC4vL6Xb7Rpb9mg0Gt/7kUkJv2hkQ2o8e/ZMRERKpZJsbm4aXXar1Rr/TiYlcNudO3fkxYsX40xH\nkxcijuPI4eGhiJBJCUyjtb5xbioUzA256zjO+AaDTEpgup2dnRv/N90YtLGxYXR5QJqsra1JsViU\nfD4v1WpV1tbWjC17NBqNz69kUoYrjCw2W5lsTHyA1Pj2t789/v0b3/iG0WVvbW0ZXR6QNqVSSd55\n553x/3M5c89wyuWyPHz4UETIpASmUUpJPp8PZdnlcpnGNQBArLmNKaYbVbwPrcikDB8THwAAAAAA\nAAAQETLZAAAAAAAAYBGZbAAAAAAAAABEhEw2AAAAAAAAWEQmGwAAAAAAAAARSVEmW6/Xk1KpZDsM\nAAAAAEDIRqOR0dnMAdhFJluMvHr1ynYIQGbV63XbIQCZ1ul0bIcAZFaj0bAdApBZNLAB6aGUCuXH\nhlRksr3xxhu2QwAya29vz3YIQKZVq1XbIQCZtbu7azsEAAAQIys1/x8eHpqKA0BA/X7fdghAZl1d\nXdkOAci0VqtlOwQgs3q9nu0QAKRQWjLZVmpke/jwoak4AARULBZthwBkVqVSsR0CkGlbW1u2QwAy\ni3GwAWC2VHQXBQAAAAAAQDKlZeIDGtkAAAAAAABgTVoa2ZiSBQAAAAAAAFgRmWwAAAAAAACwhkw2\nAAAAAAAAACJCJhsAAAAAAAAsUUqlJpONRjYAAAAAAABYk5ZGNrqLAgAAYCXD4dB2CAAAWDEYDGyH\ngBihkQ0w6OjoyHYIAABEjhsMwK52u207BCCz8vm87RBSwe0yavLHhlQ1sp2dncnTp09th4EMe/Dg\nge0QrGm323J6emo7DCCThsOhNBoN22Egw8rlsu0QrBqNRrZDQMZtbGzYDsGaTqdjOwRkXFq6OcKM\nVI3JtrOzIzs7O7bDADKpWq1m+gIPsElrLXfu3LEdBpBZuVyqnlsDiVKtVsVxnMw39gNJl5bGylQ1\nsgGwhxsMwJ5CgdM5ACC7aGADEBdclQMAAAAAAMAaMtkAAAAAAACAFdicqMA0+ncBAAAAAAAAKyKT\nDQAAAAAAANZkJpNNKfWxUuqJUupJrVaLIiYA16h/gD3UP8Au6iBgD/UPAJazsJFNa/2J1vqx1vrx\n/v5+FDEBuJbE+seFGNIiifWv2+3aDgEwJol1cDgc2g4BMCKJ9W8wGNgOAcAK3HHZTP7YQHdRAEYl\n5UIMSKO1tTXbIQCZls/nbYcAZFahwK0tkGSZ6S4KAAAAAAAAYD6a+wEAAAAAAGANmWwAAACwTmtt\nOwQg0+r1uu0QgMxiLD7EDY1sSI1ms2k7BCCzzs/PbYcAZBYTXgB27e3t2Q4ByCzG4kuHMCY9YOID\nYEXb29u2QwAya3Nz03YIQGZVq1XbIQAAAKyE7qIAAAAAAAAARIRMNgAAAAAAAFhEJhsAAAAAAAAA\nESGTDQAAAAAAABaRyQYAAAAAAABARMhkAwAAAAAAgCVKqdRkstHIBgAAAAAAAGvS0shmtLvo4eGh\nycWNffbZZ5GuLw2SvG1OT09v/Bt3BwcHgf8mKd9tVScnJ7ZDwBIGg4GIUH5+DYfD0JbrOE5k60sD\nd9tM225xl9SYO51OoM+LiGitwwrJuKurq6X/Nolliq8lofxqtZrtEMbXDLOMRiOjy120Plev11tq\nvUnmbpukXSeMRqNxzJeXlyKSzvJLWrlgecYa2Y6OjmR3d3fm+91u1+hyF63PFeTiLy3cbbPKhaEN\n3W5Xrq6uZG1tTT7//HPJ5/OJKb8g29r9jlHeZBwdHUW2Lq979+5ZWW8cuBcJSXF0dCSXl5dSr9el\nUCiI4ziJKb8g+7f7HZe96J9mMBjMrc9+bwim/V25XA68vixzt8207RZnbllrraXX6yXm5qJcLku1\nWg30ea218SfV7XZ77vvLNkS02+2py160PpfJ40xS+N02cePuI6enp1Kr1eT09DS15Wf6QW8+n597\nTsrllrvdzOfzUxslFq3PVSqVllpvkvndNnHj3Ufcc0oSyk9rncjtHWdul1GTPzYY6y764MGDue+v\nra0ZXe6i9bmCXPylhd9tEzfefeTdd9+1GEkwjx49CvT5SqUiItGmwyZ1n0iy9fV12yEE4u4jbtxJ\naqQIsn+vr6/L+vr60hf90yzaVoXCcqfaWctNUtlELanbxt1HlFKJuLFYRRjnvo2Njbnv7+/vL73c\nactetD7Xste+SeZ328SNu4/cvXvXciTBLLNvm/6OYV3PKqUkn89Htr40cLfNtO0Wd27MSSrfoLEm\nsVywnMzMLlqv122HgJDV6/XIy/nVq1eRrg8AguIpazp5M71tlPHZ2Vliss2BNFo2Szpr2E7pRxmn\nR1oy2TLTyLZsJgHizdtN00YZX15eJq5brg3ciKWTt5umjTJ+9eqVta7QSZKkp8Lwz5upb6OMd3Z2\nMtlbAJil2WxGuj6uP/3hHjCdvA+XbJTxaDTiIWYIaGRLmK2tLdshWBP1ST9KbtdLkddlvLe3JyLL\nTUawjPfee+9GDFFI2lhfItnstu1K65guIje7aVar1fH4RVHso+12W954441Iu0KnuSzTKgkDl5vi\nveFO675KtgLibHt7e3zNHfa+2mw2A3fNbTQaK60zrceVNEvzMXNe40kU+2oulwvUgNPv90OMBnFD\n034GpPkAO0vQcdKSJGljfWVdv99P7DhRQUU5Fo+NcX9MjuOGaGRp/BPvA5+07qtkpCTP1dVV5A8j\nbdre3haR8PdVdz1B+Jkwbp60HleQPnHcV4vFou0QYs9m5plp8dsDYVzSBnEF0iQrDWxAHNEoA9iV\npQY2IG44BwJ20MiG1CO9HYjG8fHxrddIjweiQV0D4ieJQ3wAadHr9WyHgIDSMiYbzdtIvTimDANp\ndP/+/VuvZam7HmDTtK4og8GATAbAIob4AOwplUq2Q0BAdBcFAGRSkIwZ043cZKYi67rdru/sGNMN\nbFkc4xUAEC+tVst2CMBcPN4EAARic/BWMlORdWtra9bWTVYcAMC2ra0t2yEgJGSyARnT6XSkXq/f\nev309NRCNEB2XF5eyvPnz6e+fnJyYiEiIDscx5k6ro3jOBaiAQAAiDceSQI+NJtNcRzn1phTzWaT\n2VuBkK2vr8t777039fWoxruhmyqyqlgsymg0EsdxbsyWbDOjFQAApE9aMtkCNbJprcOKA4i17e3t\nQK+HgZnjAHvopoqsyuVyksvlbnUVpU4AAADcFugKSSkltVrNyIqDNhgcHR0ZWS8wT5wbstysAbcO\nttvtpZe1TDefVdYXRK1Ws9IF0NSxDctLUvez4XC49N92u91I1xcUg9tn0zL7ZdT8TviQdNOGpgDS\nIs7X2rZii/M2yQrKwD6lVCg/NgTuLrq/v29kxUG7GTx48MDIeoF5ktD9xa2DGxsbSy/D2+XHr1XW\nF4SpY0xS1ouvLbNf2pLP55f+22UGrl9lfUExuH022ZxQwa+ouofbtre3ZzsEIDRxvta2FVuct0lW\nUAbxkJbuouT6AwAAAAAAACuikQ0AAAAAAADW2OguqpT6oVLqmVLquVLqL6a8r5RS/+H6/b9VSn1v\n0TJpZAMAAAAAAEBmKKXyIvJXIvLHIvK+iPxTpdT7Ex/7YxH55vXPxyLyHxctd2Ejm1LqY6XUE6XU\nEwYGB6JF/QPsof4BdlEHAXuofwCiZiGT7fsi8lxr/UJr3RORvxGRH0185kci8p/0a/9bRLaVUm/M\n/R5a6yBf+kJEnvn+g3DdFZFT20F4xCkeYpktTvH8Xa31Hb8fjln9E4nXtiSW2eIUT5xiCVr/aiJy\nKfGJP07bMk6xiMQrHmKZ7u+IyL/WWn/i9w9idg6M07YUiVc8xDJbnOLhGtQcYpktTvHEKZZA9S8r\nlFL/TV6Xk2kVEbny/P8T9/pDKfVPROSHWut/ef3/fyYiH2qtf+yJ67+IyL/TWv/P6///DxH5c631\nk1krDDqF2DOt9eOAfxMKpdSTuMQiEq94iGW2OMWjlJpZMWeITf0Tid+2JJbp4hRP3GIJ8nmt9X7c\n4ieW6eIUD7HMdl0HfTeySYzOgXHclnGJh1hmi1M8XIOaQyyzxSmeuMViO4Y40lr/0HYMpjAmGwAA\nAAAAALLkQET+yPP/N69fC/qZG2hkAwAAAAAAQJZ8JiLfVEq9rZQqichHIvKzic/8TET++fUso39f\nRFpa61fzFhq0u2iQtP6wxSkWkXjFQyyzxSmeoLHEKXaReMVDLLPFKZ6kx5L0+MMSp1hE4hUPscyW\n5HNgnGIRiVc8xDJbnOJJcv0TiVc8xDJbnOIhFtyitR4opX4sIv9dRPIi8tda6/+nlPrT6/d/IiI/\nF5E/EZHnItIRkX+xaLmBJj4AAAAAAAAAcBvdRQEAAAAAAIAV0cgGAAAAAAAArIhGNgAAAAAAAGBF\nNLIBAAAAAAAAK6KRDQAAAAAAAFgRjWwAAAAAAADAimhkAwAAAAAAAFb0/wFI6GxTaDNVAgAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "convout2_before output shape : (20, 30, 30)\n", + "convout2_before output shape : (30, 30, 20)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAKbCAYAAACzcHRyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQJedZ7/nnVXeru5aupbt6XyRZuzBIY1fIMhgs29gW\nDCAbbhDGF8JzB2OW67GBwGMz47gEExDhC8MWXBiFguuxCa7ta7BlFA5fyUsgGRlk1MJCyNrcWtyL\n1Gt1VXdV19bd7/zRJaay3l9JT503T2aeOt9PhELqp885mSfzzTczz5vvTyHGaAAAAAAAvOSSulcA\nAAAAANAs3CgCAAAAAAq4UQQAAAAAFHCjCAAAAAAo4EYRAAAAAFDAjSIAAAAAoIAbRQAAAABAATeK\nAAAAAIACbhQBAAAAAAVr614BM7ORkZF4+eWXv+LrYoxJLYRQ6rqoZShqud71875udnY2qa1fvz6p\nzczMJLUNGzYkNa8LFy7I+iWXtP67wnKfWeYycpw+fTqpDQwMlLqM8fHxpDY0NOR67/z8fFJbt25d\ny+vy4osvJrUdO3Yktbm5uaR26aWXtrxcL2/br9PY2FhS27RpU6nLOH78eFLbvHlzUlPHzdGjR5Pa\nuXPnkprqK1Tb2rhxY1JT7UOti/o81SeovnHNmjVJTamrzZw9ezap9fT0JLUDBw4ktT179iQ1tf1U\nW1PbRe0jb5/qPdZVG1LvNTPr7e1NaqofnJycTGq7d+9ueR291Hc5ceJEUtu2bVtSU99jeHi45XXx\nUn2C2u9qm46MjLiWcfDgwaSm2qoyNTWV1Pr6+lzvPXbsWFLbunWr673e/th7vVRF/27mvy545pln\nktqVV15Z+vos5b1eVf2g6vfVMazah9r+6pps7VrfbczDDz98Isa45aU/hxB8F/v1uDfGeFvdK/GS\nRtwoXn755bZv375XfF0VF63qxOG9uPJezHs7qu985ztJ7eqrr05qTz/9dFK75pprkpqX6ujN9MF8\n/vz5pKYuYNRnqs5GXVgo3uV63XPPPUntttvKPU4///nPJ7Wf/MmfdL3Xe2Pn9Tu/8ztJ7aMf/WhS\nUxe3e/fubXm5XnWdFFfiU5/6VFL7mZ/5maSW82PWnXfemdTe/e53J7X+/v6k9gd/8AdJTV1kfs/3\nfE9SUxdnt956a1JTF5TqGN65c2dSUxcWqg8dHBxMaur4f/7555NaFW3mkUceSWrXX399Unv/+9+f\n1P7oj/4oqal9+Vd/9VdJTV1MvulNb0pq3ot0782BupE6dOiQ/Mybbropqd11111J7YEHHkhqqv3m\n3MAo6sbkE5/4RFL7tV/7taR29913J7Wf+qmfanldvFSf8IY3vCGpfeMb30hqv/ALv+Baxq//+q8n\ntT/8wz90vfcf//Efk9rrX/9613v/5E/+JKl98IMfdL1XHSM/+7M/m9SeeuqppHbttdcmtU9/+tNJ\nTfXvudTx8M53vjOpqWsFdU1RNu/16re+9a2kpq5RVD99yy23JDV1fn3rW9+a1LZs2ZLUlBDCd10v\nbAbfLzoV4dFTAAAAAEBBI0YUAQAAAKAKZU9dK4t3ClxVGFEEAAAAABSEJty5jo6ORs8cxRwq6EBN\nglVzX6oI7/AGO6h5miqwoa5QmOXUFYoCvyrColAdtT9VP+gNLKnrePXOR66ij1H9tDeITK1zTiBV\nJ6DfLx/9tKb6LDXnWW0rVaszPE3t4zNnziQ1Fe6i+qiyrwfVca36t5zciLKFEB6OMY4u+nNs2nXy\nSy5cuFBY17o1cysBAAAAAGrDjSIAAAAAoIAwGwAAAABdg0e2fRhRBAAAAAAUdM2Iondicl2Tb72T\natX/6LQTfhUhwKD5VDvyhlFUMYEeK6P2p+o/lCYdr+p7qICbKtpbTj/djZrUjnKo9qZqKiCv7HbZ\nCef7Oqhtr2qdQO1jFVyjVNEPrpbjmmPJhys5AAAAAEABN4oAAAAAgILOHJcHAAAAgBUKIfDoqRMj\nigAAAACAAkYUV4H5+fmktm7duhrWBKuNmrTuDbgByqDCGc6dO5fUVLvs1DALNIsKuasr+A7dSQXG\nqT6PIC0/RhR9GFEEAAAAABRwowgAAAAAKOC5HAAAAABdg0dPfRhRBAAAAAAUNHZEUU3cVbVuCytQ\nv4AQXNMe58+fT2oEGBBcUyUV2tJtfZ6itgHbpRqEWaFKXAtepEK9CK7Jw4iiDyOKAAAAAIACbhQB\nAAAAAAWre6weAAAAABbh0VOfVxxRDCF8PIRwLITw2KLa74cQngwhPBpCuCuEMLTo734zhLA/hPBU\nCOHt7VpxAAAAAEB7eEYUP2Fm/8XM/nJR7Stm9psxxnMhhP9sZr9pZh8OIdxgZu8ys+8xs51m9tUQ\nwjUxxjQV5BWoibsq2EEpO4QkxpjUcn6JUJ+nAgLWr1+f1OoMtzhz5kxS27hxY1J78cUXk9qOHTtc\ny1CT1NX+VAE+6r2qHXmXq9qMep3aJznhDt72Nj8/n9Rygo1WS3DK+Ph4UhsaGhKvbL5O3P45Zmdn\nk5rqB8vuk728fUzOsaSWcfbs2aTW39+f1GZmZpJa2YEX7QiumZ6eTmrqnDg4OFj6spcaGxtLaps2\nbUpqx48fT2pq/eoK+pmamkpq6hy+fft21+c9+eSTSe26665b+Yq9DLXO6vjq6elJat5jznvebFpo\nk7ddVnEeV8tQ12k5ffeBAweS2t69e5Oa6vM83zeEwIii0yteRccYv25mY0tqX44xvtRSHjSz3Qv/\nfbuZfSbGOBtjfM7M9pvZzSWuLwAAAACgzcoIs/lfzex/LPz3LjM7uOjvDi3UEiGE94UQ9oUQ9qlf\n5gAAAAAA9cgajw4h/J9mds7M/ttK3xtjvNPM7jQzGx0dTceiAQAAAKBkPHrq0/KNYgjhfzGzHzOz\nt8T//6Hjw2a2Z9HLdi/UAAAAAAAdoqUbxRDCbWb2v5vZG2OMi2fZ321mnwoh/KFdDLO52sz+KXst\nF3gnEucE19QV6OFdRp3hFiq4RvEG1yhq4ro3kMb7OkVNsPYuQ9XURPiJiYmkpkJW1OepX75y2oJ3\nov6JEyeSWm9vr6tWhUOHDiW13bt3JzVvgMELL7yQ1LZs2SKXnRMcpKgQE2/Ikvp+KlxAhVmo9jYy\nMpLUVJtR781pl+q9KuhEbZe+vr6Wl+ulvq/azk8//XRSu+GGG1zLePzxx5PaFVdc4XpvFWEb7QgS\nUtt1YGDA9d6cEDNvAIei1k99Xl3U8ZBzjHiDa7yBVIpaP++52dvvePttdSx512Ulx4P3eFLBNUpd\n14jeY867bVRwjZIT1sWIos8rtqgQwqfN7FYzGwkhHDKz37KLKafrzewrCxv6wRjjL8UYvx1C+KyZ\nPW4XH0n9j60kngIAAAAA6vOKN4oxxp8R5f/6Mq//XTP73ZyVAgAAAIB2YETRp4zUUwAAAADAKsKN\nIgAAAACgoL5klFegQmVUGMjmzZuT2oEDB5KaGmLeunVrUvOGAUxOTrpq27dvd62LCqg4duxYUlOh\nIf39/cuuZ7v9y7/8S1K78cYbk5oK0fCG4ygqNEDVcgKQ1Oep16nJ4yoERgWvPPvss0ntda97XVJT\nbevUqVNJbc+ePUlNGRsbS2pHjx5Nampfnj592rWMHGrbP/fcc0ntqquuSmpquwwPD7uWu23btqS2\nXDiW2oYPPvhgUvvRH/1R17LV/09WrY8K73jmmWeSmuorPv7xjyc1FbJy6623JjV1rH//939/UlPh\nAuoY+eIXv5jUVBDGTTfdlNRUv+8NaPJS7fyhhx5KampbDQ4OJjV1DKu+W4U43HPPPUlNhWBcffXV\nSU0dwzkOH06DzFWA1HJU36i2tTp3qjatQjTOnj2b1NR71bGkgle8oTfquqUKR44cSWqq71DHlzcM\nRLVfte3LDjZT503vec573fHkk08mNXV9qAJlTp48mdSWawdqn6jrwfHxcVdNfV5PT49cdplmZmaS\nmgodU+fdKsJ2vP9vdh499WFEEQAAAABQ0NgRRQAAAAAoUwiBEUUnRhQBAAAAAAXcKAIAAAAACoKa\nEF+10dHRuG/fvld8nTcMoC7e8BNFBQTs2rUre51asVybyBmmV8EfamK4oiZxq8n7V155ZVJbt26d\naxleal2GhoZKXUYnymn7igpdUOERTaOOnbIfb1FBCSogQAWEDAwMJDUVxqDCYsqmjmHVx6vjS4WQ\nqPCJHGXvyyq2swpA826X+++/P6mp4I/XvOY1Se2v//qv5Wd6w7BU3636lMcffzypXXvttUlN9R8q\nJOiRRx5Jaio8KWe75lDt/O///u+T2ujoaFJT1xTXXHONa7kvvPBCUvunf/qnpPbmN785qak+JocK\nMVRhKmqfq5Al9ToV1HXLLbe41m///v1JTYWsLUe1LbWtf+zHfiypHTx4MKl5g35yqPCf6667rtRl\nqP2kwslUn/z0008ntWuvvfbhGOO/HShr166NOYGK7TQ+Pl5Y17oxoggAAAAAKCDMBgAAAEDXIMzG\nhxFFAAAAAEABN4oAAAAAgIKOCrPxmpubS2pqEmxd1CRdFbpyySXcx5vp8AMVYlT29lJBAt5lTE1N\nJTX1mIP6PBVMomplB8h4efuM1f5YRxX9jGqDarkbNmxIat5AoPn5+aTmDYHKOUa81DJOnTqV1KoI\n4FHU+qnQq76+vqTmDWh67LHHktoNN9yQ1Ko4Z3jDlMzyAoFU/6a+X9n9TE6bruJ48Mo5rptE9WPq\nPLdcG1xqJe13KdWeVX/cjuA1tRy1HdQ6er+fl7q+Ueegsq9HVL8/PDzsem8IIQmzGRwcLG/lSjQ2\nNkaYDQAAAABgZUIIt4UQngoh7A8hfET8/b8PITwaQvjXEMI/hBBuXPR3zy/UHwkhvOIoHWE2AAAA\nALpGpz71FEJYY2Z/ZmZvNbNDZvZQCOHuGOPi/3/Qc2b2xhjjqRDCj5jZnWb2ukV//6YY4wnP8hhR\nBAAAAIDmu9nM9scYn40xzpnZZ8zs9sUviDH+Q4zxpWd1HzSz9H8q6sSNIgAAAADUbySEsG/RP+9b\n8ve7zOzgoj8fWqgt5+fN7H8s+nM0s6+GEB4Wn51YlY+elj1xt2zeic7esJImTaA3Mzt58mRS8wZN\nqO+i9mfZ309NAPcuY2ZmJqmp4IqylT1R3Bs80aTHNc6ePZvUent7k1pOqMZyqgjIUm1QhQYo6vup\n7aDCHbyhF1X0M2oZqj+pqx9UyxgaGip1XV796lcnNbXfqvi+Kzm/eoNDVFutIphL8W7DycnJpFZF\nv++lvsf09HRS6+npcX2e2peqP8kJzFGfp47rnLCYnOtD1U7bEVyjqPON2jZVHDfedq7Oz4o6Z6vr\n34GBgaTWaqhcCKFR1zJLnCgrzCaE8Ca7eKP4hkXlN8QYD4cQtprZV0IIT8YYv77cZzCiCAAAAADN\nd9jM9iz68+6FWkEI4fvM7C/M7PYY47+N4MQYDy/8+5iZ3WUXH2VdFjeKAAAAALrGS6OKTfvH4SEz\nuzqEcEUI4VIze5eZ3b3ku+01s8+b2c/FGJ9eVO8LIWx86b/N7G1mlv7/lxZp9jOaAAAAAACLMZ4L\nIbzfzO41szVm9vEY47dDCL+08Pd3mNl/MrPNZvbnCzef5xYeZ91mZnct1Naa2adijPe83PK4UQQA\nAACADhBj/JKZfWlJ7Y5F//1eM3uveN+zZnbj0vrLacSNYozRZmdnCzU1Sdc76VoN3U5NTSU1NYG2\nSZNbvZOSqwqumZ+fT2pq4ro3uEZR30Xtp7KdOXMmqanvptqgChdR7bfpwTDedWlSeJK3bTRpO7eD\nN9ik6W1QUQEcKkCiijbYpMCnJoW2qe1i5g82aVKf4g2R6+/vr2J1Euo8rNqbah/eayilivamvod3\nnVsNNWkibxtc7rgrU04QnNr+3vd6r39zwnuafu5rCuYoAgAAAAAKmvOTJAAAAAC0GSOKPowoAgAA\nAAAKuFEEAAAAABQ04tHTEIIMJ8j5vKX6+vqSWhUTgTtRbjBBJ/IG13ipcBE1sbvsEIcqQiGqCJlY\nTcEEXjn7Tr3O+14VxuS1NITMTIde5AQO5ByHZWtSmE3ZVGiQd9urtrsc1RZUW80J0cjhbauqj1LK\n7rdW83l4ZmYmqXn7p5ztXPa+VGE0ZnkBLXVdr+Ycc00K3FI6sZ+uAyOKAAAAAICCZt/uAwAAAEBJ\nQgiMKDoxoggAAAAAKOBGEQAAAABQ0NhHT+fn55Na2ZO41QT8nNCF1aIbh+NzAjNyJuCXHeJQdtCM\nmpSvjhHv67xWe3CNooJhVB+lgrnU67z9W87xXmYIWSeoIsipLjmhRis51r3ndm+7VMdNFe1SfQ91\nbMIvpw16qfOrCl3xHusquK4dIS7qeFAhPE0K/2q6brzWbcXqPesBAAAAAFrS2BFFAAAAACgbI4o+\njCgCAAAAAAq4UQQAAAAAFDTm0dOlE4zLDq6ZmJhIaoODg6UuI0dOgMlq1/RtU/YE/CZ9N29IRZPW\nuVOpEAIVEqTkhCeo0Jsmhbao0BAVIKGOw9XSLtU+Ut8t5/uq7dyOUCm1jjmBNFUE16jjkOCa8ql2\nrs7/OUFpZQcltiO4Rh0Pajnec8ZqDmnMuT5cLeeHdmvO1QAAAAAAoBEaM6IIAAAAAO3GiKIPI4oA\nAAAAgAJuFAEAAAAABY159LTdQ8D9/f2lft7c3FxSy5n47/3+p06dSmrDw8MtLzeXNwij7AnHZQdw\nNCkwp+y25ZWzTesKP5mZmUlqal1UEIB3ndV2Wcn7q6Dar+orVDvy9o1qO6hgiJxwEW/QxJkzZ5Ka\n2h9lB52o9VPbRW1nb3+igixUQEVvb6/r87xy+pjlQpdUiIY6Fr2hTXVR36Ouc/HU1FRS8wbreM9z\n3teVHZyijqWyg1hUO1fLVYFZqi9qx/k6p99S611FmE0V14JKq+8NIfDoqVNzrnQAAAAAAI3QmBFF\nAAAAAGg3RhR9GFEEAAAAABQwoggAAACgazCi6NOYG8WlE1xzdqB3QvTp06eT2sDAgGsZVYSLqEm/\n3lo7DgAVILFhw4akpiYwe9dHTY4/ceJEUtu2bZvr87zq6jC8QRiKmrSugiK81H7zhneUHRripdpf\n2cdDVaE1aruq76Ko77dp06aW18XbtsoOSVBhEUrOd8vhXT/Fu029x5IKvanrOFwu8EkFffT09CS1\nutbbSx2HdYXIqeAab6iMN6DF+7qyj3/Vj+WEQKn3qvOrN3RFqera4ezZs0lNBVpVEVyj2pvaDqod\nea8P1bWH6k/UNuAGsFw8egoAAAAAKGjMiCIAAAAAtBsjjz6MKAIAAAAAChhRBAAAANA1GFH06fgb\nRTW5VU1WPnLkSFLbsmVLUvMGYaiJxWqSrgrbUBP/vZO4+/v7Xa9rB++kYRV6owIMvOEYan96J+9X\nYXJyMqmp/aSoCfhqW3kn6udoUjiGl9r2art42646NlcSZuPtjxS1HO+yp6amkprq87Zu3ZrUNm7c\nmNTUsalCpbwhOup16hhW/e+xY8eSmmqXmzdvTmplU8eICl1QvH3C+Pi4q6ZcfvnlrteVbbm+yHvu\nVMdnTrhTTqCaWoYKvlPHTRXBV2r9vOc+b9iZN7Qp59ynqGNJ1VSf6r2eOHz4cFJT66z2rwpnUdR2\nWW45iupn1HdRbSEn0M7LG5TkDbNR+1O1QdUnqPbh3U/w4dFTAAAAAEBBx48oAgAAAIBHCIFHT50Y\nUQQAAAAAFDCiCAAAAKBrMKLo05gbxaWTctUkXTUJVoVHHD9+PKmpUJmc8BNvcI33vTMzM67P8wZj\ntIN3e6mgiZwJ1sPDwy2/18sbQqL2U87kfRVco3hDZbxhTDnLaJKcba/khlHUdXz29fUltT179iS1\nU6dOJbXp6emkpkJvRkZGkpoKpPFS/YkKzNm5c2dSm5iYaHm5OdQxokIXvOcq1V6GhoZcNRXsUDZv\nWNRy5wb1/bzHmPd1KrjC2+d5Q9EGBwddn1eFQ4cOJTV1rCve7fLiiy8mNbU/tm3b5vo8L+81lKL2\npdpWap294T2qrakgsZVcs6jjWPUz6rpWBTLWRX0Pdd3nvRb0hqepa4CcdoQUj54CAAAAAAoaM6II\nAAAAAO3Go6c+jCgCAAAAAAoYUQQAAADQNRhR9GnEjWKMMZnoryajqqAONZG17IALpezgD+/37YSG\nrQIMvN9lfn4+qXknmudQ6zw+Pp7UVKiECrhRE7F3797tWhcVIKG2i5ow720fKtREfV7TJ9CrIBZv\nQFAuFWyQE9qkwhjUflf7WAWlqH5QBTkcPHgwqak2qD5PBVzk9FEqNOTZZ59Nat7wjiqobaC2n7dd\nqnY1Ozub1FSAkTecxUu9V52rVrLP1XdRgSCqLahtkxMgpc5L3/3ud5PaZZdd5lqXnOPfS7V9FSRy\n7NixpKbaoNrOO3bsSGre85Kq9fb2JjXl9OnTSW1gYMD1XrUNvOdcL7WM3LA91QaVJp13Fe9xqI5/\ndT29adOmpKbaYCeG8HUaHj0FAAAAABQ0YkQRAAAAAKrQCU/oNQEjigAAAACAAkYUAQAAAHSFEAIj\nik7BO5G2nUZHR+O+ffvaugz1PVUISe5E/Vap4BQ1iVsFJ6wmaiK8msCsJpDXFYSjqPbmreWET3Sb\ns2fPJjVvcELu56lgA9Wn5KxPDrV+iurf1HuraJfe81FdJ3i1XVSAjOp3XnjhhaS2c+dO13K956qm\nyQl8qSssRmnSuuTICYvpNmUHQy1H9SnqOq9JbVBtG1VTATfe6zQVCDgyMuJaPxWYs2HDhodjjKMv\n/bmnpydefvnlrs+r2pNPPllY17qt7rsOAAAAAMCKdd5PYgAAAADQIh499WFEEQAAAABQwIgiAAAA\ngK7BiKIPI4oAAAAAgIKuGVFUvxz09PTUsCba0NBQ3avQVqdOnUpqKrlUpX2tX7/etYy6Ek4V1d74\n9ap8ZSeKepNCzXRbrSvhVFHrp1JFVbusK3m36ceI2qbe7axSAZW5ubmk5u0DmyZnfzYpVbRJ6+Kl\nkh+9CafeJM7VrKo+0Ltdm9QG1bbxbi/vdVrO9Vyn9pdN1ZyWBwAAAABt1vQfJpuiu34iAgAAAAC8\nIkYUAQAAAHQNRhR9GFEEAAAAABQ0ZkRx6eTpbps4vdqp4BpFTYiuKyDEG/yhzMzMJLUNGzZkrxPa\nq7+/v7ZlqxCTnNAA1Ef1E3v27HG999JLLy17dVxU+EluKIRqqzn9Kvxy9h3XX6jb4OBg3auABY25\nUQQAAACAdgoh8AOVEz8bAQAAAAAKGFEEAAAA0DUYUfRhRBEAAAAAUNCYEUXu7LESZ8+eTWo5oTcq\nSCQnVEIF10xMTCS1vr6+pLZ2bWMOS1gatPWSsgMfVHtToUg5YTbnz59ParS35lNtcH5+PqnlBJjk\nBtd4TU9PJzXVXxKo0nyqXebst7I/D6sfbab9uEIAAAAA0DUYoPLhthsAAAAAUMCIIgAAAICuwYii\nDyOKAAAAAICCxowotvvOPsaY1M6dO5fU1q1b19b1QDlygmuUnOAar8HBwbYvA+VbbmJ8FZPoVchH\nDhXadOzYsaS2c+fOUpeLPKpddWoIUU9PT1Ljl/3OVHZ/RwgJVirnPEy/48NRCQAAAAAo4EYRAAAA\nAFDQmc+uAAAAAMAKhRB49NTpFUcUQwgfDyEcCyE8tqi2KYTwlRDCdxb+Pbzo734zhLA/hPBUCOHt\n7VpxAAAAAEB7eEYUP2Fm/8XM/nJR7SNm9rUY48dCCB9Z+POHQwg3mNm7zOx7zGynmX01hHBNjPF8\nuau9cuqXgzVr1tSwJgBWg04MXlChTZs3b65hTVa3KoKOOvX8xa/41VBhfaoNdmI/hs5w/nx66V92\nv5UT6kVf5POKPUSM8etmNrakfLuZfXLhvz9pZu9YVP9MjHE2xvicme03s5tLWlcAAAAAQAVa/Slp\nW4zxxYX/PmJm2xb+e5eZHVz0ukMLtUQI4X0hhH0hhH3Hjx9vcTUAAAAAAGXLDrOJMcYQQvo/KXzl\n991pZneamY2Ojq74/QAAAACwUjx66tPqiOLREMIOM7OFf7/0f2w+bGZ7Fr1u90INAAAAANAhWh1R\nvNvM3mNmH1v4998uqn8qhPCHdjHM5moz+6dWFqAmwaq7/26biF1FSMJyZmZmktqGDRuS2tzcXFJT\nIRpe8/PzSW3dunVJLcZ0YNr7i5Haropahmqrap37+vpcr1PfrS7q+6p1ztm/XmW3Ky+1f830pPwm\n7U+179TE/07sQ6sISchR9jb19vtlt786zzdNp8JicoI1cnjPzapP8JqdnU1q69evT2pnz55Nar29\nva5lTE1NJTXVflVN7Q9F9R1qWzVNXec/1aeodp7zOm8fVXb/xoiizyv2aiGET5vZrWY2EkI4ZGa/\nZRdvED8bQvh5M/uumf20mVmM8dshhM+a2eNmds7M/mMTEk8BAAAAAH6veKMYY/yZZf7qLcu8/nfN\n7HdzVgoAAAAAUJ96npMAAAAAgBrw6KkPkw0AAAAAAAWNGFGMMSaTVKsIgOjESflVrPNyk8K9E77V\nBOucidjetpDz61DOdlWT99V3m5ycTGr9/f1JrUkBEmq/qVCDsifVq1ADFYjgndw+PT2d1Hp6elzr\nspKQlJx+a2JiIqmpACS1PmqfqG2j2psKd2hS36j2naK2fdnhIio0RB0j6hg+depUUrviiitcy/UG\n15Qd6KOWu5LQMNUu1T5R+1i11SZRx42qqcAXL2/Imjo3e8833nOzN5gkJzBH9Xfe9qZqap2XCydr\nurrCutRy1bb2XgPkXKeVeV8QQmBE0ak5VwMAAAAAgEbgRhEAAAAAUNCIR08BAAAAoAo8eurDiCIA\nAAAAoKARI4ohBNckVW/Ih3fyc12hId7wCO+vHerzvBOf1bbKDYDICQ5RDhw4kNR27dqV1Mr+LiqI\nQQUTbNy40fV53lADtd9zwoAU7zGi1lnVco4lFZ6k9ptaP+/kdtX+1DZVITrDw8PyM1cS6uGhAim8\n7df73pxt6A0O8vJ+nmpHqu2X/euw2r9qO3tDvoaGhlyvU23QG/JR9vlL9YHKcn2bt89TISvefqEK\nalvnhNS55mzTAAAgAElEQVR4eUNb1H5S7VKFManXqf5cXVOoWhVBhEpOX6nkXFe1g3fZOdcKZZ/T\nlLKvxXPey4iiDyOKAAAAAIACbhQBAAAAAAWNePQUAAAAAKrAo6c+jCgCAAAAAAoaM6K4dEKqmoyq\namrCsXcCeBXBNUrZE6JzPs87aX0lvME13sniO3fuTGpqvcueRK/CCtREcfU9csJ7VMhHTnCNN8Ag\nZ/J+zrGklpETWuENA1HtZbngGqXsXyNVeId34r/anzn7RLUFtX45x5z3vap9lL3t1ff19jEqAEJR\n66yWq9qqktMnKOr7egN9VICZWV4/qPqAsoM61Pb3hkBVwRsuoo519T28/erY2FhSGxkZcb23bN5t\nX3Y4oTpveo/NXN4gPSWnX8i5HhwfH09qvb29SU2tn2rnOW3fixFFH0YUAQAAAAAF3CgCAAAAAAoa\n8+gpAAAAALRTCIFHT50YUQQAAAAAFDRmRLHVCallB8N0mzq3n3fZOcEmZSs7QKKKZajwCaWutlD2\nr3rewIGm/ZpYdlBC2QFDOcEkOao4/tX39R4POe2oSecv1V68fUdVbSOnb1T7qUnnFsV7DJcd5FZX\ncE2OssMJqwquUbzBNWXL6Y+GhoZqWW6Opl0DNBUjigAAAACAAm4UAQAAAAAFzX7uAgAAAABKxKOn\nPowoAgAAAAAKGFEEAAAA0DUYUfRhRBEAAAAAUMCNIgAAAACggEdPAQAAAHQNHj31YUQRAAAAAFDA\niKLDU089ldSuvfbalj/v4YcfTmqvfe1rk9qJEyeS2sjISMvL9ZqampL1vr6+ti+7LmNjY0lteHg4\nqT322GNJTe2Tffv2JbUf//Efb3HtyvfAAw8ktTe84Q0tf96hQ4eS2u7du1v+vCrMzs4mtfXr1ye1\ne++9V77/7W9/e+nrtBpMTk4mtf7+/rYvd3p6Oqn19PS0fbmrxbvf/e6ktnHjxqT253/+50ntoYce\nkp+5devWpPbJT34yqf32b/92UnviiSeSmmpHe/bsSWr79+9PaldddVVSm5ubS2pr16aXRX/6p3+a\n1D74wQ8mtfHx8aQ2NDSU1HJ86lOfSmpq3913331J7dZbb215ub/6q7+a1P74j/+45c+ry8zMTFLb\nsGGD673nzp1Laqq91On48eNJbcuWLS1/3gsvvJDUTp48mdS+93u/N6ndf//9Se2Nb3yja7nq+L/+\n+uuT2sTERFL7xje+8YqfH0JgRNGJEUUAAAAAQAE3igAAAADQAUIIt4UQngoh7A8hfET8/b8PITwa\nQvjXEMI/hBBu9L53qWaNmQMAAABAG3Xqo6chhDVm9mdm9lYzO2RmD4UQ7o4xPr7oZc+Z2RtjjKdC\nCD9iZnea2euc7y1gRBEAAAAAmu9mM9sfY3w2xjhnZp8xs9sXvyDG+A8xxlMLf3zQzHZ737tUiDGW\nuvatGB0djSr8o90uXLiQ1C65pDn3zmrfdOovIE3f1k1S14T58+fPu9ZFtUtvGEAO77qsW7eu7evS\nNGrfqVAqFdajap2oij4mJwhjNVPHppneJ+qYXbNmTVKrKyRErZ83KKmK87Pa1mr7qXVZTdcUrVJ9\npdp+TdP0a6imt60QwsMxxtGX/jwwMBBvvvnmOldpWV/72te+a2aL0yzvjDHe+dIfQgj/zsxuizG+\nd+HPP2dmr4sxvl99XgjhN8zsuhjje1f6XjMePQUAAACAJjix+KY2RwjhTWb282bWcqw9N4oAAAAA\nukaTRjxX6LCZLf7/Au1eqBWEEL7PzP7CzH4kxnhyJe9drDnj1gAAAACA5TxkZleHEK4IIVxqZu8y\ns7sXvyCEsNfMPm9mPxdjfHol712KEUUAAAAAaLgY47kQwvvN7F4zW2NmH48xfjuE8EsLf3+Hmf0n\nM9tsZn++MHJ6LsY4utx7X255XX2j2KSJwIp3WLwTJmc3fVs3SV0hDt5ABDWpvgp1bZdOoPbdwMBA\nDWtSDRWcUEUfQ3CNtpqOTdXnqf1e12NrOdu6gx+1K03Tro28mr7vmr5+Sieu80tijF8ysy8tqd2x\n6L/fa2bv9b735XD1DgAAAAAoWD0/AwIAAADAywghdPSIYpUYUQQAAAAAFHCjCAAAAAAo4NHTVaBT\nJ2ej+VRAyPT0tOt1BBihXXhkCFVSfdnc3FxSu/TSS6tYHXQh+rzysU19uJIDAAAAABQwoggAAACg\nazCi6MOIIgAAAACggBtFAAAAAEABj54CyyCsQOvr66t7Fbra+fPnkxqBVqjK/Px8Ulu3bl0Na1Iv\nzgXVOHfuXFJbu5ZLV+Tj0VMfRhQBAAAAAAX8LAMAAACgazCi6MOIIgAAAACggBtFAAAAAEBBRz16\nGmNMajlDx+rzzpw5k9QGBgbavi6zs7NJ7ZJL0vt4NbFb6enpaXld2uGJJ55Iatdff73rvf/8z/+c\n1K655pqk1t/fv/IVexkqrODChQtJTe2nycnJpKYCH06fPp3UtmzZ4l3FUql1Vtv01KlTSW14eLgt\n67SY2vbqOHz++eeT2o4dO5Jab29vUhsbG0tq999/v1yfd77znbLebiq4Jqc/8rZppUnBJjnfA/rc\norbfag+uUW1aBUht2LChitVJeI+5/fv3J7Wrrrqq1HWZnp5OauvXr09qOcdhTnDNzMxMUlPn9Tr7\nCdVvqfbWpOPOG6imrm/U9XQdQgg8eurEWRQAAAAAUNBRI4oAAAAAkIMRRR9GFAEAAAAABdwoAgAA\nAAAKOurRUzVM7J1UOzc3l9TUpGYVcFF2SIKajK4mgKtgjU2bNrW83FwqMENNZlfb0Btco4JSXvOa\n17jem8O7j7373Ruso4JrVKiEmtBfdqCSd52rCK5RvNv+yiuvbHkZ6viqKrTG25d593vZbVopO2BB\nhU/UFRqieM8jql/0BowdOXIkqW3fvt313hxlt43leMNYqggnUseSWq4K+lLnbNV3l32MqM9TYXhl\nB9coVbWZpbx9oDo2vedX7/fIbafebehdb28flUNtfyVnuVNTU0mtr68vqanzpnf9ePTUhxFFAAAA\nAEBBR40oAgAAAEAORhR9GFEEAAAAABRwowgAAAAAKGjEo6fnzp2zkydPFmqPP/548rof/MEfTGoq\n/EBNMleTatUk2KXrsdx7VcCCCjBQ4Rjeye0q/KCKicrLUROEH3744aR28803JzU16VoFdaigFDWJ\ne3x8PKmNjIwkNS+179TE6SqobaWoxybUdhkaGspep25RRYDGctTxoHgfl8lZ75x25A0hUJoUXKN4\n+1pvcI1SRXCNovr3J554IqkNDAwkteX63u985ztJ7Yorrkhq9913X1K76aabkpoK/1Ln8cceeyyp\n3XjjjUlNHUvqHKuWod5bdnCNooJrnn322aSmAuRyjk3lxRdfTGq7du1Kat7t4r2+OXjwYFLbu3dv\nUlN9oPcYPnz4cFJT300t49FHH5Wf+X3f932uZStq23ivq8qmlnvgwIGkpvaJN7BMtUt1fs75vjx6\n6sOIIgAAAACgoBEjigAAAADQbiEERhSdGFEEAAAAABRwowgAAAAAKGjEo6dr1661zZs3F2oquObY\nsWNJbevWrUlNTfZWk2+ff/75pPaqV70qqXmHp3MCDHI+r6oADvWZKiBAhQnlUPtOhSd4J0krauK0\nam+Dg4NJLef7qgngvb29SU1937/7u79LaldffXVS84aQPPDAA0ntB37gB5KaOr7UNij7sQ4V2KCO\n1zNnziQ1tc5qm6p1Vu8109/561//elL7oR/6Ifn+pebn55OaNwTi6NGjSW3btm2u9yreNqPCLHbs\n2NHycnNCdKoIHfKeg8ruk1XI2tJzppnZ2bNnk5rqT5T9+/cntcsuuyypqTY5NjYmP1NtL1XbuHFj\nUlN98je/+c2kprb1ddddJ9dnKRV6o8436jur7e8NIvNS57QTJ04kNbWtJiYmkpr3XKXa0Ze//OWk\npraz2r8qBMa7XBU+o0LvnnnmmaSmzgXHjx9Patdee21SU0Es3/rWt5LaVVddldRWElpz5MiRpNbf\n35/UVBtUIUsq/C8n8EUF/an9pLaX2v7eflAtV4VrqeV6A4t49NSHEUUAAAAAQEEjRhQBAAAAoAqM\nKPowoggAAAAAKOBGEQAAAABQEGKMda+DjY6Oxn379pX2eWpyu6Im1artoYanva/zUuusgh02bdqU\n1NSE5pzJyytx6tSppKYmmnupCekqLEKF1KjtnxMu4A0XyQnR8Zqbm0tq3gnbijf0QrUttS5K2eFO\nan+odp4TGqKCIpbrI7ds2ZLUyj4WvW3Qu20mJyeT2sDAgGtdVEhC2eEdq0VOuJDaRyrcQrVL1f5y\n9pHa597zppnuG9Vr1fdTy1Z9fNnnupzlVnEuUAEhKsxGXVNwvGpqW6l2qvZ5nddfSk6gVdlUEJw6\nV6njf2pqKqmpdq5Cb9S1Rwjh4Rjj6Et/Hh4ejm95y1vEWtfvc5/7XGFd68aIIgAAAACggJ+XAAAA\nAHSFEAJhNk6MKAIAAAAAChhRBAAAANA1GFH06fgbxZyJu2qi7fr1613vLbuBqc9TwTVNo4Iw1GR7\ntU/UhO8rr7wyqalwBzXRXIV8VKHssAIlJ7hGUfvDezyoQIQqQrG8+zcn+Ee9biX7t+wQA+939r7O\nG1yjEIThp9qRNwBNtV8V2KDaZc4+mpiYSGqDg4Ou96pADzN//6HU1d7Uck+fPp3UVABHFeegjRs3\nJrWyg2uOHDmS1LZv397y53mp7ZzTZ3mpECLvdWQ7gmu8gVZKFdcjiuq31PHvvcZWwTUK56X249FT\nAAAAAEABt+IAAAAAugaPnvowoggAAAAAKGBEEQAAAEDXYETRp+NvFL0TjpV2TEJulWqw586dS2pq\n4m5V30Otj6Im2+fwTuLOoYImVFCSCndQQQ5qn6iwGPW6uiZnq22gvptqq2WHOHjXRW0rFSTi3UdV\nBCfUybsd6rJcKMpSTVpnRfWB3ouSukLMVICGOr+qY325/aHOGTlhU3XxhhOV3S5VSI13uTnHehXB\nNUrZ53pvgJQ3YKUq3u2QE+bo5d2GdR3DdYUYdhMePQUAAAAAFHT8iCIAAAAAePHoqQ8jigAAAACA\nAkYUAQAAAHSFEAIjik6NvVH0BrnkUJ+XMwG87HW+5JJ0wLeKsAcVNmCmJyuryfadSE0K37BhQ8uf\np9qCmjA/Pz/veq9qR2o/qdepdqR4v6+a3F421YGr7+adaN/08JOqlL0dvNvfa7Xsp7oCqXKooK7c\noAhvWJcK+vIGjKg2qPrQnO9SV2CGOpa8/XknHkve7+bl7Ys6YVupa7+yg2uUnKBFrA48egoAAAAA\nKOAnAAAAAABdg0dPfRhRBAAAAAAUZI0ohhB+zczea2bRzP7VzP6DmfWa2X83s8vN7Hkz++kY46ms\ntQQAAACAEjCi6NPyjWIIYZeZfcDMbogxTocQPmtm7zKzG8zsazHGj4UQPmJmHzGzD7/S5y2dkO6d\nXKzCVLwTotUk+JxJzWVP5vV+j7IDZVRozXLKnnxel5xJ4TltRrVBbztayX4qkwqeyAn+yUFHvzxv\n0Izan6ptqfeqvqeKYAgVAlVX4Mhq0d/fX/pnetuHN7hGUe287LaQEypT9nK7jQpt8577vKErMzMz\nSc17TssJQFyJuvpaheCa7pLb0601s54Qwlq7OJL4gpndbmafXPj7T5rZOzKXAQAAAACoUMs/C8QY\nD4cQ/m8zO2Bm02b25Rjjl0MI22KMLy687IiZbVPvDyG8z8zeZ2a2d+/eVlcDAAAAANwYsfdpeUQx\nhDBsF0cPrzCznWbWF0L42cWviRefCZH/07UY450xxtEY4+iWLVtaXQ0AAAAAQMlyHjT+YTN7LsZ4\n3MwshPB5M/t+MzsaQtgRY3wxhLDDzI6VsJ4AAAAAkI0RRZ+cG8UDZnZLCKHXLj56+hYz22dmU2b2\nHjP72MK//9bzYUt3mJq4651Qria3ez+vSQ3HG9iQE+jTqcr+zmXvd9UGvcE1dbVB1d7UOtcVXFOX\nlYRF5bRBb/iMl3pvTmiDUleYQrcF15TdNhQV/KHa80rauGofajk5gTRln+u68XzqUUUbVHJC28oO\n+lOq6gO7rc/zqipMqJvlzFH8Zgjhb8zsn83snJl9y8zuNLN+M/tsCOHnzey7ZvbTZawoAAAAAKAa\nWRm3McbfMrPfWlKetYujiwAAAADQGCGERj1B2GQ8TwEAAAAAKOD/mgkAAACgazCi6NPYG0U1cVpR\nE1mV6enppNbf3+967+zsbFJTE4vLnvBe12T+lVDBBCqgpWxqv5e9HbxhQmpdVJvp7e1teV3m5uaS\nmtrOOdtATQAnxGH5QIQq2rmX6i9V+80JrqkizCJnGXWFbVRBfY+yv6/qx3LbuLcPbRLV56n+Nydk\nJUdO2E5O8IfaBmVfB+VcT0xNTSW1vr4+13vV9/CuSzv6HbWP1XLUvquirU5OTrrWpaenp9Tllh3G\nBh+uAgEAAAAABc35SRwAAAAA2my1PHHSbowoAgAAAAAKGFEEAAAA0DUYUfRp7I2id4K193UquGZ8\nfDypDQ0NJbX169cnNTVJv+zgDzVx1zuhuR0T7dUEZvWdqwj58IYdeanJ497QBbX9vcE1Z86cafm9\nZbc37+epbaU63LI74dOnTyc1dVyrEALv8bCSQI+cYAglJ7Dk7NmzSc0b5KDa4MaNG13LLVvOMqpY\nvxMnTiS1kZGRUpeh2pWqVRGm4g2jUecqs/LDk9oRuOOhwvDqCrPx9tOqH/Tyhqmo0LacAJOcfent\n79S+zFnndvQ7Oef2KtqlOu8u1wcslRNYpPoTAm7aj0dPAQAAAAAFjR1RBAAAAICy8eipDyOKAAAA\nAIACRhQBAAAAdIUQAiOKTh11o6gmTqugGTURW8kJHFFhDznrpyYvN21CrjcQSG3XnOCPqamppKYm\nn3uDP5ScDsO7P1XgiAqGUOuiJqirbarkBKwoZYfoeHkDVrzbSm2XlXy3srer4m2X3iAHRW1XaGUH\n1yiqXVXR1rzHjQqjyD1XeftuFXqh3qv6ZLUNvf3C4OBgUvOe78vm7fcVb2iI6gfVdlHhTjnBMN4Q\nHVVT380bdDI3N5fUvOdmZbl9VPZxnBMMUzZvH5Bz/aC2a9Ouk1cjHj0FAAAAABR01IgiAAAAAOTg\n0VMfRhQBAAAAAAWMKAIAAADoGowo+jT2RlFNVp6enk5qavK4miyrJsE+99xzSW3Xrl1JzTs5eGJi\nIqlt3bq15fVTE6zVe6uYQL8cNZF4fn4+qalJ5SpEQ03Ozgnq8MrpMI4dO5bUNm/enNRUyI/aLt5w\nHDUxXm0/rxdeeCGp7dy5s+XPK5sKlRoYGHC9TgUTqO2Xe+JQfZQ33EHtO9UHqHakXqfCScpWdqBH\nTiBVFY4ePZrUtm3bVuoyJicnk5oKElNOnz6d1NQxoqjtrILE1Los1++oc+zu3buTmvcYUYFg6jj2\ntkFvH6qO67pCoLz7WG0rtV1U7eTJk0lN9TE7duxIagcOHEhqe/fuTWqKunbI6ce8wUtqGapvUzV1\nPKwktMYbqKSuM9T1ZRW81yiK93XqPK72ndon3qBK+PDoKQAAAACgoLEjigAAAABQtiY9rdJkjCgC\nAAAAAAoYUQQAAADQNRhR9GnsjaLagUNDQ0lNTVZWE4FV7dprr01qKpDG25i8E4u9gRdqMm9dk5eX\noyYmq+AQ7wTmJh24KgxATeJWE6fVNlCT0bds2ZLUcraBN3hJ8QbXqAAeNcm8bN7wCLUuan8oKrBB\n1cx0iIE3lENRwSGDg4Ou95YdXOPto8oO0lLLbVIwwaZNm1yvGx8fT2rq/KWoQA9vyI83uEZRITrq\nuFHhG8u1PxUOp86xqm15A95yvrO6flB9qAqQqSvMRn1ftV3Usek9t6hz3549e5KaOhd4g2sUb3/i\n3W/eECjvuuRc2yxHXZuq7aqu/eoKMfMGMq4k1GcpdXypflBtK5SrsTeKAAAAAFCmEEKjBiaajDmK\nAAAAAIACbhQBAAAAAAU8egoAAACga/DoqU/H3yiqCczeic4qOMEbHpFDTdxXk+WbFlyjqMnFyuzs\nbFJTIRVq8rOasK32Z+6k8qVyQjTUOqv9qUID6grvUCET6nioIrhGUSEfSs5kfjUhfyUBNTnhAmX3\nPeq7qGNE9Zc5oTw5vKFDdfGunze4RhkeHm75vTlygj+Wo/oyVfMe2znbVfGGf6lQnrqoc6T3msIb\n/ONtC+pcoPZl2ce1d7/l9Mfe68hcKiBPbVf1uiqCa7zU9lLnm5ybM/XeJoWdrVYdf6MIAAAAAF6M\nKPowRxEAAAAAUMCNIgAAAACggEdPAQAAAHQNHj31WZU3it4Jx3UFNijeSeZNs379etfrvBOO1YTo\nJk3Y9vK2wSZNxK4iyClHTjs4ceJEUhsZGUlqqk9QbXI5TWqrKsxGBWE0KUCmSeuC6rDfy6eO9TNn\nziS1jRs3JjV1XldhKiqspEn7Mqc/bkdwjeIN4Ss7rK9s3jajwo7UflJtVS2jSefc1WpV3igCAAAA\ngMKIok+zf6IAAAAAAFSOG0UAAAAAQAGPngIAAADoCiEEHj11auyNojeIAatLVRPIl1KBJWryeM7E\nc9p0fVRwjVddbdLMHyChMMkfuWKMSY2Lq87Q19fX8nubFLKWc95UwSnqvU0PiulUart6z0sqZAn1\naOyNIgAAAACUjR+9fPgZBQAAAABQwI0iAAAAAKCAR08BAAAAdA0ePfVp7I1iFSEfExMTSW1wcLDt\ny8XK5AR65Cyj7E6E4BqsFCELqMr09HRS6+npKX05BORgJXLOm+vWrUtqU1NTSS0n+AfVUddpqj/h\nWqtcjb1RBAAAAICy8QOVDz9XAwAAAAAKuFEEAAAAABRwowgAAACga4QQGvmPc91vCyE8FULYH0L4\niPj760II/xhCmA0h/MaSv3s+hPCvIYRHQgj7XmlZzFFE46lAj7m5uaR26aWXtryMnPcCQNXOnz+f\n1HJCHNoRXKPMz88nNfpfVEUF3KAzqGtBFWaz2oUQ1pjZn5nZW83skJk9FEK4O8b4+KKXjZnZB8zs\nHct8zJtijCc8y+NGEQAAAEBXWMnoXQPdbGb7Y4zPmpmFED5jZreb2b/dKMYYj5nZsRDC/5y7MB49\nBQAAAID6jYQQ9i36531L/n6XmR1c9OdDCzWvaGZfDSE8LD47wYgiAAAAANTvRIxxtI2f/4YY4+EQ\nwlYz+0oI4ckY49eXezE3igAAAAC6Rgc/enrYzPYs+vPuhZpLjPHwwr+PhRDusouPsnKjqAwODta9\nCmhRJ4YfnDt3zvW6tWu7+rAE4JATXFMn+rdqXLhwIampMJBu04nXDqtJ2e2yg2/2cjxkZleHEK6w\nizeI7zKzd3veGELoM7NLYoxnFv77bWb2f73ce+ixAQAAAHSNTr3JjDGeCyG838zuNbM1ZvbxGOO3\nQwi/tPD3d4QQtpvZPjMbMLMLIYRfNbMbzGzEzO5a+O5rzexTMcZ7Xm553CgCAAAAQAeIMX7JzL60\npHbHov8+YhcfSV3qtJnduJJl8RwCAAAAAKCAEUUAAAAAXaNTHz2tWmNvFMue8Hr+/Pmk1qlhAE0y\nPj6e1AYGBpJajDGpebe/aguqpvbx+vXrXcvwmp2ddS1DfV9CHPJ4w4BUPzE/P5/UvG1D7UszfZKZ\nmZlJahs2bHAtp2zT09NJraenJ6mp7UpbzXP27Nmk1tvbW8Oa+OW0g+WOEVXvxECVJh3XY2NjSW3T\npk1Jra7tPDc3l9SqCJChH2sPdQx7b7DKvu7mOr4eHEUAAAAAugYjij6d99MeAAAAAKCtuFEEAAAA\nABTw6CkAAACArhBC4NFTp8beKHonYk9NTSW1vr6+pOad8OoNK1nNVPCHmdm6deuS2tDQUFJTE46P\nHTuW1EZGRlzLUG1B1XImrnvDk7xtgQ6ofGr/quNftaGcCe8r2Zc5ARfeNugNF1DBNYrarnUFUuSo\nIszCuwwVXFN2QFvZcraVCk4y09vBG/TTpHASFWajlB1wo7aBCq5R66e2Vc728+6PnH4ipw8su200\n/XhdTtnHjff8p84Zql8YHBxMat51VteWp0+fTmrDw8PLridWrrE3igAAAABQNn7Q92n+zyMAAAAA\ngEpxowgAAAAAKODRUwAAAABdg0dPfRpzo6gmqS6lJjCXHR6hGk4Vk+q9ARVqO6nX5Uy6VmEgy5mc\nnExq/f39SW3Hjh0tr8/Ro0eT2rZt25KadxsqKgxABSyULWedy+advK8Cn7whRGVTITUTExNJbcuW\nLW1fFzMdBOU9ntT2ygmV8bYttd/VMuoKF/GcG8yqWRe1jBdeeCGpqW21d+/elpd78ODBpLZnz56W\nP8/L2yespK9Ur/WGk1QRMKL23caNG5Oa6nvKPgd5r2/UtvIer2fOnElq6vuqz1M1tV1y+sCcoJOc\nEDO1Ljn9u1leH6pCoFQ/XVfgk1oX77nKu87q85YLX0R5GnOjCAAAAADtxoiiD3MUAQAAAAAFjCgC\nAAAA6BqMKPowoggAAAAAKGjMiGKrk45VsIb3s9RkZfXenAnR3jAK7y8bOeui5IYDqOCaspetgmuU\nnF+H1HbNCRLxqusXLe/Ef7WP1q9fX+q65ARAqLAHbwBEToDUcq9dSbCBh2pv3n3n3Ybe472ukISy\n+7yybdq0Kamp0AovdU6rIrhGtSvVNlSfoNbZzKynp8e17LpC5JScZeT0596gKe8+8faDqo9R574q\nrpcU1U8r3r47Z/1y+/ecgCa17Lr6ZK+c7e8Nm+zr61v5imFFmt3KAAAAAKAkIQQePXXi0VMAAAAA\nQAEjigAAAAC6BiOKPowoAgAAAAAKOn5EsexgjbInYpcdflK2lQTXrKZlL1V2O2q6nMCnstX1q15d\nAVK5mrY+3c4bGuJVV1/kbVfquPGG1qxE04M6ypaz33OuM5p+7vMGyDTpemIlvOtddlBaFXLOVZ26\nPxv7lqUAACAASURBVFej7uqJAQAAAHQ1Hj314ZYdAAAAAFDAiCIAAACArsGIog8jigAAAACAAm4U\nAQAAAAAFPHoKAAAAoGvw6KkPI4oAAAAAgAJGFAEAAAB0hRACI4pOjCgCAAAAAAq4UQQAAAAAFHTU\no6f79+9PaufOnUtq1113nevznnjiiaS2fv36pPaqV73K9Xk5Dhw4kNT27t2b1J599tmkNjAwkNRG\nRkbKWbFFvvrVrya1H/7hH27582ZnZ5Oa2v6HDx9Oahs2bHC9t7+/v8W1M3vssceS2qtf/eqWP+/B\nBx9MarfcckvLn1eXe+65J6nddtttbV/u1NRUUuvr60tq3mNJ+eIXv5jU9uzZI1974403uj7T6777\n7ktq6tGYN77xjUnt/vvvd71utTh16lRS6+3tTWqqT8jxla98Jam99a1vTWreY+TChQtJ7ZJL0t9v\nJyYmktrg4GBSO3/+fFJbs2ZNUlMeeOCBpPa1r30tqd1+++1J7bLLLpOfqfbTlVdemdR+8Rd/Mand\ncccdSe0LX/hCUrvzzjuT2qc//emkpraX2k9PP/10UvvABz6Q1N7xjncktb/8y79Maur87KX6skcf\nfTSpqX188ODBpLZ79+6kptqlaoO//Mu/nNQ+9KEPJbW5ubmk5r0mO378eFK79957k9prX/vapHb9\n9de7lvH7v//7SU19j0984hNJ7aabbkpq6prg5MmTctnbtm1Laur7vf3tb09qb3vb25LaT/zETyS1\n17/+9UlNbS+vI0eOJLXt27cnNW+f93u/93tJTR1f6vprdHQ0qR09ejSpqe2s8OipDyOKAAAAAICC\njhpRBAAAAIAcjCj6MKIIAAAAACjIulEMIQyFEP4mhPBkCOGJEMLrQwibQghfCSF8Z+Hfw2WtLAAA\nAACg/UKMsfU3h/BJM/v7GONfhBAuNbNeM/s/zGwsxvixEMJHzGw4xvjhl/uc0dHRuG/fvpbXA82i\n2tRqHuL3BlJ436tqa9fW85R40/el2laKd390oybt45xjqQrebdX071GnJrW31UJtU9UGvcFGnUht\nA1VTx2HTz8MrkRNo5ZXTv9V1/IcQHo4x/lsazq5du+Kv/MqvtH25rfjoRz9aWNe6tXzmCiEMmtkP\nmdl/NTOLMc7FGMfN7HYz++TCyz5pZmk0GAAAAACgsXJ+HrnCzI6b2f8bQrjRzB42sw+a2bYY44sL\nrzliZjKnNoTwPjN7n5k/uh4AAAAAcvAkg0/OszBrzew1Zvb/xBj/JzObMrOPLH5BvDjGLJ9tjTHe\nGWMcjTGObtmyJWM1AAAAAABlyrlRPGRmh2KM31z489/YxRvHoyGEHWZmC/8+lreKAAAAAIAqtfzo\naYzxSAjhYAjh2hjjU2b2FjN7fOGf95jZxxb+/belrGkX6tRJ/52wjmXKCalQ721S6IU3IEBNoF+3\nbl1b1mmxJm2rTtWk4zUnBKqKtuDdVrTL5TWpva0Wapuu5uAaRW2DnOO1U4/hKsJscrZNU47/EEJj\n1qXpciOc/jcz+28LiafPmtl/sIujlJ8NIfy8mX3XzH46cxkAAAAAgApl3SjGGB8xMxXh+paczwUA\nAACAdmBE0aczx9YBAAAAAG3DjSIAAAAAoCB3jiLaiGFx1K1TJ/Rj9VDhSbRLVKlTg+WwutEu87Ct\nfDjbAgAAAAAKGFEEAAAA0DUYUfRhRBEAAAAAUMCNIgAAAACgoLGPnl64cCGpnT9/PqmtW7euitVB\nF1JtkBANje3SHqrPW7NmTQ1rUh8eD6oP5+GLaIP1UYEtql12W79optvlaj8Wy8Rx7cPVHQAAAACg\noLEjigAAAABQphACI4pOjCgCAAAAAAoYUQQAAADQNRhR9GnsjaIKx1A1Nal5amrKVdu+fXtSUxOn\nz507l9RyJgyrdZ6fn09q6vs2baLyzMxMUjt16lRS27JlS1JbuzZtfmNjY0lt/fr1SU3tE7W9Nm7c\nmNQUtf1VW7j00kuT2uzsbFJT65xDfV+1/VYz7zY4cuRIUlPHuvLggw8mtVtuucX1XjPdjnKOWW9A\ng2qrnATL123hQur75vY7c3NzSU31q3Up+xgum/dYn56eTmpqO3vbr/q8np6epFb2/lXfbTUdc53Y\nd6t1bkdfgWbg0VMAAAAAQAG3+wAAAAC6RtNHbpuCEUUAAAAAQAEjigAAAAC6BiOKPo24UYwxyqCK\npdTEWG+AyenTp5OaCrjp7e1NamVPZFffVU3OPnr0aFLbtWtXUqtqMrQ3yGF4eDipnT17NqkNDAwk\ntU2bNrnW5dChQy2/V1H7WG1XRQXXVDGhv2zesIK6eCfG52znlQTXKGX3FSosSrW3stuHt0+pImTJ\neyypkDB1fsiR83lND0lR2rHOat/ltKOyA4a8/f7ExERSGxwcbHm5Xt5j/dixY0ntsssua3m5KqRO\nnR/UdVXZYUVV9DvqmlFds+Ty7k91DaWC9NR28Ib6eal1ruumq+nhWKsBj54CAAAAAAoaMaIIAAAA\nAFXg0VMfRhQBAAAAAAWMKAIAAADoCiEERhSdGnOjuDSIwDsZ1TvZXoXAqKAIb8P58pe/nNTe9ra3\nud6rvtt9992X1G699dakpiY0qwCednj66aeT2vXXX5/UVKhE2ZPAd+/endQefPDBpOYNJ8mZHP/Y\nY48ltVe/+tWu93qp4ISc8B61L6+++uqWP69sKlBChe2otp8zcV8FNizXdnMCM3J4+yjVN6o2nRNM\n8PWvfz2pvfnNb3a9d3JyMql97nOfS2rvec97klpVQRNLPfPMM0ntqquuSmoq0KOvr6/UdVF9wnPP\nPZfUbrrpJtfnffOb30xq27ZtS2qXX355UvvCF74gP1Ntm+uuuy6pefva/fv3u5bhDZo5fvx4Ujtz\n5kxSO3HiRFK7+eabl13PdrrrrruS2jvf+c6kptqglzq+1DbYuXNnUiu7nStlB9coVfQnK6HOdeoc\npMLOcqjr5A0bNrjWpQrqelqdW9A6Hj0FAAAAABQ0ZkQRAAAAANqNR099GFEEAAAAABQwoggAAACg\nazCi6BNUaETVXvOa18T777+/UMsJpPAG3HhVEUygqOAaNYlY7cN2TCxWITWXXJIOSucETajvUtfB\n/MgjjyQ1FfjibQtHjhxJaio8RQUEzc3Nud6rwifKdvDgwaS2Z8+eti/3/PnzSU21c7V+Kvxgx44d\n5azYIt6J/01fRo6y18+7373902o2Ozub1MoOt6hKFcFt3nO7CrhRbVC1805sg2NjY0ktJzwth2oH\nJ0+eTGrqHKQCmtT+Vdcn6vyg+hgVILV58+akZma2ZcuWpKZCgh599NGkpkKb1PqosKkc6ppsfHw8\nqal2rs67KjhQBU0pKjjwiSeeSGoqaOryyy9/OMY4+tKf9+7dGz/0oQ+5llu1D3zgA4V1rVvn9WAA\nAAAAgLbi0VMAAAAAXYNHT30YUQQAAAAAFDCiCAAAAKBrMKLo04gwm9HR0bhv375CTU14VdT6qwn9\n09PTSU1NoFWhNypMQU3SLdvk5GRSUxOGy57gn+vo0aNJzRuy0vSgjrpUEdShjiUVDHXppZeWutwc\nKuRHfQ+1/Xp6epKaCggaHh5uce3yqb5M9VHetlB20FfZmhRm5VXFOqv2qwJWvKEQZVvuOsK7HdT5\nWfX76vPUtYL3/KyWq/qF1aLskBoVxDIyMtLy5ymqbalrMkVdT/T39yc11S+q5dZ57vOGejUp0KqK\n6xZ1DaD2UwghCbP58Ic/XOq6lOX9738/YTYAAAAAgObi0VMAAAAAXSGE0PinVZqCEUUAAAAAQAEj\nigAAAAC6BiOKPo24UYwxJhPSvZPRvRNZvTWliuAaNXFahdSUPRG4HXLCP7zBNWUHSOSEfKh1OXbs\nWFLbvHlzUvO2rSr2u9p+TQquUdT65QQ2qH155MgR+drt27e7PtNLhVep4IUcU1NTSW1oaKjUZeTo\nxBO3d529YRSKOv7rCq5Rcveb6mu9n5lzflbBNd5riiZRfYda55zgmkOHDiU1b0hdDhXaNDAw4Hqv\nt/9UbahpfVEVx0PZVDicug7K4e1D0brm33UAAAAAACrVnJ8eAAAAAKDNmjZq3FSMKAIAAAAAChhR\nBAAAANA1GFH0acSN4vnz5218fLxQGxkZcb03ZxL8hQsXklpdYTGzs7NJzRvs0jRVTPwv+wBX7cjb\nPpYGMZnpSf4qKAXlU4EN3vCjnLCHXFUcN94QiKZTx1yTQhyUpocunD59Oqmpc9BK2qm3D23SvvN+\nvyraoDcAqezQK2X37t1tX4ayfv36lt+rtp+qKU0PMFpOk/oZFVyTE+qlNOn7rlY8egoAAAAAKGjO\nz3gAAAAA0GY8eurDiCIAAAAAoIARRQAAAABdIYTAiKJTI24U165d6w6vWWpubi6peSc/5wTXeMMx\nvJoUXDM/Py/raqK+2g51BQLlUO3IO5ldBeEoqn3kBCrNzMwktSa1o7LlbKtOOCFUEZ6gtpc6hpt0\nXKt1qSL8xBtWUva5oC4bN25Mat7vsZJzhlJ2sFzZ+0StXxVtUG2DnHNVJ8ppByroxBt+0rTjuq7+\nV7V9FUijXqeuxQmf6Tydd0UPAAAAAGirRowoAgAAAEAVOvHJjzowoggAAAAAKGBEEQAAAEDXYETR\np+NvFL3BNSr4Q02qzQkmKZsKCFDrXPYkZ+82MFs9B1pOGICaxK2oEAIVPuMNdvC2/bLNzs4mtSrW\npRNDklaiiu3qDWhp0nHtXZeywye8YSVN2lY5coLhVnLOUG3QG7JUV1vw9skq5CMnvEOt82oOrlG8\nbcsb8uNtG51wXI+Pjye1np6epJZzHlHtfLWfi1HE3gYAAAAAFHT8iCIAAAAAeHXCqHETMKIIAAAA\nAChgRBEAAABA12BE0acRN4oxxiTIoewQBxUa0omYRHxR2aEBytTUVFLr6+tLat4gBm8b9O7jsjs5\nFQag1kUFBHjDHrA81eepQCsV7qDamzpGVvM+Wc0n/Sr6u5zjWrW/5erqM73BQV5lt3O1ft5jc7Uo\nOyDIyxvA5W1Dar+pmjrXN83GjRvrXgV0gUbcKAIAAABAu4UQVvWPi2VavT8vAwAAAABawo0iAAAA\nAKCAG0UAAAAAXeOlx0+b9o9z3W8LITwVQtgfQviI+PvrQgj/GEKYDSH8xkreu1Qj5iiGEEoNr/FO\nfvZOzvaGmpRNTYxXQQBqnat69rqKCf0qZEUFL+RQYRHefazWT1HhE2UHUuTwbtMzZ84ktSZNqvce\n/4o6vlTbMCu/navleJehjnfvd56enk5qPT09rvc2SRWBL96+KCf4Q7XfuvqJ3GCtmZmZpOZtW+rc\norZr2ecCZWnYnpnZ6dOnk9rw8HBSKzuoR5mYmEhqAwMDSU0dIznXRlX0Hd7+3NtWVXupog21w+Tk\nZFKrK4RHHeurJUSyaUIIa8zsz8zsrWZ2yMweCiHcHWN8fNHLxszsA2b2jhbeW8CIIgAAAICuUffI\nYcaI4s1mtj/G+GyMcc7MPmNmty9+QYzxWIzxITNb+ovbK753KW4UAQAAAKB+IyGEfYv+ed+Sv99l\nZgcX/fnQQs1jxe9txKOnAAAAANDlTsQYR+teiZdwowgAAACga3Tw/0fxsJntWfTn3Qu1try3ETeK\nMcYkJCBncnFOcIWaEO2dJF02NVleTVCvitpenRhco6iwCO8kehUQoMKZVDtSIQnqvU2aKF5m8NRK\nqIn7/f39SU3to5xjfbmworLbvgrvUOtT9slNhU9UEVKVw3vclE31Rd5j0xu24z1/5YQ2KWr9vH2b\nOr7MdPtVwStqe3n3p/fYzjE2NpbUduzYkdRUCEwVBgcHk1rOMaKOf9X2qwi9KjsMSO0j77VWnTcW\nqp9RtSquEdU2rOL8kBMStso8ZGZXhxCusIs3ee8ys3e3672NuFEEAAAAgHZbyf+KomlijOdCCO83\ns3vNbI2ZfTzG+O0Qwi8t/P0dIYTtZrbPzAbM7EII4VfN7IYY42n13pdbHjeKAAAAANABYoxfMrMv\nLandsei/j9jFx0pd7305pJ4CAAAAAAoYUQQAAADQNTr10dOqNeZGsY4d5p0YqyZslz2pVgVm1Blc\no3gDAqamppJaX1+f6705wTVlhxp4J9HnTOL2hguobZoTZpMTVrJccEW7qeCas2fPJrXe3t6kltMO\nltvOZYeJlB1OlNNHedvC8ePHk9qWLVtc71W8wTB1BSqpbarW7+TJk0lt8+bNLS9XHXOqrZ06dSqp\nDQ8Pu5ah2rPqj9XrVH9ipsN6VMiKOj5VG1TLUctQ7Uj1C4r6flu3bnW9t4rrGNXnqW2gjhFvwE1d\noTxK2WE2ah+p65M6byLUflL9TF2BdmrbqDZYxXLRfo25UQQAAACAduPG04c5igAAAACAAm4UAQAA\nAAAFPHoKAAAAoGvw6KlPI24UQwgtB4J4A0zGx8eTmgqpURNy1QT6nNAV9XlqnXOCCerkDa4pW9kT\n8FXAkNrvauK5qqn2pmqKCjY6ceJEUhsZGXF9njre1DEyNDSU1OqaQD82NpbUNm3alNTOnDmT1DZu\n3OhaxkoCYFTohXq/t2/ztjdlcnIyqanwnxyqr1Xb38sbDNMk3gsLFVyTEyDlDWPKOT/kbHtvP2bm\nD4ZR7UOdn1XYiTcAxRsSlNPXlk3tJ2/78IZA1RUW5Q0I84aYqXOGOpd624u3n1XrZ6bX0RswpOSc\nM+ri3XeqLajjVW0/7/kePo24UQQAAACAKjCi6MMcRQAAAABAATeKAAAAAIACHj0FAAAA0BVCCDx6\n6tSIG8UYo83MzBRq3gm5ahL3Cy+8kNTUBNrBwcGktmXLFtcycsIjzp8/n9QmJiaSmprgWydvuI43\nYMi7DLVd1SRuFQyhwg+8VJiCqqnwnrIDfdRk+7LDFFRwTZN4g1NUW/O2yZWcONRxrJbjDSzJCSEo\nO7hG8R7DXt5tndOfdCLVrtS2qmIbHDt2LKmpMBoV1LNc/eTJk0ltz549SW3pNYGZDnKZmppKaqrf\n94bAqOWePn06qdUVZpPTv5UtJ6BJ8YbKqKATRe3zI0eOJLXdu3cnNXUt4g1tWsk2UN9Fhdl4w9zq\noq7JVL/l7ffLbgtoXSNuFAEAAACgCowo+qzen2UB4P9r795j7DjLPI8/TxzHl7bb7Vti56JcSALk\nshBkMSEhCwvMLDAo4R8C7DJkWAQCwS4ss5pJQNqV+AMiDZqdHYYFBZIFNOywgQERLdkJIQsaViiA\nQyAJuUCUy8SOnY7tuH3pm+1+948+gT5+fyc87rdOVZ0+348Uxf30udSp9623qk7V+2sAAAAsCieK\nAAAAAIAu3HoKAAAAYGhw62lMK04U3V1OOl6s008/PauVTLpWk2pLwiPUZ63y8/eLCq5RSibRq4Ah\n9XolE+aj1ITypjCg6ZAPFVpREiT0+OOPZzUV3tHrfdo+sV6FMbW9bw1icI3qB9Exa2pqKqup/U10\neyjRq+8f70TG4+h+JBocUrK9q3Wo9sXnnXfeot+jDqq/lYRjRakQnTqMjo6GHqf6pQquUf1A9avo\nOj2R7UG9jxqn1bFRm5QEUJZQoY+qPbF4rThRBAAAAIA6tP1L0rYYvK9qAQAAAAB9xYkiAAAAAKBL\n8a2n7r7MzLab2c6U0lvcfYOZ/S8zO8fMnjCza1NK+V8uBQAAAICacetpTBVzFD9iZg+Z2fOzi683\ns7tSSje6+/Wdn/+igvcJm52dzWp0iPrs27cvq23YsCH03EEMrlBmZmayWlOhPEtF1UEdytatW7Pa\niQRNqeCrNhnEMJtBpLb/aN+I9rc6todSahmjITV1GIR1GFF1cM309HRWU/uqNgW+KWq8U1Q/aLJv\nqDF5qfTV8fHxrKb2u4o6tld9f6msq7YoOip39zPN7I/N7EsLyteY2Vc6//6Kmb215D0AAAAAoAru\n3tr/2qb08s1fm9mfm9nCjOTTUkq7Ov/ebWanqSe6+/vdfbu7b3/22WcLFwMAAAAAUJVFnyi6+1vM\nbDyldE+vx6T56/7y2n9K6aaU0raU0rbNmzcvdjEAAAAAABUrmVBzpZld7e5vNrOVZjbq7n9nZs+4\n+9aU0i5332pm+Q3JAAAAANCANt7m2UaLPlFMKd1gZjeYmbn7a83sP6WU3uXuf2lm15nZjZ3/f6eC\n5TwhKjTg6NGjdS/G0IoG17TJsWPHspqaCB8NpGj7JH9oJxJcUzXVB6uelL9UwqLabmRkZNHPbXsg\n0olQB2J19HOUaWocnJuby2qqv5SEwNH/mhUNrlGqDm1CTD/2SDea2a3u/l4ze9LMru3DewAAAADA\nCeOKYkwlJ4oppR+a2Q87/95rZq+v4nUBAAAAAPVbOve4AAAAAMDvwRXFGCasAAAAAAC6LMkriiqw\ngW8OBtfs7GxWq3pSs5rMria9l1DhOPTL9lP9z6yePkifQS8qoK1tQTiqr9J/0UvV+9zoGM04O7ho\nu/5r114FAAAAAPqIE8oYbj0FAAAAAHThiiIAAACAoeDuXFEM4ooiAAAAAKDL0FxRXL58edOLgEVS\nE9LrmMCswkVK8O3VYOoVEDI3N5fVVJBWCfoMemlbcE3UoC73sFOhXqotS8bApo7TVDAUx4yDgbbr\nP0ZsAAAAAEODL2JjuPUUAAAAANCFK4oAAAAAhgZXFGO4oggAAAAA6MIVRVROTS6uOsCAb4JQl6oD\napp07NixrFZ1aBPwQo4cOZLVCJ+oR0kAlwqVWyqW0hjfJnUEvjF29B8nigAAAACGBhccYvgaBQAA\nAADQhSuKAAAAAIYGVxRjuKIIAAAAAOgy8FcUZ2dns5qa3Kq+OVDPbfuE7TrCKNQEZDO9vlauXJnV\nqg6uiSpZNypgIaWU1VT/mJmZCT1Xras6gn9KqOVTk9HrCAOYmJjIauvWrctqbV+nTSK4pjmDuL9R\n25LqQyfyzTzhE9WL7vtKxul+9IUmsH84MSXHVaq/1RFwg2qxdQAAAAAYCu7e+i812oLTeAAAAABA\nF64oAgAAABgaXFGM4YoiAAAAAKBLa68oRiccqzCA6ORb9bg2Ueugjm9AVLCLWXzCsXp+SYDB3r17\ns9rGjRuzmgqLWLVqVeg91PKpQBpF9cGSdmrTZHvVltF1WjUVXKOocKFBDSuYnp7OaitWrMhqqr9N\nTk5mtdWrV1ezYA2bmprKanX0y5JtsyS45vDhw1ltZGQkq1U99qoxVfWhXvvS6D627aE+Sh3hRGof\npPrCmjVrQq9XEiSi+nkd4XpK9NgouixqnFVt2bbQlTYFZKn9rtpXVb0O1TbClcJqDebREwAAAAAs\nAieUMe36egQAAAAA0DiuKAIAAAAYGlxRjOGKIgAAAACgSyuuKM7NzdnBgwe7amvXrl3060VDSFT4\ngZrUrCZERwMCVOiCmuCrJplHQxJKJqgravlOhFo3ahkV9Q2PCq5RSpZ79+7dWW3Lli2h56pljoZP\nRNu46tAAFXqhlqWOgJCqP5tazyV69d06gg1Wrly56OeWBNdUPaZUTfXLOkINmgpFUn1a7VtKgmtU\nm5eGHw1iSE1UHZ9N9V8VXBPt+2rcV/vNaFhUNFQmOnZEw6JULXqMEQ3l6Uc4S3Rfp9qp5Dg0Si1f\ndFmix18qgEeta9XPVd9qKvRxmLTiRBEAAAAA6sAJZUx7viIGAAAAALQCVxQBAAAADAV354piEFcU\nAQAAAABdWnFF0d2z0AY1MVlNWlWTuEtCF1R4hJrgG6UmTqvlK1nmkueqicX9mKSvlrHq924ywOd4\nJSEk0Qn9JdQk+KpDZUpE10HJMqvnTk5OZrWSYK1BpbalaLhDU6r+driOcJwSaowpWb6SAKNe76vC\n4UrGxqr3GdHXU4EeVQeJKNFxMNru0e1VtbvaHqre/tV6Vu+r1v2BAweymgpjUu2rPofqG6Xbf3Tf\nFN3fVz0elezvo+OlWv+qpl4vWqtj2xwmrThRBAAAAIA6tOmLvzbj1lMAAAAAQBeuKAIAAAAYGlxR\njOGKIgAAAACgSyuuKLp7aPJpP0JWIkom+LZ9Um1T67Tp9z7e+vXrK329kj5TdXBNVFPBNSXvW/Vz\nhzG4JqpNwTV1aPu3zVUvX8m40yv0piS4Rql6nxF9vab2403tC5ra1letWrXo546NjVW4JM0en7Rp\n7InuY6te5ujrtek4cqlqxYkiAAAAANShTSfkbcatpwAAAACALlxRBAAAADA0uKIYwxVFAAAAAEAX\nThQBAAAAAF249RQAAADAUHB3bj0N4ooiAAAAAKALVxQBAAAADA2uKMZwRREAAAAA0KW1VxTf9ra3\nZbVvfOMbWe2hhx7KanfccUdWe/rpp7Oa+jbhE5/4RFZbtmxZ6D22bt2a1V71qldltf3792e1n/70\np1ltdnY2q33ve9/Lap/+9Kez2sjISFYrdfPNN2e1F7/4xVntlFNOyWoPP/xwVnv3u9+d1dTnu+++\n+7Latddem9VWr16d1TZt2pTVog4dOpTV1qxZE3ru+Ph4Vrv99tuz2tVXX53Vpqens9qTTz6Z1VTf\nevDBB7PaRRddlNX27NmT1dS6mpqaymq7du3KaurzXn755VmtKffee29We+lLX5rVPvnJT2a1T33q\nU/I177777qxW8pnVuHDLLbdktfe+971Zbd26dVntuuuuy2pzc3NZ7cYbb8xqo6OjWW3t2rVZ7TOf\n+Uxo+davX5/VVN9atWpVVlN99a677spqb3/727NaiQMHDmQ1tV5+/etfZ7ULL7wwqz3wwANZ7ZJL\nLslqKaWs9s53vjOrffSjH81qJf3vi1/8YlZ73/veF3qu2geZmb3uda/Lamo8V+3+rne9K6t99atf\nzWqvec1rstrZZ58tlyfib//2b7PaVVddldVe9rKXLfo9oo4cOZLVPvaxj2W1z372s1nt0ksvzWr3\n339/6H3PPPPMrLZjx46stm/fvqym9nOqLRU1nqhjmQ9+8INZ7fHHH89qTzzxRFZT7bZhw4bQDEeX\nWgAAIABJREFU8v34xz/OaldccUVWU2OHmR4/FHW8pJ47NjaW1R555JGsdtlll4XeVzl69GhWu/PO\nO7Oa2g5/9KMfZbUtW7ZktYsvvjirnXxyfnqijsnU8aaqKVxRjOGKIgAAAACgCyeKAAAAAIAurb31\nFAAAAACqxq2nMVxRBAAAAAB0cTVxvm7btm1L27dvX9Rz1URbNQlWBcMcO3Ysq6lJ9W2igk5WrlzZ\nwJL0pvqUWv8rVqyoY3FQA7UtqRCoqql+tXz58qymQlzqWL4mRcdGRW3DfPuqzczMZDU1tqlgEtVX\nB1Gv44hon1FBTio8qaltVm1LJ50U+549+riqqbExGvIxiNQY39S6LxX9LCWBe8PG3e9JKW17/ueX\nvOQlSYXFtcGVV17ZtaxNG8ytCAAAAADQN5woAgAAAAC6EGYDAAAAYCi4O9MpgriiCAAAAADoMvBX\nFKPhDEt5EnfbqG9pCK5ZOtRE+6ZCsaLb9VIPrlGiY6PSpm9aSwLL6hj3o2PbUgmuUUr7y9jYWEVL\n0h/Rbakk9KZqw3bMM6jBNYr6LGofS3BNmTbt59ps6WxZAAAAAIBKcKIIAAAAAOgy8LeeAgAAAEAU\nt57GcEURAAAAANCFK4otpkJDVq5c2cCSAL+jJtovpSABtEs0iGgph8WgWWpfHA1ZAvpF9Uv2xXFc\nUYyhRwEAAAAAunCiCAAAAADown0SAAAAAIYGt57GcEURAAAAANCFK4otxqTk9pmZmclqK1asaGBJ\nMAxSSqHaUh4rot/68u0w+kVtX6ecckoDS4JhpcY3xrzFc3fWX9DSPboAAAAAACwKJ4oAAAAAgC7c\negoAAABgaHDraQxXFAEAAAAAXYb6iuLExERWGxkZyWonn5yvppJQExVGob7ZOHz4cGhZ1ET75cuX\nh5al1MGDB7Pa2rVrs9revXuz2saNG0PvodpJrf9TTz019Hol6giumZ2dzWpVBydE+2BUHct85MiR\nrFZ1P5+ens5qK1eulI+dm5vLalWHyqj1qvrgsWPHstqyZcsqXZaq1dGeg6iptlT9+ejRo1lNbddq\nPDHTY7caZ9atWxdanjpCmyYnJ7Oa+sxqH6T2z1XvM9SYoOzcuTOrbdq0Kaup/fVTTz2V1VS7bdiw\nIautWrUq9Ny2G8Qx1ay57aYpaoxSbacMYr9swtLtPQAAAACAReFEEQAAAADQZahvPQUAAAAwXLj1\nNIYrigAAAACALgN1RbHqSbpqMroKrqh6grqa+L9v376spsJe9u/fn9VUEEBd1LpRITxqgnuUCr1Q\nE/Cnpqb6/r6qv6kJ7ioURQUi7NmzJ6upUJ6q+776Ji0aTKQCKtasWbPoZYmKBgmoEIczzjgj9Fy1\n/e/atUs+VgVDqHZfvXp16L1VSIVqJzVRX40pantQ76HGj2iQgwoSUGOCEn1cm8IZ1PpTNbU9jI+P\nZzW1rf/gBz/IapdeemlWO+2003ou52KUhKL1+mZ+bGys0uWpg+rnqq9G+2/V1HpRy3Luuecu+j3O\nOuusRT+3ZEwoeW7J/lqJBpupZe5H6F30uOrAgQNZrWQ7LPHss89mtc2bN4ee+9hjj2U1dcz+0pe+\nNKtF+wxXFGO4oggAAAAAA8Dd3+juj7j7o+5+vfi9u/vfdH5/n7u/YsHvnnD3+939F+6+/fe910Bd\nUQQAAACAYeTuy8zsc2b2h2a2w8x+5u63pZQeXPCwN5nZBZ3//sDMPt/5//P+VUopv6VN4EQRAAAA\nwFBw90G+9fSVZvZoSukxMzN3/7qZXWNmC08UrzGzr6b5eSl3u/uYu29NKem5NC+AW08BAAAAoHmb\n3H37gv/ef9zvzzCzpxb8vKNTiz4mmdn33f0e8dqZ1l5RVBNyR0dHQ89VASHRwAE1CfmJJ57Iak8/\n/XRWu+KKK0LLp4Jrdu/endVUmM3k5GRWq3qispowbKbDWNRkavVZ1HOjIR9q8vm9996b1S688MLQ\n8kWpIIdDhw5lNdVn1KR3RYXFKHUEO0Qn+avJ+9HnloiuA/W4aJCIsmHDBllX/SMa/qGobeQ3v/lN\nVnvRi16U1dT6/+53v5vV3vCGN2Q1FRqgtputW7dmNRUasHfv3qwWDeZav359VlPrQG3rStXfGKs2\nuu+++7Latm3bslq0v1111VVZTY0xVYd3PfXUU1mtJNTETIdZqPAktV7VflLt69T2roI/RkZGei7n\nQmpdP/zww1ntggsuCL1e1WOj2uaaCnyKBqBFRUNIou2r9lVR0f6itptzzjln0e9rpo9X1fKoMbSp\n4BpFBddE9w/nnXfeot9XjY1Ki68o7kkp5TuR6rw6pbTT3U81szvd/eGU0j/1ejBXFAEAAACg/Xaa\n2cJv8c7s1EKPSSk9//9xM/u2zd/K2hMnigAAAADQfj8zswvc/Vx3P8XM3mFmtx33mNvM7N2d9NPL\nzWwipbTL3Ufcfa2ZmbuPmNkfmdkDL/Rmrb31FAAAAACq1uJbT19QSumou3/YzO4ws2VmdktK6Vfu\n/oHO779gZreb2ZvN7FEzmzSz93SefpqZfbvz2U82s/+ZUvrHF3o/ThQBAAAAYACklG63+ZPBhbUv\nLPh3MrMPiec9ZmYvO5H3au2JYnQS8uOPP57VohP/VWCOmlQ/v767qVATFXqjJjWrEBf1edWkX/XZ\nqp7IfuzYMVlXn1lNXFfPjwbXKLt25Wm+aqKzWv+bNm1a9Psq6nOUrOto+IRap1WHJKgQI/V52zRZ\nXlGhKyXUNtcPKqhKfZbot6CvfvWrs5oKWVLbkgpJUP1DrRsVTKD0Cs063hlnHB/mVs83wWpcVfsR\nFVxTItrfSoJrlGhwjdrnnnvuufKxKjBOrUO1j1WBJSpYSgV//PKXv8xqKmxueno6q6ljABXAo8Zf\ntQ2X7Pui21xTV0ZUWz7zzDNZ7fzzz69jcTIqHCe6L1XHO6o/q2M8FeJkpsNdosGNantQyx3tM1Wb\nmJjIamq7ie4f1LYZDQmMjo2DekWxbsxRBAAAAAB04UQRAAAAANCltbeeAgAAAEDVuPU0hiuKAAAA\nAIAuiz5RdPez3P0H7v6gu//K3T/SqW9w9zvd/Ted/6+vbnEBAAAAYHHcvbX/tY2rtLHQE923mtnW\nlNLPO3+88R4ze6uZ/amZ7Usp3eju15vZ+pTSX7zQa23bti1t3769q6ZSQFWClVp+lYKmUp8OHjyY\n1VSqVdUNp9L0jhw5ktVUOpf6HGodqHVVSi2PSgZTSVeqTVS6XNUJrlVTKW8l6YMlCWXRbURRfaaN\nA9RiqBQ5lZam+t+jjz6a1U477TT5PmpdV51EGd0eVHuqmtqGly9fvsilq0fV21zV1Hret29fVlOJ\nnWqbe/LJJ7OaSktUfbqO9i0Zd8z0vk71aZXoqJ6r3rtkLFOfT63XqtO9q6ZSMlUqq+pb6rkjIyNZ\nbXx8PKudeuqp0UUMUftI1TeiCaeqpvYFdSSNn4g27bPVuomOCyXrsKRN3P2elNJvI6ovueSSdOut\nty56Wfrp4osv7lrWpi36bCKltMvMdnX+fdDdHzKzM8zsGjN7bedhXzGzH5rZC54oAgAAAEAdlsqX\n4/1WyaUadz/HzC4zs5+Y2Wmdk0gzs91mJr+Od/f3u/t2d9/e62/OAAAAAADqV3yi6O5rzOwfzOyj\nKaWue77S/LVyeW9rSummlNK2lNI2desDAAAAAKAZRRPZ3H25zZ8kfi2l9K1O+Rl335pS2tWZx5jf\nxA4AAAAADeDW05hFnyj6/Bq+2cweSin91YJf3WZm15nZjZ3/f2dRCxacHK8aWoWBqICL0dHRE1+w\nCqiJ+2qZVYjDM888k9VOP/30ahbs91CThlVwTUn4hFo3+/fvz2pjY2Oh14uKTpKOfg71eqqvlkzs\nLgksUssSDU5RwUTquSpsow5qu1YT7ZXzzz+/6sUJiwY+KWqbU8Eaqj3bFBajthu1LG0az9W2pJZZ\nhXKobeTss89e9LKUBH9Fw49Kg9LU81VIjRob6wheUssXXWZVq2OZ1fuq8BlVU1TojRqLqt4Pqz4Y\nDXdT+yDVh6LbSJPBNYoKGFLhiyUBeVHR9ToxMZHV1NgYXT71vm0PQFwKSkb8K83sT8zsfnf/Raf2\ncZs/QbzV3d9rZk+a2bVliwgAAAAA1eCKYkxJ6un/M7Nea/n1i31dAAAAAECzuD4LAAAAAOhS/V9l\nBwAAAICW4tbTmNaeKE5PT2c1NfE/OpG1qaCDKBW2oSb91hEyoQIMzOLruuplrHrCvFIycV1NwI++\nXpsmXas+qAIMVDhDUwNuNIRoEHYIKsxGUW2igmuU6DjTFNV2Klijju0mOt6p7V+1RzRQqSlqG1Hr\nXu1LVZiKmd4+1WvWMcZHRcOd6gipUX2rJBQt+npN/ckytSzRMT46JqhxVm2b0eCfuqjgGqXq4Joo\n1XZ1bNdtOoZaqlp7oggAAAAAVXL3gfgCuQ04FQcAAAAAdOFEEQAAAADQhVtPAQAAAAwNbj2Nac2J\n4vHBASqwQal6Imt0snfVzz355MU3Rcn7Kr2eq+pLZSKxmswebRO1XqpukzpEtzn1OUrWX5QKzIgG\nSpSEFdVFhRVEA1CigQ+qTUr6ajTwpUQ0qKeOZSlR9fZQtWgoj9JrO1R1FUqn3rskTKhkrI2GO9Ux\nxqvXK+nnbd8HqXEs+tlUe6jxU4W9lATANDnu1LHfjWrTsqBatCIAAACAodH2L07aoj1ftwIAAAAA\nWoETRQAAAABAF249BQAAADA0uPU0pjUniv2e/FvHhOM6Ot1zzz2X1davX1/pe/RaL20Khqia6h8l\nYQUzMzNZTYU4qIAWJRraUge1XuqYtN6mddAP09PTWU31maqpvh8NrqpjTJiYmMhq69aty2qqX5ZY\nKgEhUepz1BVGod47ul7rWP/R44eSwK2opbwfLgkdi45Zhw8fzmoqyC3abnVt/2q5R0ZGslpToTIE\n1yxdtCwAAACAobFUvuTrt6X71RQAAAAAYFE4UQQAAAAAdOHWUwAAAABDwd259TSotSeKs7OzWU1N\nOFbUhHL1eiooomQyddXUpOSqg2swr2QitgrRUP1ITUZvUx+Mhveo0JVVq1b1ZZmGSUlwTbTPTE1N\nZbW2t50KromGT6Eevda9aqfx8fGspvbtGzduLF+wRYgG10RDUZayqkMC1bGbej013kX3wyoARo2L\nbQuzUcutECqDqtGjAAAAAAwNrijGMEcRAAAAANCFE0UAAAAAQBduPQUAAAAwNLj1NKa1J4rRCblq\nMrWahFzSIaqesB117NixrNbkROVowFDJ+lKT2VXbqfcoCRIoaU8V7qKoyegqsEi1e7Sfl4iuZxV+\nUsc2UhJwFaVCDdT7mumQlarfOxo0MzMzk9VWrFiR1aKhN5OTk1lNtWdJAI+iPsfExERW27BhQ1ZT\n21LV46XaNvft25fVNm/enNWi20j0caqNVq9endVKRNdpr/3roUOHsppqOxVE0lTwUnTcUuO52n/V\nYf/+/VltbGwsq6n+WxKeVsdxUHT5osd4ajxXY+UgUMce6rNUfUKk3le1k3rfqsfkpo7Ph0lrTxQB\nAAAAoGpcUYzhtBsAAAAA0IUTRQAAAABAF249BQAAADA0uPU0prUnimoSvQquUJPH1WReNYFWTexW\n1MTYOoI11OeITlrvh5LPF51EHw1oUROYm1ISsKD6pZoorkJDVN+vOuBG9f2qAxFKlkWFYKhadHK7\nasuqt+te1E4ruq7VWKHWg/osKkCm6lCUKPU5Nm7cmNXUOqgj6Eu9rwquUes+KtpXm2ojpVeg15o1\na7Ka6m+q76ttUa3XOg721P5GfY46wnbUuK+OAdTjqh67Dx48mNXWrl276Ncr2W6i1BiogqGUJrc5\n1Z7quED11aq3EfW+0b4QPb6JIrim/1p7oggAAAAAVXJ3rigGcSoOAAAAAOjCiSIAAAAAoAu3ngIA\nAAAYGtx6GtPaE8VoKIcKPzh8+HBWGxkZyWrRSdwqWEdNZI+GXqjJxmqSuVoHJZN+S6n1oAIk1Pov\nmeC+a9eu0OPUe6gwBaVkgrVaL6qNo/1Dva9ap3VMrFfhAuqz1RFmo/qaWpaSye2HDh3Kaiq4ykzv\nZNavX7/o9472t2iIkVq+5557LqtFww/U+lfremJiIqutW7cuq0WDSaamprKa+rxqX1CHffv2ZbUN\nGzZkNfU5otvw7t27s5oa79R+rkR0mzuR/ZL6zOo1S4JrovuqKNV2Va/rqOixkXpcdGyMrvuqw3vU\nPlKte7WtRz+bCgRU7xvdNtV43Gt/GF3GkqC6OsJd1PFS9BivjnC4aFAlYlp7oggAAAAAVeOKYgxz\nFAEAAAAAXbiiCAAAAGBocEUxhiuKAAAAAIAurbiiODc3Z5OTk101NZFYBU2osJKSSeZq4rSasF0S\nznL8ZzWLh640GWajJmir0IBo+E80fGLr1q2hx6nAl6iS9VoSkhCl+rQKWal6orj6xi06qb5q0YAK\ntX1Fgwmi22EvKiwmGnATXe6S9V8StqMCFlRwggquUaLf5pa2SZWeffbZrDY2NhZ6bjT4Y8eOHVlN\njYFqPC4JgFGi25zaN/eqq7FMLbd6n2gQjtqPq312NESnqeAaJXqMova5qjY6OprVon1G9cFouFOU\n+myqX0ZDXKLbazRQph/7Q/WaKqCljhA5RR0vRftlHVfxmlovS1UrThQBAAAAoA7cehrDracAAAAA\ngC5cUQQAAAAwFNydK4pBXFEEAAAAAHRpxRXFk046KZuk/vTTT2eP27hxY+j1du3aldXUJHgVpqIm\nEavQECUa/KHCGdQyb9myJasdPHgwq6nJ6P2gPp8KkFEhBNHgmuiEbfW+KgykjhACFYgQnVivwh5U\nX1UhBGqieMmE94mJiawWDSapQzQ0SK2/6ER7FWSh2tdMr9eSbVGFJyiqn6sQo+np6aw2Pj6e1c47\n77ystn///qymxrJosIkKEon2t2eeeSarqVCeqoOclE2bNmW13bt3Z7VoAJei1oF6D9V/S0JDlJ07\nd2a1s88+O6v1CotS4340hEf1j+hzo+O+GqfVulbrtY7+pkT3pVXvD9V2qI7JSvqganO1zCrMRo3T\nKhhKjXdKSUiNGnvNykLz1JgcPSauQ7Rfqn1xNGwOzWjFiSIAAAAA1IFbT2O49RQAAAAA0IUrigAA\nAACGBlcUY7iiCAAAAADo4moieN22bduWtm/fXtnrlQR61EGt86X+zYaafB4NJ1FBLmritAodaipw\noOTztokKWCmZ5F+1qtdztK/1473roJY5GrwUfVzVSsKihs0grCsVyKbCjuqgxrfosUJT61Utszqm\nUJ9DjW/RIBG1f1Xvq/a5bTq+6RVOdrwmt5toGzd1fKNExx4VRBgNWVLvofql2g8vX778npTStud/\nfvnLX56+//3vh963bps3b+5a1qa1+6gGAAAAACrUpi8w2qxdXzUCAAAAABrHFUUAAAAAQ4MrijFc\nUQQAAAAAdFmSVxTbHmYzjN9iqDaJBn9MTk5mNRUw0qaJ3W0PNYlqU3CNotZzyWT5XsE10fduu0Fc\n5raFsfTb3r17s9rGjRtDz23bupqens5qbeqDbR/flOgyVx1UqI6h2nRcFaUCUdrUJ80Gs1+qsUf1\nwZUrV1b6vlW/HnLt2joAAAAAoE/cfSgv2ixGu75+BAAAAAA0jiuKAAAAAIYGVxRjuKIIAAAAAOjS\nmiuKx4edqDP96ER9FWoyOzsbehz640RCQo63fv36CpdEO3LkSFZT/W0QJ+8Pm2hwzSBQQU6rV68O\nPVeNeSokgW9V2yUaXFOHo0ePZrUTCf5Q4z79rR5qPUfHDmWp7PvaFlyzlKk+WNKP2hbWNSzYYgAA\nAAAMDb60iuH0HAAAAADQhSuKAAAAAIYGVxRjuKIIAAAAAOjSmiuK/Z4orYJrVICJCntAs1JKWU2F\nLJS0He2OEzU3N5fVqp5sXxI+QVjX0lHHvkqFH5Xul9U39scH1/WyVMJTlrLSsKPjqTFVIdQEqE9r\nThQBAAAAoJ/cnVtPg/haBgAAAADQhSuKAAAAAIYGVxRjuKIIAAAAAOgyNFcUZ2ZmshoTogeD+tZn\nEMNnVIiDCgNYsWJFHYuDQnWE2dRBjY30weFTV/jR9PR0VhsZGanlvVEtFTRXoo7xU4U2qeMJrja1\njzqGUn2wJFAJOdYmAAAAgKHBlwExg/f1NwAAAACgr7iiCAAAAGBocEUxhiuKAAAAAIAuQ3NFUYUz\nTE1NZbVBDEnBYFi2bFmohsGwVCbM0wfroUJcVq5cGXruUtov1RWag5w65lm1atWiX28Q+6Xqf1WH\n8mBeyZinsK9qxtI40gEAAACAAG49jeHWUwAAAABAF64oAgAAABgK7s4VxSCuKAIAAAAAuizJK4pq\nAq0KsymZxN2UY8eOZbWqJ/geOXJE1tXE9UOHDmW1NWvWVLo8ytzcXFZT66btk+3VJHq+5dLr5ejR\no1lNta/qGyedNJjfianPrEJ0op9ZbSNLJZSnaiVBDGoMrWMsKhlP6tpuCKRoTskxz+zsbFZTwTBN\n9f0S7HP7Q7X7zMxMVlPH58pS2rcPEo4QAAAAAAwNviCI4VQcAAAAANCFK4oAAAAAhgZXFGO4oggA\nAAAA6DJQVxSjE1mjgQNKm8JF1LKoicCrV6+u9H1PZOJ5r+Cb4x04cCCrjY6Ohp67b9++rKYCc9T6\nioqG46j+pib5R0MDVHuqsIe2hwFUTW1z0XUwPj6e1bZs2bLoZVH9wEz3hZKxQr1PtF+qPrNnz56s\nFg2aUiE60cCBqqnPq0K0RkZGslpJUI9ap2qMUdu/oh6nlllR4+wjjzyS1S655JLQ6ymqP/djfxgd\np0tCL5pSdZBL1eEdU1NToddT61ltD2rfrF5vbGwsuoiLNjk5mdXU+qsjbK8f2h7kEt0vlYRZlRzj\nKVxRjGlPLwMAAAAAtAInigAAAACALgN16ykAAAAAlODW0xiuKAIAAAAAurT2imI0SKTqyePqG4aS\nCf0lE5BVoETbQk2iE5NLJjCvX78+q6n13yt0JCLaJupx0eAapSR4qQ5tn0CvlATXKL229aq/jYxO\n/I9O6N+0aVPocer1SkJgSqhlUetABVJU3R7RsVaN0yqkJhrEEh33S4JrFLWtq/ZQ278KnjHTyx3d\nF9QRXBMN4IgeA1TdB6sef9VnO+WUU7Ja9LhKPVfVSqh1r9aLCvVTj1Oijytt85L2VG0SDVSrYzwv\nOcYrCcJZ7PG5u3NFMajdR3wAAAAAgNpxoggAAAAA6NLaW08BAAAAoGrcehrTtyuK7v5Gd3/E3R91\n9+v79T4AAAAAgGr15Yqiuy8zs8+Z2R+a2Q4z+5m735ZSelA9fm5uzg4ePNhVW7t2bfa46enprKbC\nQGZnZ7NayQTrqr91UBP/1WTjpoJrek3sVhOnR0dHs5qadK3CHZSJiYnQc9X6KplMrQIkopPMqw4c\nUBO71XuU9I9o8E8dYTZVb6+HDx/OaqoPRd+3rvAetd2oPh0NE4mGgajxTb1vdL0qavtS27Bqk6q3\n9aho/1BhVocOHcpqKoCnREnImqLGBDXGlPSDton2o+h6LQkNqTpUampqKqupvqreN7pvUe1e0gfV\nskxOTma16OcoCalTSvdVJUGG6n3adEWsZN2UjOcl66BN66/N+nUE9EozezSl9FhKadbMvm5m1/Tp\nvQAAAAAAFerXieIZZvbUgp93dGq/5e7vd/ft7r59z549fVoMAAAAAFgaft/0Pp/3N53f3+fur4g+\n93iNpZ6mlG5KKW1LKW2L/r0vAAAAACjx/N9SbNt/geV+fnrfm8zsIjN7p7tfdNzD3mRmF3T+e7+Z\nff4EntulXyeKO83srAU/n9mpAQAAAABOXGR63zVm9tU0724zG3P3rcHndunXn8f4mZld4O7n2vwJ\n4jvM7N/0evC99967Z3R09MnOj5vMjHtR24P2aB/apF1oj/ahTdqF9mgf2qRdaI/+OnvhD/fcc88d\n7t7W2xlXuvv2BT/flFK6acHPanrfHxz3Gr2mAEae26UvJ4oppaPu/mEzu8PMlpnZLSmlX73A4zc/\n/293355S2taP5cKJoz3ahzZpF9qjfWiTdqE92oc2aRfao14ppTc2vQyDol9XFC2ldLuZ3d6v1wcA\nAACAIRKZ3tfrMcsDz+3SWJgNAAAAACDst9P73P0Um5/ed9txj7nNzN7dST+93MwmUkq7gs/t0rcr\nigVu+v0PQY1oj/ahTdqF9mgf2qRdaI/2oU3ahfZASK/pfe7+gc7vv2Dzd3S+2cweNbNJM3vPCz33\nhd7PU0p9+zAAAAAAgMHDracAAAAAgC6cKAIAAAAAurTmRNHd3+juj7j7o+5+fdPLM4zc/Sx3/4G7\nP+juv3L3j3TqG9z9Tnf/Tef/65te1mHi7svc/V53/9+dn2mPBrn7mLt/090fdveH3P1VtElz3P0/\ndsarB9z97919Je1RL3e/xd3H3f2BBbWebeDuN3T29Y+4+79uZqmXrh7t8ZedMes+d/+2u48t+B3t\n0WeqTRb87s/cPS38u360CdqiFSeK7r7MzD5nZm8ys4vM7J3uflGzSzWUjprZn6WULjKzy83sQ512\nuN7M7kopXWBmd3V+Rn0+YmYPLfiZ9mjWfzOzf0wpvcTMXmbzbUObNMDdzzCz/2Bm21JKl9j85Px3\nGO1Rty+b2fF/l0y2QWef8g4zu7jznP/eOQZAdb5seXvcaWaXpJT+hZn92sxuMKM9avRly9vE3P0s\nM/sjM/vnBTXaBK3RihNFM3ulmT2aUnospTRrZl83s2saXqahk1LalVL6eeffB23+APgMm2+Lr3Qe\n9hUze2szSzh83P1MM/tjM/vSgjLt0RB3X2dm/9LMbjYzSynNppT2G23SpJPNbJW7n2xmq83saaM9\napVS+icz23dcuVcbXGNmX08pzaSUHrf5VL5X1rKgQ0K1R0rpeymlo50f77b5v59mRntJf1EtAAAD\nJElEQVTUosc2Ymb2X83sz81sYbIkbYLWaMuJ4hlm9tSCn3d0amiIu59jZpeZ2U/M7LTO318xM9tt\nZqc1tFjD6K9tficyt6BGezTnXDN71sz+R+d24C+5+4jRJo1IKe00s8/Y/Lfxu2z+b0V9z2iPNujV\nBuzvm/fvzOz/dP5NezTE3a8xs50ppV8e9yvaBK3RlhNFtIi7rzGzfzCzj6aUDiz8XZr/eyr8TZUa\nuPtbzGw8pXRPr8fQHrU72cxeYWafTyldZmaH7bjbGmmT+nTmvV1j8yfwp5vZiLu/a+FjaI/m0Qbt\n4e6fsPlpJl9relmGmbuvNrOPm9l/bnpZgBfSlhPFnWZ21oKfz+zUUDN3X27zJ4lfSyl9q1N+xt23\ndn6/1czGm1q+IXOlmV3t7k/Y/O3Yr3P3vzPao0k7zGxHSuknnZ+/afMnjrRJM95gZo+nlJ5NKR0x\ns2+Z2RVGe7RBrzZgf98Qd/9TM3uLmf3b9Ls/ok17NONFNv8F1y87+/gzzezn7r7FaBO0SFtOFH9m\nZhe4+7nuforNT+K9reFlGjru7jY/9+qhlNJfLfjVbWZ2Xeff15nZd+petmGUUrohpXRmSukcm98m\n/m9K6V1GezQmpbTbzJ5y9xd3Sq83sweNNmnKP5vZ5e6+ujN+vd7m51bTHs3r1Qa3mdk73H2Fu59r\nZheY2U8bWL6h4u5vtPlpDFenlCYX/Ir2aEBK6f6U0qkppXM6+/gdZvaKzj6GNkFrnNz0ApiZpZSO\nuvuHzewOm0+tuyWl9KuGF2sYXWlmf2Jm97v7Lzq1j5vZjWZ2q7u/18yeNLNrG1o+zKM9mvXvzexr\nnS+1HjOz99j8l260Sc1SSj9x92+a2c9t/na6e83sJjNbY7RHbdz9783stWa2yd13mNl/sR7jVErp\nV+5+q81/wXLUzD6UUjrWyIIvUT3a4wYzW2Fmd85/p2J3p5Q+QHvUQ7VJSulm9VjaBG3iv7v7AAAA\nAACA9tx6CgAAAABoCU4UAQAAAABdOFEEAAAAAHThRBEAAAAA0IUTRQAAAABAF04UAQAAAABdOFEE\nAAAAAHT5/+GXz5E1YklrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAKhCAYAAAC1lfQ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlwXfV9///PtWxLlixZliVbsuUdYwNml4EQlgQIBApJ\nSCaQtlma0qYkTZmmbabLpOkymUk7TCeZTkoySYEJmaFpMoF0mhUaGgIBAjZbHGJjvO+WbNnaJUu6\n3z/yY37Vfb8+8Dmfc8+5V/bz8Z/fc7Z7zud8zvn46vO6hWKx6AAAAAAAycyo9AEAAAAAwHTEYAoA\nAAAAIjCYAgAAAIAIDKYAAAAAIAKDKQAAAACIwGAKAAAAACIwmAIAAACACAymAAAAACACgykAAAAA\niDAzycKtra3FFStWTKlt2rRJLnvxxReb2sDAgKkdOXLE1EZGRuQ2C4WCqa1ZsyZoObUf55yrq6sz\ntfnz55vayZMnTe348eNym5OTk6bW3d1tameddZZcv6amRtbT2LNnj6k1Njaamjp36ro551xnZ6ep\nqc/Z19dnaosXL5bbLP3s+/btc8eOHbMHJaj2qa6bc87NmjUrZJNueHjY1Pbt2yeXXbZsmalNTEyY\nmjqfCxculNtUbay5udnU1D2j2rbvmIaGhkxNfXbn/MdaKUePHpV1dZ5efPFFU1N9la+/KP3su3bt\ncj09PUHts6Wlpbh06dIpNXVfOqfbkmqzzz//fMiunXPOnX322aY2c6Z9BKjaa6+9Jre5fPlyU1PH\nqdqcr58bGxszNdWvLFmyRK6fxvj4uKyrczI4OGhqDQ0Nptbf3y+3qfpfRT1jV61aJZctfXYlaZ8N\nDQ3FlpaWKbVFixYFHaNzzu3fv9/U5s2bZ2rqvDnn3IwZ9v9229raTE21haamJrnN2tpaWQ9x6NAh\nWVfXTV33LBSLRVnftWuXqa1cudLUVP93wQUXBO9ftUXVf/ruo97eXlPbs2dPT7FYtBdaKBQK5gSo\ne9M5584//3xTO3HihKmp9xPV7pzzP1NLHThwwNR87zyqv5s9e3bQfo4dOybrqt2rmm/9NM949f7r\nnH7WqXdI9X7lu78WLFhgaqofUefY9/wprYf2oYkGUytWrHAbN26cUlMv3845s5xzzj3xxBOmds89\n95jali1b5DbVSfrRj35kaurm+rd/+ze5zTPPPNPUbrvtNlNTHevDDz8stzk6Ompq6nM+9thjcn01\nmEvrk5/8pKldeeWVpqZu4ieffFJu81/+5V9M7ctf/rKpPfroo6b2D//wD3KbpQ/fm2++WS6nqPZ5\n+PBhuWzoS8LmzZtN7c///M/lsuoaq85bnc+77rpLblO1sVtvvdXUtm7dampr166V21QPNPWQVZ/d\nOef+5E/+RNYr5etf/7qsv+c97zE1NcBSfdWXvvQluc3S+6irqyvkEJ1zzi1dutT0V3/8x38sl1X3\nkWqz9fX1pqYGLs459+1vf9vUWltbTU29SKhz6TvOjo4OU1MvLL4X4N27d5va1772NVP73Oc+J9dP\nQ72oO6fPydNPP21qb3nLW0zN189fc801pqZeRNRD//Of/7zcZumzK0n7bGlpcZ/61Kem1P7sz/4s\neP2//uu/NrWbbrrJ1NT95px+YfrYxz5maqqfveGGG+Q2V69eLeshfOf4uuuuM7UNGzZE7ycJ338O\nfuQjHzG1Bx980NTUy6fveijqfU+t39PTI9d/6KGHTO2P/uiP7A2fgPpMzjn33HPPmZp6X3zkkUfU\nMcltrlu3LuiY/u7v/s7UfO88qr9T/0mlfPOb35R1tb66F771rW/J9dX7Yijff8Leeeedpnb33Xeb\n2l/91V+Zmu/++r3f+z1TmzNnjqmpAZrv+VNaD+1D+TM/AAAAAIjAYAoAAAAAIhR8f4OrdHV1FZN8\nJVwq9G9DfV8Tqr/DnTt3rqn5/vSwktTfzYf+zXye1J+Z+OawqT8xKreuri63cePGoAuatn1iKvXn\nqs6lm4eQhJpbptqc709f8jjOSrfPNH9v75yeg1GN/Wc1UvMMVfv0Pc/Un6OUW57tM21bUvM31J/i\n+ObI5EX1N+pPMX3vVlnMiQ6Vtr/IQqFQ2FQsFoP+liqvd9DpIsmccPWnbr55p5V8BlTbMym0D+Wb\nKQAAAACIwGAKAAAAACIwmAIAAACACAymAAAAACACgykAAAAAiJBrLE5oakoeKUd5my4JWeqHkfNI\n7UNlqVSgJEmfWVBJnUpe6YLVKG0SVTX2SypFUl3jSqbkORfeL56KzzMlbVtqaWkp05FkSyWlKSp9\nuNKmc3JdOZxqn9/XFlUqc2dnp6lV+hmvVOMzKQTfTAEAAABABAZTAAAAABCBwRQAAAAARGAwBQAA\nAAARcg2gOF1MTEyYWuhkeqAS1ETW0InWQDmFtrvTOXgElaOe7ypsgv4TlaKCJVTIFG20fPhmCgAA\nAAAiMJgCAAAAgAgMpgAAAAAgAoMpAAAAAIhAAEUGampqKn0IeBN9fX2m1tTUVIEjwenM9wv0apL7\nzJmnR3c9Y0bY//GFLgeUk3q+88xHNaGN5o+nEQAAAABEYDAFAAAAABEYTAEAAABABAZTAAAAABBh\nWs1oPnz4sKnNnz/f1GbPnm1qQ0NDcpv19fVB+56cnDQ13wTo3t5eU6utrQ1ev66uLuiY0urp6TG1\n1tZWU9u3b59cv7OzM2g/6roNDg7KZVetWhW0TZ/SCf2FQkEul1fYxMDAgKnNnTvX1HxBBL7jL5Wk\nfYbq7++X9cbGxlTbVdT9GXpvJnH8+HFTa25uNjX1a/HOlf8X4339UkNDQ9AxZfEL9qothrZDn5GR\nEVPLq5+bTvK6xj6l/YjvPlDPM9UHqfvN1y+p+1AFseQ1kd73jFKfXbVvX2BMFu1+dHQ0aLk9e/aY\n2qJFi+Sy6hm5c+dOU1PXc8GCBXKbql+b7qZz35bXc64a+Z69Y2NjU/6t+iCFb6YAAAAAIAKDKQAA\nAACIwGAKAAAAACIwmAIAAACACAymAAAAACBCZml+WaTwDA8Pm5pKFlNpfmmTwVTCVZKUu0OHDpna\nwoULUx1TWuo8qfQllT6XhEoaUqmBzjnX19c35d+hSSqvK00d8yW2qLaoUppOnDhhar5Eoi1btpja\n+vXrTS2Le0MlKh08eFAu29HRYWpJUp6yoNqi8txzz5nahg0bgvejEsNefPFFU1uzZo1cv7Q9jI+P\nB+97cnLStEdfsplKWVJpaap9qnQp5/T1VMevUshKE45eF3rdQpdzrrIJbj6qH1HPI5ViphLQnHNu\n5cqVpnbvvfea2jve8Q5TW716tdxmWqXtMcl1U225paUl1fFU8rr79q3uj7TPyLTUsarj9PVroVSb\nTcKXHhdqcnLS3Hdz5swJXl8lNKpzlySNT6U3q3av+gvn9DMpLfW+qfqmXbt2yfXTtpM0Xn75ZVM7\n77zzgtf/3ve+Z2rqvfaDH/ygXL90rBDaB/HNFAAAAABEYDAFAAAAABEYTAEAAABABAZTAAAAABAh\ndQBFd3e3rLe1tQWtrya++ybqqUl9KlhCTSjfunWr3Obtt9/+ZofonNNhE76JxSqAQk0Ub29vD9p3\nEr7ABTWhsqmpydS2b98etK5z4RMnZ82aZWo//OEP5bKXXXbZlH8nDaAo5QseURM0VZjJvHnzgve1\nePHioOXymlStzrtzOkxFhYSoQI6sqMnSivpMr7zyilz27LPPDtqmmlTtCxkprYcet3O/maBf2h6f\nfvppuewll1xiauqzf+ELXzC1O++8U25z48aNpqba/Nq1a03NF0Swd+9eU1u6dKmpqTCUJUuWyG2q\nc3L55ZfLZRVfqEcaqh959NFHTe3d7363qSWZtP+hD33I1FRb7O/vl+ur6xlqdHTUPNPSBg6oftYX\nSqHamHq/UBPpfdd8YGDA1ELDInzPvc2bN5vaWWedFbRN57Lp/1U/pAJrsrg3FPW+41yy56kyY8aM\n4MAJ1eeo8CXfO1MotU3lpz/9qazfcMMN0fsuDex6nXq3fO2110ytkkETPipsIskz/uabb061/9I+\nJzRkim+mAAAAACACgykAAAAAiMBgCgAAAAAiMJgCAAAAgAipAyjGxsaCl33hhRdMTU3s9U2qU5NR\n1SRRNcFe/Uq1c8699NJLpnb++eebmgpbGBkZkdtUk7LVJGJfuEKaCaq+XxhXkyxbW1tNTV3PRYsW\nRR+Pc869+uqrpnbxxRfLZUuvR9rJoT5qErMvsCGUb2J1KXWN0u5b8d1H6rovX7687PvPwgUXXFD2\nbaadFB1qYmLC/BL7mWeeKZctFApB2/zd3/1dU/OFZ3R1dZmamqQ9ODgYvE0VNqEkuY/VpOK8Js77\n+mR1L6mwibR857lUmqAJn9ra2uDAiW3btpmamsyuQo5U+3JOP7dVgIQKt1IBOs4599xzz5na29/+\ndlNToVe+AB71LqCe2b7PGXqNFd87h3oPCu1DsuALETtw4EBuxxD6+dU7qK89qTahwslUCJkvaOLl\nl182NRXCsHv3blPzPbdVv66OPaugkFA7duwwtVWrVplaaJiUc84dPXrU1NT7nk9p/xIaMsU3UwAA\nAAAQgcEUAAAAAERgMAUAAAAAERhMAQAAAECE1AEUajKojwp2UBMVfRM0e3p6TE39mvmFF14YVEtC\n7eeqq66Sy6oQB7V+FgEUvomDKvTg8OHDpqZ+yT3J5HH1ma6++urg9c8444wp//7Hf/zH4HWT6O/v\nN7XQAAkfNUldTcBWYRO+Cbuhv/aufu1eTeT0mT17dvCyWVCTz9UEYjXZ19fm1ST9Rx55xNTWr19v\nampCt3Pp2khNTY2ZvO7rA1TggrrGHR0dpubbpqLWz4IKJ/AJnfCbBV/fO3/+fFNT10O1T19Ih2rf\nKhBJTTL3BVCMj49P+be6r8phxYoVQcupyf2+66vavArEUM9XX/+lwiYU1c+WnsvXqQAfFZShnvlp\n+folRbUvdZy+oAwVPBX6OX3tTr1fpOULUVDPXkW1pyQBFAsXLgzaj48Km1CWLVsWvE117fIK8fFR\n51QFQyS5vxW1TbVvX8BMLL6ZAgAAAIAIDKYAAAAAIAKDKQAAAACIwGAKAAAAACIwmAIAAACACKlj\nk5KkbKg0EZXcd+TIEbl+2tSUNFTKk0oqck6nAG3fvt3U1q5dm/7AAqkEOZX4EppI56PO06FDh0yt\nvb09eJuhisWiSS1Un9u58FQ2lSzjS8VJk4gXmtrno47Jl0al0rRUSpNKgHROJ5ulpZKnlM7OTlPz\nJSEq119/ffCy5TY5OWmSMX19iKISKFWSoS8tLe29XW6+9qWOqbu729SSJMlmQd1z6nqoe8s5ncin\nEm+TKO1/Q++r15WmsPmSIX39agjfuqqvVW05r+RR332k6urYVc25/I5f3V8qeS9J6qBqy+rzqES1\nciltk740V0WdE3X8SRJF87qe6l72pSaqd67Fixebmi8JMck5DaXS89T74q5du0xNJWg650w6bpJ9\n+54/sX0b30wBAAAAQAQGUwAAAAAQgcEUAAAAAERgMAUAAAAAEVIHUKhJ0c7pybVqMquaxFvJoIkk\nfBNM1WfPa6K3b1Ld5OSkqalzn8VxZhE2oRQKhVQTo9U5SjK5NMmk1TyMjIzIuppwrIIQfEEbeVH3\nl7oeahJrNZqcnDTXxBcQoAJJQicF+/qlSoZNKL57VU2Kzusa+wIX1P7V5G91jXzXoxqVtkdfeIaa\n+K2ePSoEx7fNLEMLYpSGxbxO9ZV5hRD4AgdUPxJ6z6jnnnO6/8/rWf5GSj/X6OioXE6FDoS+H6iw\nHud02FFHR0fQNrPge36osAkli6CJJNQ70xlnnJHLvtO8Kyp8MwUAAAAAERhMAQAAAEAEBlMAAAAA\nEIHBFAAAAABESDRjvlgsmgmlajKmTxaTiEODFbJYP+2k0yQTP0P51lUTV6fLxP1Qk5OTZoKomsjv\no86dmpA+Xc5bkl+2V5/dF2BRV1cXfUw+arJ3aN+S1+TvtGbOnOlaWlqm1JKEE6jJ/GoCr+98qD7A\nN4E5ZN++/acVOik6i2PyTfAPXVadz+nSPp2zn6mhoSF4XTWhW9V8fbI6n6H9b5JghlBJ3m3S3FtJ\n+LaZ5j2m0kFDSRSLRfNcSnJ/qfakQiVUwMob1UP4+vq8+oc0z9isVOMxxZo+dxEAAAAAVBEGUwAA\nAAAQgcEUAAAAAERgMAUAAAAAERLN1C0UCplMOC6V5Ffo007yzGvy5YEDB0wt9Feqk/CFI0yX0IS0\nSielpw356O/vNzXfJFQ1mVKpxgmW6jxlETThU43npNwmJyfdwMDAlFqSkJAk4QiKCmxQ/afq4/Po\n91936NAhU2tvb89l30k+53SauB+qtD2oAIm89u1c+HMri7AHn9CwhzwDB07FtqgUCoVUzyXVnlQb\nV+9rzulwnNCQljyvUWgf6ntnyet5fCo990+POxAAAAAAyozBFAAAAABEYDAFAAAAABEYTAEAAABA\nBAZTAAAAABAhdUTT8PCwrM+ZM8fUVBqVSrzxbVOlpuSZNhRKfaYskvswVaFQkO0ulEqRVMlL3d3d\ncn2V9JNFclOoJKmYJ06cMLX58+eX/ZimC19yXprUsBkzZiRK7ysV2tf19fXJelNTU/S+86RSp1QS\noS+p81Sj2mKe6XWh1HGqa3Tw4EG5fm1tram1tbWlP7BISZJgS1M6ndOf53SR5NmTxOTkpBscHJxS\n8/WL6tmrrqm6Tr73NfXsD03zyzMRNTT99FRK06s0vpkCAAAAgAgMpgAAAAAgAoMpAAAAAIjAYAoA\nAAAAIqSeEZdkgn3o5L+0k2vVZOU8J/+p/VcyiMA5HeqhwhrSnruRkRFTUxN2fRNU0wRIFAqFVBNc\nVQiD4psUrT67CiNRnz3N5/bxnQt1jVXYRFaTiJXSScXO6Ym9aSfj9/b2mpqaPL506dLgbYaamJgw\n4RBJQiFCz1GS+1W1eXW/NjY2Bm8z1NDQkKwfOnTI1Do7O01N3VvOZdPXqntm3759prZixQpTS3If\nqWVDA2Oc0yE4aZw8eVLW1aR/dR/29/ebWmtrq9ymurdVG8lr0ry6D3xUsIyvfebl2LFjptbS0mJq\nWfTzWTwjXlfaTpLc76HXVLVb58p/f+Xp6NGjptbc3CyXzeL6qWevunbqGmXxflTu5wffTAEAAABA\nBAZTAAAAABCBwRQAAAAARGAwBQAAAAARUqcy+CZxqQljo6OjpqYmk/p+0VpNAlaTVtUEbBXA4DvO\ntNRnUpOqQ3+luhzSfM4kk5Dr6uqCtqmuZTmkCS9Rk3OTUJ9dTRRXk1h9k/GzmGyt7g91b6pwmKyo\nY1KBNaqWJHBBTbjNa0J7oVAwk2uT3FsqbEKdD9/nUQEWlZxQ7TtOFf6hzkeeoT6qjamwCfU8SiJ0\n4ndW1y3N8atnrApmUH2Nc7rvVm0kbQhNWiqwIfTdJivqPUw9z1R/43sWp3lnyCogpVgsyj6v3HyB\nO0eOHDE11R4XLVpU9mNKQvX1CxYsMLWs3sMUFXK1d+9eU1P9vwqv8G1TtQ8ValHu5wffTAEAAABA\nBAZTAAAAABCBwRQAAAAARGAwBQAAAAARGEwBAAAAQITUaX6h6W3O6XSb48ePm5pK3HLOn/JXSiXr\n+NLSQhNrVOqJSvVxTqegqSSuPIWmtakUHpUC46OSbV577bWg5ZxzrrW1dcq/k6TNTExMmNQXlfbi\nMzIyYmpq/yqhykelF3V3d5taknOclmq3vracF9UW1blPktynHD582NRU8pEvHWzVqlXR+54xY0Zw\n21FtUfW1KqXo4MGDcpvqfIamHPlS5tT5VElWoQlLzjnX19dnaqqfzjMtTdm3b5+pdXZ2mlp/f79c\n3/ecK6X6T19/kaS/U0rbve+Zq/qL0Gep7x5WbSRtcp9Krwt9j/BR7xK+9Le8hCaTqc/uuw+V0Ps4\nq3uzpqbGNTU1TamphD3ndJph6PNj+/btsq7677a2tqBt+voB1a+HtlH17HIu/PynfZ4mcezYMVNT\nyX1KkvsrSXtWSp+9oQmnfDMFAAAAABEYTAEAAABABAZTAAAAABCBwRQAAAAAREg0+2xiYsIEFKgJ\n9s7pyWZqQmDoJFwfNalPTVZTE9zT7sc32VdNWKvGCaoqlGJsbMzUfJMcVaiGmhy8Zs2akEN0ztlA\nkiSTjWtqalJNwE4SppKGmrDqm5yaRbtRYQKVnswfGrhw9OhRU0sS3tHe3p7swErs3Llzyr/VPeST\npP9M0xY7Ojqi13VOXwtfAIUKm1CSTArOM4wl1K5du0wt9DyXTph/I6+88oqpqf7TN0FdBQSkoQIc\nfPtXfZgKE/GFsKjnppogr9b3fW4VFqHuObW+b5uVfpYr6nOqPl3d274+TJ2n0PvYF2zQ09MTtH4S\nCxculHV1TkIDF1avXh28f/V+pN6Nsmg3vmCz0OdpntT7v2oPpSFkzqUPlUii9DyFvoPyzRQAAAAA\nRGAwBQAAAAARGEwBAAAAQAQGUwAAAAAQIVEARU1NjZmUuGXLFrls6C8bb9u2zdR8E3bVZDsVrDA8\nPBy0b+f05DI1UU8FG7z66qtym2eccYapqYl2ob+cXQ7qc5ZOhndOTyz2TXJUQn9xvre3V65fOmF5\nYmIieN9phR67z+HDh01NTbpUE7XVcs7pQJDQX7vfs2ePrC9btixo/TyFTo5V4QS+tqTuWTWpXLUx\n33VfsmTJlH+HXovX913aN/kCKEqDWJzTE8pVW9qxY4fc5oYNG0zt0KFDpqauhe9zqkAQ1a+pe8MX\nXrF9+3ZTW7x4sanNmTNHrp8Fdc+oZ9fatWtT7Uedu9dee83UfJPZOzs7U+2/1N69e2V91apVpqba\np2pLvjATFUCh7m11b/qeE6GT/tUE94MHD8pl1QT5tAFXaYXuX4Ul+AJBQh04cMDUfKEQ6twlMTo6\navoH1Tc4p98DVTt5/PHHTe3mm28OPqYk70dKaFhbEqrPWL9+faptZsH3/CvV3d0t66EBSHngmykA\nAAAAiMBgCgAAAAAiMJgCAAAAgAgMpgAAAAAgQqIACmXdunWp1l+5cqWp+Saohv4ScRbUxPUzzzwz\neP08wyZC+SaJllIhCM7pSelqcrCa9KrCAZyzE5ZDf7G8HNSxJ/klcTUZUk2qTjK5NEnAQSlf0ETo\nL7ZXmppArEIHfG1JGRgYMDUVeDM6OirXL53onaRPmjVrlmtvbw9atrm5OWg5Fcjhm3Q/Pj5uaqpf\n8vW/Smi/lmSi8IoVK0wtyTFlQQUUhIZNqHV91PlM8uwod2CPCprwUddI1VTwkXN6MnrawIJQ6hnX\n0dGRy77LQb2fqPtd9SvqGedceKiF6oPUvp1Lfx/X1ta61atXBy0bGlCjwiZUGJVPkpAqJU3YhHqe\nOVedIVPqXSiUat9JqPtbvQc5Z9t96L75ZgoAAAAAIjCYAgAAAIAIDKYAAAAAIAKDKQAAAACIwGAK\nAAAAACLkF5XmoVI26uvrK3AkbyxJItOpxpdsE5o019fXZ2q+9LjSBJ5Kn3dfcl+oSiZQ+lRjcp+i\n0piOHDliaqGplM7p5D4lNMmqGqVJgKwGlU7uq6S9e/ea2tKlS4PXr7ZzpxI506afZWG63zOh5zRN\nopqPStyttnaYlO+dp9reTefOnVvpQwim3oVUu1WJpEkSe0OFbjP0HfT0HSEAAAAAQAoMpgAAAAAg\nAoMpAAAAAIjAYAoAAAAAIiQKoCgWi258fHxKzTfBPnQCoprQpyatOqcnpCN7aQMLOjo6ynQkb2xy\nctINDQ1NqanJsc5N/wnHp6skYRPTwYkTJ2R93rx5QeuXtnfn/P1kNYahYKokYRN58E3EDw08UEEu\nlQ4VOp2pPiDt8326h00o1RY0cTpR7SltG8vjfY9eDQAAAAAiMJgCAAAAgAgMpgAAAAAgAoMpAAAA\nAIiQKICiUCh4J/SXk28C9cjIiKnV1dVlfThISf3q+tjYmFxWTVgONWPGDCaOoizSTrwPFRo04UN7\nP/WNjo6aWpp+0qdYLJp9pX3eq7CJ0hCr16lwhFMx3OB0kFX/WSwWzbbV+4VzhEwhX3wzBQAAAAAR\nGEwBAAAAQAQGUwAAAAAQgcEUAAAAAETIPk0iwuDgoKwzGfXUkcUE6rz4wjOGh4dNLW3AACrDN0m+\n3AEUeVL9akNDQwWOBEn4JtiXW6FQyKVfVkFSzjk3d+7czPeNfGTVZguFQi59cF9fn6yrNqpCVlBd\n1DvbxMSEXNYXgPdmaAUAAAAAEIHBFAAAAABEYDAFAAAAABEYTAEAAABABAZTAAAAABChKtP8fAlT\n/f39plZXV5f14SClQqFQ6UMoq9mzZyeqY/qJTfSpZtM5iXA6GxgYkPXQ9LpT7RlHP1ldhoaGZL2+\nvj56m9P9Gjc1Ncm6LwEO5dPb22tq8+fPT7XNPNoj30wBAAAAQAQGUwAAAAAQgcEUAAAAAERgMAUA\nAAAAESoeQKFCJXwTcxsbG7M+nMycPHnS1LKYED46OirrtbW1pnbs2DFTa2lpKfsxKb6JnKXnqVgs\nJtpu6fJ5hl+oz1RTU5Pb/qcD33VX7VZNgB4fHzc13zmeDsEnSe7X0Pal+hrnpv+k8DykDYsYGRkx\ntTwDJNJOkJ+cnJzy7xkzyv//rfSJ1SVN0IRzug9T/Zdz/r5puqDtZk+1x+PHj8tlm5ubg7Y5NjZm\nauV+HvLNFAAAAABEYDAFAAAAABEYTAEAAABABAZTAAAAABAhswCK0MnSKlQiSehA6YRZ57KZNJuE\nOn71K+Pz5s0r+759Ez8V3+T3Ut3d3bLe1tYWtP7+/ftNzfeL1qXnLklbKBaLpt2piYfO6bY4ODho\nakkCOdTkdRUyknbC73Tmm8Abek5eeeUVUzvvvPNSHZO6D2bO1F1jmgnIxWLRTMBW/Zdz4YE1u3fv\nNrUFCxbIbapADvXZGxoa5Pp5UZ9dheX4+pA0E4t9oUDqOqk+XRkeHpZ13/GXUqEWTz75pFz2uuuu\nC9qmT+mz09f/5hXuUulAjzR8z5407dMXMJKmX/K1Y/Uepc696it97wzlCHBIEzJ15MgRU1P9zZIl\nS5IfWBXfumJNAAAgAElEQVTJK/AsrdD7O8l7rZI0yCwG30wBAAAAQAQGUwAAAAAQgcEUAAAAAERg\nMAUAAAAAEVIHUPh+0VpNSgydbJZkQqGaJJk2lGJ8fNzUfBPSFTXxVE2gq/Tk3tDPlOSzKx0dHabm\nux6l7SnJuSgUCqk+U9pJjlkEimQhbfuupLRhE4pqi1n80n2hUDCTgH2TgkMnzC5fvjx4/6pfLPev\nwCfhC99Q50QFwWQRNJSkD1DPvtBQCR/17FDPyLRBEz6l18R3jdT9oZ7vqn0lubfyCptI0ieqe1M9\np7J4jie5HqF8n1NdO9U+1XK++yjtM9Y5e17VtXNOn6uFCxeamu8dVlH7Uu1BXY8k/VXaAAkVpqXW\n97XRvEKy0t7fKkBJtTHVRn1hLrHPFb6ZAgAAAIAIDKYAAAAAIAKDKQAAAACIwGAKAAAAACIwmAIA\nAACACIkivMbHx11PT8+UWmtrq1x2YGDA1BoaGkxteHjY1ObMmZPksIy0KU8q4USlo/iSsFQ9r4Q+\nX0KJSpdpa2szNZWOkiSh6vDhw0Hr+85daeJMkvNWLBZNolSSlKMsUu5U+pFK6lH3RhLquvnOndp/\nFml+qg+YO3duqm12d3ebmmrHSfafJCUpjcnJSdPf+fatrofqg5K0G9UvqjbS29trakn6gNCEJdX3\n+5bN6xoNDQ3Jukq3amxsNLWjR4+a2oIFC9IfWAlfqluaZ1+xWDR9oK+fzuLerqQk/V/oMyltm1Up\ncWm3qdq3L7lN7T80/VPdG86V5z2otO2XvpO+Tr2bqvejJOc0tJ309/ebmu+cKKHH5OtD1b6ySKgN\nTbb06evrM7Wmpqbg9UPbY5K0zdg2yjdTAAAAABCBwRQAAAAARGAwBQAAAAARGEwBAAAAQISCmkDm\nXbhQ6HbO7c7ucABjebFY1AkDJWifqADaJ6oZ7RPVjjaKahbUPhMNpgAAAAAAv8Gf+QEAAABABAZT\nAAAAABCBwRQAAAAARGAwBQAAAAARGEwBAAAAQAQGUwAAAAAQYWaShVtbW4srVqwIWnb//v2mNjk5\naWpLly4N3v+ePXtMbdasWabW0dERvM00jhw5IusLFy40tYMHD5pafX29XH/evHnpDkx4/vnnTe2i\niy5Ktc2xsTFTmz17tqn19PQELeecvZ4HDhxwvb29hZDjUe1TtRnnnFu2bFnIJqVXX31V1s8888zo\nbVbaCy+8YGoXXnhhbvsfHR01tdraWlNTbam1tTV4P5s2bTK1BQsWmFpoP7dr1y7X09MT1D5ra2uL\nDQ0NQdtdtWqVqe3YsSNouVPR8PCwqam+3znnZs5M9FgLou55db9v3brV1NauXSu3qX6WpFCwTWlk\nZMTU6urqgra5e/fu4PbZ3NxcbG9vn1Lr6+vzLWtq6n4dHx83tc2bN8ttqvt4+fLlpnb8+HFT6+7u\nlttU90dNTY2pqc+pzrtz+vn+2muvmdrKlSvl+mr/odQz1zl9f4Su73sWh76HqGfsokWL5LKqzf/q\nV7/qCf2dqZaWlmJnZ+eU2tGjR+WyTU1Nphba/+7atUvW1XPhwIEDptbY2Ghqc+fOlds8efKkqYW+\nR/mefeo519ZmT7G6j53T5y6UepY7l+557rse6j1uYGDA1NTn8d1Lpec+9Bmf6KmzYsUKt3HjxqBl\n/+Zv/sbU1If813/91+D9f+ITnzC10s7fOec++9nPBm8zDd+x33XXXab2uc99ztQuvvhiuf6NN96Y\n7sCEOXPmmFrotfTZt2+fqZV2dM45d++995qabzBTOhC+/fbbg49HtU/VZpxz7p577gnebqlrrrlG\n1h977LHobVaa6vzTto8ktm3bZmpr1qwxtX//9383tT/4gz8I3o96Wb3llltM7f777w/aXldXV/C+\nGxoa3LXXXjulNmOG/uOA//zP/zQ1dS+o5U5Fv/zlL01t8eLFclk1OE7r+uuvN7VHHnnE1N72treZ\n2k9/+lO5zdAX2y1btpjaunXr5DZLBwBvfetb5XJKe3u7ub9+8pOfyGXf/e53m5oa+PT29pra6tWr\n5Tbf9773mdpXvvIVU/vud79ral/96lflNv/jP/7D1NQg4Uc/+pGp+f7TTD3f3/Oe95jaAw88INdP\n86Lq+8/Bl19+2dTUoG3v3r2mpp7Zzjn3zne+09RUf/Xxj3/c1D796U/Lbao2f9ZZZwX/CG9nZ6f7\n/ve/P6Xm66vVPXvZZZcF7ecjH/mIrH/96183tb/92781tbe//e2mduWVV8ptqsGYupfuu+8+U/v9\n3/99uU31nLvttttM7V3vepdcX527UDt37pR19Z8L6t3wjjvuMDXf9VDvcU888YSpqbYcOmAOfcbz\nZ34AAAAAEIHBFAAAAABEKKi/YfXp6uoq5vmnP8iWuvahf7+bl66uLrdx48agv/lP2z5D5+34qL9b\nV3/WkMWcuCRC/7zI1zeoPyHIgu9vr0sluUbllmf7TEvNX8liflGo0L9ZrwYTExOmpv6MSvWfvrld\neajG9lnpfuV0oc6zmreeZg5XORQKhU3FYjHob6nStlH1+RXfn1+rfkBtM697Pu29pJ4JzmXzXFDn\nyXeeS1WyzwjtQ/lmCgAAAAAiMJgCAAAAgAgMpgAAAAAgAoMpAAAAAIjAYAoAAAAAIlQuyukUluRX\nxitJJaFU43HmJW0qnPphZFWrNJVIpNqs+pFt55xraWkp+zEplUzpOxVVMrlPSdLXVLpPDU08q2Ry\n33RBal8+1HmudHJfpYWmx/mo81fJc5r2XsozzS/NuZ8OfQbfTAEAAABABAZTAAAAABCBwRQAAAAA\nRGAwBQAAAAARqmtG8inidA5xQPULDcWor6/P+EgAS02Kpk9FtSgWi6Y2HSbI4/Q2OTlZ6UM4pfHN\nFAAAAABEYDAFAAAAABEYTAEAAABABAZTAAAAABAhdQDFyMiIrA8ODpraggUL0u4OSGR4eFjW6+rq\nTI1JxFOpc4Tyon1aM2eSi1QtfJPWJyYmTG3WrFlZH05VOF3uw+mCNhpmxgz73QnP+PLhmykAAAAA\niMBgCgAAAAAiMJgCAAAAgAgMpgAAAAAgQuqZvr4JbKquJlu/+uqrpvbKK6/Ibf72b/+2qZ08edLU\n+vr6TC1t+MXo6KipHT16VC6rPntLS0uq/Wdh9+7dpvbEE0+Y2rve9S65flNTk6k99thjptbR0WFq\n6ho559zs2bOn/HtoaEgup0xMTLjjx49PqY2Pj8tl58yZY2oHDx40tUWLFpmamsiZhPrs6lyeTkqv\nm3PONTc3m9pDDz1kau9973uD93PNNdeYmmqzPseOHZvyb1/7CqXaoY/aF2EN+VD9UH19fQWOJF9q\nEr9z6drd2NiYrJf2/ZWm3i2cq84Qg2KxaGoqKEO9g/nOe01NTdC+1TZ9/Zrv2qfhex6nfU5Xm9Br\nXK3U8atnWjXeXyFOrdYGAAAAADlhMAUAAAAAERhMAQAAAEAEBlMAAAAAEIHBFAAAAABESBTJMz4+\nbtKsfIkv8+bNM7Xa2lpTO//8803t2WefldtUKX9nnHGGqankPpUk4lx4Gkpvb6+p+dKcvvOd75ja\nHXfcYWp5phoNDg6a2ty5c03tyiuvNLUtW7bIbV5yySWmptLSlC9/+cuyfu211075d5JEnpqaGpMA\n50ujUlTq4JEjR0xt4cKFwdtUQlOS0tq5c6esr1y50tQmJydNLc80JJXcp7S1taXaT5LkPqU0lTNp\nqllpP9Td3S2Xmz9/vqllkXIUmhCo+g/nnGtoaAjaT5IkqtBkR5Ww6px+zqSVpk/2JZdOhwTPLBLt\nfOcyTVqlr59P09f63hmUEydOmJp6B8pK6HuMep4tX7481b7Vu5Evzc/Xj2RBtV3VntIm4qlU5yze\nQZMcp+pzVCKp717MIn262pIHVQqlc8kSdv8vvpkCAAAAgAgMpgAAAAAgAoMpAAAAAIjAYAoAAAAA\nIiSaPV0sFk1oQnt7e/D6amKxmuj2h3/4h3L9vXv3mlroxGDfZPrQSabqc/qCCNQkz61bt5ra2rVr\ng/ZdDp/+9KdN7Z577jG1kZERU1NBE2l9/OMfl/ULL7xwyr937NgRvM2JiQnTxkKDDZxz7k//9E9N\n7Ytf/GLw+qE2bdpkaldddVWqbf793/+9qf3t3/5t8Pp5hU2oSebOObd7925TW716tamtX78+1f6f\neuopUzvvvPNMTYWzlEPpJFzfpNzQCf5q4rsvFEJNvg6d4P+BD3xA1v/7v/87aP1du3aZ2qpVq+Sy\nqk/etm2bqa1ZsyZo30n4ngff+MY3TO2jH/2oqe3Zs8fUli1blv7ASvhCgR588MEp/z5w4EDwNgcH\nB90vfvGLKbVFixbJZVesWGFq3/3ud01NBUStW7dObjO0Lb722mtB+3EuPBhCBcH09/fLbfb09Jha\nFs/IJB5++GFTu/XWW00tbQCECjZQ52Px4sVy/dDAmnLIIrBHUWETSp4BDCrcRt1fvhC1NJKEFeV1\njRRf0ETpO2RoiBnfTAEAAABABAZTAAAAABCBwRQAAAAARGAwBQAAAAARCkl+5fucc84plk5wPf/8\n81MdwLFjx0wt7a8vq8m5vkmvWVBhE0uXLjU137nPYpKmCpaoq6szteeee87UNmzYELyf0oAS58JD\nQpSuri63cePGoJmbXV1dxY0bN06pffjDH5bLfuYznzG1M888M+iYHnroIVl/+umnTe3uu+82NTVh\nV63rnHO33HJL0DGlde+995raHXfckcu+ndOTVtV9cN9995maLyzitttuS39gJfbv3z/l3zfddJN7\n6aWXotunjwqx8QXeVFIWxzk0NGRqaqL06OioXL+2tjbV/qez0r7luuuucy+++GLZ22deQttCWqH9\nj3M6mKKmpsbU1PPVufzCfrKQxftaoVDYVCwWu0KWVW1UhWI4p8NX1Hvg9773PVNTISXO6bAJFZSk\nQgtefvlluc3Ozs6g2r59+0ztZz/7mdxmaZCX75jSBjopk5OTsq6eFeq+UaEUvuCq1tZWU1Pv1T//\n+c9N7ZlnnpHbfOc73znl37fffrv71a9+9aZ96PS9qwEAAACgghhMAQAAAEAEBlMAAAAAEIHBFAAA\nAABECPvJ8f/PnDlzTOBEb2+vXFZNLFOTyNSkuieeeEJu89JLLzW1trY2U+vo6JDr5+XkyZOmtnfv\nXlNbu3ZtHofjnPNPhi21a9cuU0sSQHH48GFTU+EbPqG/Nh3qgQceKPt+3vve9yaql1ITm3/rt34r\n+nh8fJM21STiPMMmFHVOVFDHjTfeaGrqfvN56qmnTO3yyy8PXn/JkiVT/p32F9zVtXDOuebm5uht\nnjhxQtZ9k6rTSBM24btuKmBATSqudNCE6kPUcy8J9TnVedq+fbtc/6yzzpry75kzEz3iU1HHXigE\nZV8455wbHh42tTlz5gSt6+vrQj9/klCIxsbG4GWnA18fpIIlQsMmVN/tnA4MSMt3PVQwhArIuuKK\nK0zN1/+q0BvV7lUfdtlll8lthlKhFL/zO78jl1V9hnpWqXvOufD7TvHdS+3t7UHrp+1XVZ+jrnFX\nl848KX1XDj0XfDMFAAAAABEYTAEAAABABAZTAAAAABCBwRQAAAAARGAwBQAAAAAREkX9TExMuOPH\nj0+pzZ8/P3h9lfS2aNGioNob1UtlkVql+NKoVq1aZWoq3WVyclKunyRZqNyuuuqqVOur5D6VduNL\n00uTPjU+Pm6SiXzpQyodRh3TD37wA1O78sor5TZDE9jSJOUk4TuXoQls6ro5lyyhKw2V/KSSPn3X\nQ1H33MMPP2xqt956a/A2Q42OjrodO3ZMqam+Igl1jVRyqHP59Yuhktzrqs1Vuv8MTZgaGhqSdfVM\nUJ9z9uzZplaa2lcN0vYLKm0sdJtpUwtVn6yS35zT16MaDQwMmJo69tCEPh+VyBz6rhajtM87evSo\nXC40OTDJ9VTL5vU8TCK0D0ybRpuFQ4cOmVppim45pE1eLcU3UwAAAAAQgcEUAAAAAERgMAUAAAAA\nERhMAQAAAECERLM2BwYG3FNPPTWldtNNNwWvv2DBAnsACSaOqom8ahJvXvbv3y/rK1asCFq/kkET\nPllMHFUTNNNOGFZmzpxpAlFGRkbksnV1dabW19dnarfccoupjY+PRx7h9FKNE2tV2ESSieJXXHFF\n2Y8plGqfaalrtHbtWrmsCquo5DVOsu/BwUFTa2hoKOfhJBZ6Piv5jEpiYmLC9IGqn3QufNK+Cgnx\nPfeyeCakkSSYQD0Tsvg8vuAmNZl+7ty5Zd+/0tnZmct+Xld6j6XtB9S18z3j1T2fV6BUFrJoo77g\nKkX1l4sXLzY13/VIc/zlDt+ovrd5AAAAAJgGGEwBAAAAQAQGUwAAAAAQgcEUAAAAAERINHtr3rx5\n7sYbb4ze2ZEjR0xNTTbzURN5Qye4njx5Um4zzSS00KCJPB07dkzWm5qaTE2dk+k8mXJ8fNz19PRM\nqbW1tQWvHxoO4Jv0qMIufBO4S6lfkXcu/8m9lTI8PGxqoW0xyUTxSqqpqSl7AIXi69PU5HU1sbe2\ntrbsx5SEOqa8wib6+/tlvbGx0dTU+ay2EIUkampqzOdMEhKinidJzkeSsIpQWYSuqOPM67r7zocK\n4Zku/WJaKnwjCXXtKt1u00p7TtJQ58M53a+rPlS950+HfpVvpgAAAAAgAoMpAAAAAIjAYAoAAAAA\nIjCYAgAAAIAIiWd1pZm8GRo2sWfPHllXk5BbWlqCtlnuXzt+IyoEQgURqIl2aYWeD+emx6S+JGbO\nnOkWLFgQvb4KkFATSQ8fPizXX7p0qamNjo6amprgv2jRopBDzMzBgwdNraOjI7f9T+fgk1AqIKW1\ntbXs+xkcHJR11X+G9ue+X7VPO5lfCe2X1ORl59JNvlZBEz6nWv9ZLBZNkEGSMJLQZ6yaiO6c7mvT\nBkjkFUChjj2L9uk79tMlbEJJ8tlDQ6KS9HeVDpsI1d3dbWq+YJ8076a+9l3JUIw8TI9WAAAAAABV\nhsEUAAAAAERgMAUAAAAAERhMAQAAAEAEBlMAAAAAECFRHNHY2Jjbt2/flFpnZ2dZD8g555YtW1b2\nbeZJJcFkkdw3nSVJHEuiNFln27Ztcrk1a9aYmkr1KU23ck6n9vmEpmFlkTZ55MgRWVfH1NbWZmoq\nidC3Pt7czJkzTXpfX1+fXLapqcnUVAqaap9JUuZCk6iySO1L61RPh3rd8PCwqfnuwTTJYoVCwSSj\nqeQ6337Uc0/VfNvMIh0xi6Q1dZwnT540tTwThCspi8TEJFQf6JxO+Qu9Jr5nn0oDbG5uDtpmpc2f\nP9/UfKmFSI5vpgAAAAAgAoMpAAAAAIjAYAoAAAAAIjCYAgAAAIAIiWZ8zp49u+yBE8ePHzc134S+\niYkJU1OTkLds2WJq69atizi6OAsWLDC1oaEhU/NNuFUTJ7PQ3d1taiqIIC0VhLBw4cKy72dyctIN\nDAxMqamgCZ+enh65zVK+MJG5c+cG7ysPSc7x5s2bTW39+vXlPJyySNJfKGoCsQpDUfdwWpOTk6Yf\nUEETPqq/SDJp/9ChQ6bW3t4evH61UcEMzjk3Z86csu9LtTt17dSE7iRBGaX9l3M6GCeLYAUlyX5U\n6IC635JcHxXsoM5xXs9M53Q4gQqSURP+ncsmaEM5ceKEqak2q96rnNPHGRo2kee9qdqIc7pNhN6L\nvoAXdS9OF729vaZW6fAM1d9V23tUKL6ZAgAAAIAIDKYAAAAAIAKDKQAAAACIwGAKAAAAACIkmgk5\nPj5uwgR8E7VDJ/qlnTyuftE6z8moynPPPWdqGzZsqMCR/P9UAMZ0DptQZsyYYSYvqkm4zjk3b948\nU+vv7ze1jo4OU/NNQj18+LCpLVq0yNT2799vakuWLJHbzEsWbSGJX//616Z21llnmZrqL5JMdlbX\nTgWPZGFiYsK0MV9byiJgQIVNqInzSUIx8nLs2DFTa2lpyW3/qt2F9nXqueWcvvahk69VaIpzzjU0\nNAStrxSLRRNG4AsnUBP0VViPase+PlmdD18QQMi+fftPS7VF9ZxQYQ15Us84FZ4Reo6d02EP6n0r\ni6AJnyze93zX7ujRo6am+qG8AmJ8VLCD6jNaW1vzOBznnD6neQV6hPZNafDNFAAAAABEYDAFAAAA\nABEYTAEAAABABAZTAAAAABCBwRQAAAAAREiU5uecTcAITe0rh/HxcVNT6UWrVq0yNZVC45xOAwx1\n6NAhWa90cp9SX18ftNyWLVtMbd26dcH7SZvcV5rM5ktpCqUSjXxUKk+hUAheXyX3KVu3bjW1tGl+\nKmXIl7SpqHsrTyq5b/v27aa2evVqU0ubHNXZ2WlqKuXOuXRJd7NmzQpuI4pKQ1JpazNnhnfroZ/n\nqaeekvXLL788eF+lVBqec7oPyTO5T1HnWR3npk2bTO3iiy8O3o+6xurZ5Uvte+mll6b825d06VPa\nD/iS0lR/oY5TvR+oRDnndLqWej6H7sc5naQY+iz09Ymhz7gkz460VFqvOicquc93PdSylU4oVNK8\nw/n4kt7U+0Qlk/vUdXdOp4KGJoVmRd0PSZ5VaeRxjfhmCgAAAAAiMJgCAAAAgAgMpgAAAAAgAoMp\nAAAAAIiQaPbXzJkzXWtra/TO1GTQuro6U3vyySfl+ipYQk0+P3bsmKm1t7eHHKJXd3e3qfkm5z7+\n+OOmdvXVV6faf16ShE1kIW3gRKmenh5ZV+1YBYqoSfIqsMA551auXGlq6vNceOGFpvaTn/xEbvPa\na6+V9VIqbOLZZ5+Vy15yySWmljYAI62f/exnpnbVVVeZ2ssvv2xq5513XvB+1KRyNQnWF0BRGkSg\nggl8JiYmXG9v75Ta/Pnzg9fftWuXqak2l5aa4H/BBRek2qY672nDavIUGrSkwiaShJmoSdq+54xy\n/vnnT/l3knCWQqEgn8ehQveV5LqrwAN1LXwT2UMnuKt+2reueqakeS8qB3XdQifdq6CJciybhWKx\naPonXwDFiRMnTE0FSBw4cMDU2tra5DZDwy5K+3nn/H296h9U36DCJkLDVJwLf/+uRkn60LGxMVNT\n97cvvCM27IhvpgAAAAAgAoMpAAAAAIjAYAoAAAAAIjCYAgAAAIAIiQIoxsbG3O7du6fUFi1aJJdV\nE77UZLn777/f1LZt2ya3+Za3vMXUbrnllqD9bN68WW5z/fr1sl5qcHDQ1HwT/M8888ygbeYpdIJ/\n2kmKaj9nn322qalgB+fs5L8kE/wV36/Yq0mKa9euDaoloSYBq0mToUETPmqitgqaqFaqLSpqkvvw\n8HDwsqET0n3bLG03vval1NTUJAqcKJVF2ISiJlmHTrz2SfJL96Ojo6ZW6YnvodIG6KhJ0ercJQml\nSMPXT6sQCRVcompHjx6V21y6dKmphT6P1PPZOR1WERrWoPbtnJ4MX+kACnX8qi2GhlKkpa67c+n7\nkUKhELyN0L557ty5prZjxw65rHofOHz4cNA2fUL7Nt85VQ4ePGhqHR0dwevnRT1nVRtVwTw+oX2j\negdMg2+mAAAAACACgykAAAAAiMBgCgAAAAAiMJgCAAAAgAiJAihmz57tli9fXtYD+OhHP2pq6hfG\nnQuf5Kkm+IcGTfisWLEiqFatQif4p/1F7EsvvdTU1ARL369Ml04+TDthtb29PdX6WVCTotNKMkGz\nGg0MDJiamsS7Zs2aVPv54he/aGo33nijqflCZEqPM237zIJv4nWSEIhKmi5hE4oKLVDPIx81mV0F\njyQJXUlDBU34hN4LSUJYQj9PQ0ND8DYVFXTkexauWrUq1b7yovqBvIJL0gaxlMOCBQuCllPX2Rc8\npc6pur+T3Ieh/d28efNMTQVPOVf5QJRQoecpi+AUX79cGvThO8el+GYKAAAAACIwmAIAAACACAym\nAAAAACACgykAAAAAiMBgCgAAAAAiVDze6dChQ6Y2XVKnTkWPPfaYqV1zzTXB64cm02SRzpKFgwcP\nmpovESk0PQiWSu7Lwm233WZqixcvDl6/sbFxyr+rsR2rZDLn6FfzoJJoly1bFrx+aHpeuVP7sqKS\nS6vx2LNIWK20LJL7VFqlSnGcTomcSZIHVR9ayX7Vl+JbjSmzaezdu1fWQ5M1Vfqprx8qPXehScnV\n9yYAAAAAANMAgykAAAAAiMBgCgAAAAAiMJgCAAAAgAgVn5Hc1NRkagMDAxU4EjiXLGyi2kxOTrrB\nwcEptZMnT8plm5ubg7bZ0dGR+rhQPZKETZRbsVg0E7jr6urKvp/pNPn7VJMkbEJpaGgo05FUBzV5\n2xeQciqGQJxqsuivkiptP+Pj43K5NP2gb5uE+FRGaNCETx6hN3wzBQAAAAARGEwBAAAAQAQGUwAA\nAAAQgcEUAAAAAESo+Gy6+vp6UxsaGqrAkSArBw8eNLUsgh1mzJhhJnBn0ZaYnHpq6enpMbXW1tay\n76dQKJgJ3JOTk3LZGTP4fy74lQbtvK7aAixUAIWqASGKxaIJoCgWi6m2mSRUQ/XX9NXTk6/dxPZP\ntAIAAAAAiMBgCgAAAAAiMJgCAAAAgAgMpgAAAAAgQlXOmM9i8jcqR4VNjI2NyWVnz55d1n2rgJO0\nCJo4tTQ2NprayMiIXDbJZOUQTF5GjGoLmkiC/vPUop7lvmuctr8rFAplf0dI4uTJk6ZWW1tbgSNB\nWupaOhf/DsqTHAAAAAAiMJgCAAAAgAgMpgAAAAAgAoMpAAAAAIjAYAoAAAAAIlRlrM7ExISs19TU\n5Hwkp5/jx4+bWnNzc9n3U8lEHuD/OtXSmIaHh2V9zpw5OR8JYPlStGbNmpXzkcA55yYnJ2U9NHnv\ndHqW8w6aPfX+n8V5L3e75ZspAAAAAIjAYAoAAAAAIjCYAgAAAIAIDKYAAAAAIEKuARQHDx40tQUL\nFpiabyLqkSNHTG3hwoXpDywH/f39ptbY2Fj2/YyMjMj64cOHTW358uWmlkXYRLFYNLVCoSCXLT1P\nvl5pVKkAACAASURBVMmxysTEhAnQ8E12bmtrM7UDBw6Ymjr2JUuWyG2eOHHC1ObNmyeXrSTVFtVk\nzDyDGZ577jlT27Bhg6lNl3OcBXUvqEniBE1Ul97eXlmfP39+zkeS3Pj4uKyrCeG+Pr0UQRP5CJ3I\nHxo04aPaiC8wILSNVNrY2Jis03bfXNqAGdV2pkMoHd9MAQAAAEAEBlMAAAAAEIHBFAAAAABEYDAF\nAAAAABESB1CUTsjv6+uTy6lJ4R0dHaY2ODhoar5fJh4YGDC1agygUJPk85ood+zYMVkPnZR+9OhR\nU1MhIUk8+uijpnb99dfLZXt6eqb82zeZUampqTEBGr6Ji4oKpVCTJlUohXN6cq26P5qamoKPKQuq\njagwkjxdfPHFQcupEJvpHEChQnWc0+EEqi3u37/f1HwBKdPZoUOHTK29vT23/Q8NDZlafX190Lq+\noInQQJE9e/aY2rJly+Q2S589Sfo/xTcRX312ta8k+/c996cDdZ6y+Dy+Z496j5o7d27QNn0hT6HB\nFDNn2tfIaggMCH13SBIqofqBuro6U6umYITXDQ8Pm1qlw4pC+9Uszmfadm/WS3MwAAAAAHC6YjAF\nAAAAABEYTAEAAABABAZTAAAAABAhUQDF8PCwe/nll6fUzj///FQHoCZuNjQ0yGVXrVplart37w5a\nv7W1NfiYduzYYWoqPGNkZESuH/rL9mpCoHPhkwLVZNTFixcHreujwiZGR0eD11cTBX1hE0rppPIk\nk0OPHz/uHn744Sm1W2+9VS6rzp3a19atW01t7dq1cpuhwRJqsrCvzYdSoRKNjY1yWRU2oSYMp530\nmWTSfuikz3Xr1qU6JnXdVR9UW1ubaj+h0gboJAmbqLbPnoQKm8hzknto2EQSoW1ehU2oQA7n7D2v\nQnHeSOmk7LSfezqHSiSR1+f0XU8VNqHud7W+L6hB9QOhIQbj4+Nym0nbY6lisWj6LN+5V8/z0EAU\n3zbV5wo9J0n6JbUfFfThezdT+8qiX1fH6TsmdT1C+xffu7Z6xygNIXNO97W+dl+6rC/0xawXtBQA\nAAAAYAoGUwAAAAAQgcEUAAAAAERgMAUAAAAAERhMAQAAAECERGl+s2bNMmlxvuQOlS5WmhTkXPqE\nEZVMNjAwkGqbKpVNHWdo6p5P2vWPHDliaosWLUq1TcV3jQ4fPlz2/Zeek9DEK+d+k3YTuv/QVKEk\naWlKf3+/qflS9tJoaWkJ2rdzOlUniwQ0db/7jkmdE7WsSj30tRHVD+zcudPUzj33XLl+tQlN5/JR\ny6p7u6enx9SSpKHmJYs260shU0lalaRSV52z93aS/rNYLJp7Nsn6qn2pFK66urrgbSoqgTJtml6S\nbaoUsCSps2kkaZ+hfUOSdzDVHlS/lFUiqErz86WthfZt8+bNMzVfG1Xpc6qNJ7lvlND+xtfu1LVP\nm6SoqONMcu3VO4I6Tt/1UHXVHkJrztlzGnre+GYKAAAAACIwmAIAAACACAymAAAAACACgykAAAAA\niFDwTcKSCxcK3c653dkdDmAsLxaLbSEL0j5RAbRPVDPaJ6odbRTVLKh9JhpMAQAAAAB+gz/zAwAA\nAIAIDKYAAAAAIAKDKQAAAACIwGAKAAAAACIwmAIAAACACAymAAAAACDCzCQLt7a2FlesWJHRoZTP\nzp07TW3lypWptvmrX/3K1M455xy5bG9vr6nNnz8/1f5DDQ0NyXp9fX0u+y+3Xbt2uZ6enkLIss3N\nzcX29vYptblz58pl9+7da2qNjY2mptrShRdeGHI4udq2bZuprVmzJtU2jx07JustLS2ptpuX8fFx\nU5s503Z5v/zlL03t3HPPDdpHkvY5XfrPJLq7u02trS3oJ2NSO378uKw3Nzfnsv/pIEn7LBQK5ndS\nampq5LLnn3++qanrMXv2bFNTfa9zzq1bt87U+vv7TU3dw3PmzJHbHBwcNLWGhgZTm5ycNLVCQZ+2\nHTt2mNrq1atN7eTJk3L9WbNmyXoa+/btM7XOzk5T6+npMbXW1tZU+07Tfzrn3KZNm3pCf2cqrz50\nbGxM1lV7ViYmJkzNdy9V0okTJ2R93rx50dv0vTeoe3n58uWmtnnzZlNbv3598P5V/7J06VJTU32D\nc85t2bLF1IrF4pv2oYkGUytWrHAbN25MskpFfPjDHza1Bx54INU2zz77bFPznYtvfetbpnbbbbel\n2n+oF198UdYvuOCCXPZfbl1dXcHLtre3u/vuu29K7dJLL5XLfvrTnza1q6++2tQ+9KEPmVo13gM3\n3HCDqf34xz9Otc1vfvObsv6BD3wg1XbzcuTIEVNbuHChqan/aAm9xkna53TpP5O45557TO0Tn/hE\nLvv+r//6L1l/97vfncv+p4Mk7VPxvVQ988wzpvbwww+bmrq37rrrLrnNp59+2tQef/xxU1P/MXne\neecFH+dll11mauo/IX0vzrfffrupfec73zG1gwcPyvU7OjpkPQ31PLv77rtN7d577zW1O+64I9W+\n0/SfzjlXKBSCf4Q3rz5UDU6d0wNUpZL/oZ7ED37wA1m/6aaborf54IMPyvr//u//mtrXvvY1U1u7\ndq2pJbnmn/rUp0ztC1/4gqk9++yzcn3fO+Ob4c/8AAAAACACgykAAAAAiFAoFs2fSXt1dXUVK/ln\nKqF//5wX9XfWzum5GqF/a1uNhoeHZd33d+rl1NXV5TZu3Bj0N/+Vbp+qPQwMDJhaU1NTHofjnT/X\n19dnaurYfX+O4ptLkIbvb7dLqT878t2HM2Zk/39FebZPNX/vG9/4hqldccUVcv1rrrkmet/VKM8/\no1J/DnP99debmprPU0l5ts/R0VFTU3NHfO8c6tzV1tZGH09avn5F9Z+qT8+j/3mdOvdqbpY6pkr2\nn845VygUNhWLxaC/R83rGe+bT1PJ980kRkZGTK2urq4CR/LG1LzCLOYUphHah/LNFAAAAABEYDAF\nAAAAABEYTAEAAABABAZTAAAAABCBwRQAAAAARKiu6KE3UW1JKr60m9AUHPWL0M4519jYGH1MWcgj\nte9UoK57Xsl9Sn19vayr1CyV/pNFap9Pml9czzM1q5LUj2N+9rOfrcCR5E+lPba0tOS2/zQ/Ynm6\nqGTyXhZ8/Yp6Ple6D0pz7it97NWo2t41k6qpqTE1ldpY6Wtfbcl9aXAXAQAAAEAEBlMAAAAAEIHB\nFAAAAABEYDAFAAAAABGmVQDFdKEm+CvVFjSB08Ps2bNNbd++fabmmxxKIAnyliagBCgnNbl/eHjY\n1OgnUSmnUrDDdME3UwAAAAAQgcEUAAAAAERgMAUAAAAAERhMAQAAAEAEAihwSjt27Jist7S05Hwk\n1W3VqlWVPgT8HyoQpLOzswJHgtNZsViU9bGxMVOrra3N+nCqFmETlXPixAlZJ7QGeeKbKQAAAACI\nwGAKAAAAACIwmAIAAACACAymAAAAACBC6gCK8fHx8J3NTLe7kZERU9u4caOpXXHFFabmO840x7Rr\n1y5Zr6+vN7Xjx4+bmm9y79q1a6OPKa2JiQlT+8AHPiCX/fa3vx20zQsvvNDUvvrVr8plN2zYELTN\nUPPnz5f10F+s37Ztm6n5JrZu3rzZ1K655po3O8TMbNmyRdbXrVtnas8++6ypXXLJJWU/Jh81oV3V\n7rvvPlO7+eab5TZVqMZTTz1lam9961tNzXdv5kWFTag+pLm5OXibhw8fNrVFixYFrfvLX/5S1s89\n99zg/Zfb0aNHZX3BggU5H0n1UP13qGKxaO65GTP0/7eqsAl1zxQKhejjqbTR0VFZV/1SY2Nj1ofz\nhkKfZ7/4xS9M7dJLLy378fT19cl6Q0ND2feVNmhChf20trbKZevq6lLtKw31/jswMCCX9R1/Jalj\nnTt3rqlt2rTJ1C6++OJMjqmc+GYKAAAAACIwmAIAAACACAymAAAAACACgykAAAAAiMBgCgAAAAAi\npE7zS5KGF5rmsX//frn+kiVLTO2cc84xNZV6kjaF5ciRI6a2YsUKuez3vvc9U/MljuXl5MmTprZ1\n61ZTW79+vamFpvY559yPf/xjU3vhhReC10+jWCyaa++77irpSCVhrVmzJnj/KrlPpRo1NTWZWhZp\nkyq1zyfP5D5l9uzZQbW77ror1X4uv/xyU8sruW90dNTt3LlzSm3lypVy2f7+flNTyX0q0c6XZhea\n3Kdkkdqn+grnnLvhhhvKvq+0nnnmGVO77LLLTO073/mOqb3vfe8L3s9FF11kas8//3zw+jU1NcHL\nlioUCmb9JNsLTe7zpeSphEDVJ6f5jD6Tk5Ompp6Zzul7TqXUqdQ/57JJhFPPs8HBQVPLIrlP8aVA\nZnHtfNT5V88U1V+eOHEieD/qeqpniq89qHYfup9Zs2bJZdXxq9TDnp4euX4WaYDqHlPSPKec0ynG\n6l3Il4RY+i4WmpDKN1MAAAAAEIHBFAAAAABEYDAFAAAAABEYTAEAAABAhESz248fP+4eeuihKTXf\n5Fo1Aa908rVzOlRC1ZzTk/m/+93vmlpHR4eprV69Wm5z27ZtpnbTTTeZ2sKFC+X6yhlnnGFqhw4d\nMrX29vbgbaalJtGpSeV79+41NTXx3TkdHqImj6tJjj/72c/kNt/73vfKeoixsTFz/EkCJLKYHKvC\nJhRf0ISafK4mqSPM8PCwqanJ21mora31Bk6UamxsDFrOFzYR6i//8i9N7Z//+Z+D13/ggQdM7cMf\n/nDQummDJkIDD8pBhU0oScImlCRhE+VWLBbNc/vxxx+Xy7a1tZna8uXLTe2pp54yta6uLrnNe++9\n19TUs1gFP/kCfB599FFTu/HGG01NBSaovsI5/SxV62cRNOGjwiY2btxoaldffbWp9fb2ym3Onz8/\n+njUe5Vzzp199tnR23TuN9e5u7t7Sk21Reecu++++0ztzjvvNDXV/yd5JoT2gb6giY9+9KOmdv/9\n9wft2/fOot65VABFXs8+5/S70D333GNqn/jEJ0xtz549cpvLli0zNRU2MTQ0ZGrq/VUJfS/kmykA\nAAAAiMBgCgAAAAAiMJgCAAAAgAgMpgAAAAAgQqIAiubmZhMQoIImnHPuG9/4hql96EMfMjU1sayl\npUVu8zOf+Yyp3X333aYW+ovSziULKAilJsApatKoc/rX1NNSk2F//vOfm1pnZ2fZ961+TdsXNLFj\nx44p/x4dHQ3eT21trbme//M//yOXXb9+vamlDQRRE1HVpGw1CXjDhg1ym3/xF39haqEBFO94xztk\n/fvf/76pHT161NR8oStZBHV86UtfMrVPfvKTpvbrX//a1A4fPiy3+ba3vc3U1C/GHzlyxNR8n/2K\nK66Y8m/1a+s+w8PDbvPmzVNqqh36XH755aamJvj7fmleTZIPDZvwTRx/5ZVXgtZXPv3pT8u66tMV\n33MiC9dee62p/eQnPzG10snxzvknyCvq2n3wgx80tQcffFCu/+1vf3vKv33hAsrg4KB75plnptQu\nuOACuax6xu7bt8/USvtz55zbtWuX3KYKU1HhR6Wf0TkdCuGcc1dddZWsl3rsscdMzRcKpJ6lS5cu\nNbXZs2cH7TuJgYEBWVfnVJ071VfW19cH7//48eOmpvpu33lX7SGJ0dFRt3379ik13/311re+1dT+\n6Z/+ydReeuklU/vhD38ot/n5z3/e1D7+8Y+b2vvf/35T++xnPyu3GRo2odr9OeecI5dVfaNqO772\nlOYdVAXNOaevvQqbUNcjyTv97t27Te1Tn/qUqX3sYx+T65c++1V4hcI3UwAAAAAQgcEUAAAAAERg\nMAUAAAAAERhMAQAAAECEgi9AQunq6iqqX9VOQ02ASzLx8+TJk6amJpmr5XzLhvIFSKhfjVe/5O6b\n/Bf6y8xpPfLII6Z2/fXXp9qmCg1QvwaufrnaOXvtr7vuOvfiiy8WQvat2qeaMOucnpx78OBBU+vo\n6AjZtZeaUK4mhavJ10moSZ8rV66Uy6oJleoX01VggXPZhJSoc6ImRieZiKqoe1P1Ddddd51cv/Se\nv/LKK93zzz8f3T5feOEFuey5555rairsYcmSJab25S9/WW5TBfgoW7duNbW1a9cGrVsO6plUKASd\n4oorDShxzrknn3wyeP2vfOUrpnbnnXea2okTJ+T6Bw4cmPLv97///W7z5s3R7XNsbEwuq/oGdd36\n+/uDlnNO94EqgEgF4PjeGdLwfXZFhU3k+XxX/bd6xqnnURZBGUkUCoVNxWKxK2TZLN5BkxgZGTG1\n8fFxU1PXOM/AsVDbtm2T9SyC2UKV9mHOOXfs2DG5rApwCn1+qaAK52yYzCWXXOI2btz4pn0o30wB\nAAAAQAQGUwAAAAAQgcEUAAAAAERgMAUAAAAAERhMAQAAAECE8kfgvIFf//rXpqZSNnwpYrt27TK1\nFStWBO07TWqfjy9BSCX3KRMTE+U8nMQuu+wyU3v22WdNzZfkNW/ePFP70pe+ZGrPP/+8qfk+e3t7\n+5R/p01pSpIClja5T1FtOW1yn6KS+44cOSKXbWtrMzWVPqSSn7Iyf/78oOVUqk9LS0vwftS5X7Ro\nUfD6pclLvr4q1IUXXhi87HnnnRe0XGhqn0+eyX3KdEnuU7q6bCiZSgBzTqfT/uIXvzC10j7ROeeu\nueYauc2zzjrrTffhc/LkSXfo0KE33fcbrV9K9StJ0uPSpnem4TvO7u5uU1N9UJ7H3traamrqGZs2\nuU+lv+WZ/DY0NGQSUJP0oWnt27fP1M4444ygdbNI7VMJr845d/bZZwetX5pclzd1Ly1evDio5hP6\n/GpsbJT12Gc630wBAAAAQAQGUwAAAAAQgcEUAAAAAERgMAUAAAAAERLN7i8Wi258fHzqBhIEBJx5\n5pmmlmSyV1NTU/CyefBNMO3p6TE1NUFUBThk5ejRo6amJnpfcsklZd/3RRddVPZtKsVi0UyC3rlz\np1z2ggsuMLWhoSFTq6+vNzVfsINaVk3Azosv5ENNiK+pqTG1JMEOoUr7j9cNDw+bmpogqo5Jreuc\nc3PmzDG19evXv9khTnu7d++W9eXLl+d8JG9MBQo595v7uJQKWKlGd911l6klCSK4//77y3k4iUxM\nTJiAF98zSt1b6l1gbGzM1FQ/65zuP6uRCvVQbTaL0Ctfn672r66HCglJcpx5hk0oc+bMCQ5XCKXa\nqC+oI0lYUR6SnIvt27eb2urVq8t5OM45fT6d0+dUhWHlpdzvN3wzBQAAAAARGEwBAAAAQAQGUwAA\nAAAQgcEUAAAAAERIFEBRKBTMpMbe3l657Pz5801NTXJXEyrVcs7pCWP9/f2m5vtlY6V0wq1vP0mo\nybl9fX2mpgIgnEt2/KX2798v60uWLDE1FUQwnY2NjZlJ7Ul+OXtyctLU1HVbuHChXP/48eNB66sg\nFRVa4pxuC6ET2js6OoKWcy6bydKKL7BGfc7QydLqfjudZRE04Qv5UJOKff13qRUrVqQ5pKq0atWq\nSh9CtJkzZ5oJ9knuLfU8U/err/8aGBgwtdAAHxXA4Jxzo6OjpqYCJJIIDaDIgi+wS537vEIx8lQo\nFBIFuoTwhU0oad7N8jQ4OGhqWYRNKL7zqd6Pmpubsz6c3PDNFAAAAABEYDAFAAAAABEYTAEAAABA\nBAZTAAAAABAhUQBFsVg0v26cZEKemhTX0NAQvL76ZeW0EwJVGEBaoZ/J90vwaaigCZ+0E3GrzezZ\ns93KlSun1FSohE/oZGcfta/QttDa2hq8zSx0d3ebWpIAiyxM98nSeVAhMr77+vHHHze1Sy+9NGj9\no0ePym12dna+2SGWxfPPP29qF110US77Pl3MnDnTLViwoKzbVP2XL0QhTf/r6yezeMap4w8NXUnL\nF1qVdtnp7PDhw7JeGqbikyQYYc+ePaa2bNmyoP2o91/nnKuvrze1tNdOBQYledfOwqkUNqHwzRQA\nAAAARGAwBQAAAAARGEwBAAD8v/buPMbO667/+Lkz3sZjz+JlPGM7XhIvses4m+0kKEnrNFFoVShp\nS6mqFFok1DRCiAaKoII/oBVFoEZUhQjEH5QqVKIqaloQLUkKBKIkIk5wHMtO7Hj3eBvbs3j27f7+\nKBG/ud/PSc5yn3vHzvv133z1bPd5znOe5/j6fC4AJGAwBQAAAAAJGEwBAAAAQIKoNL9SqeTmzZs3\no6ZSQ5z7aTJQJZUmMjY2Zmoqocq3zcrjiaW2mevcuXOm1tnZaWq+ND+V7nKt8bWbpqam5G2WSiWT\ntJR7faempkxtYmJCLqvad24inS/5KkR/f7+sq1TMeif31ZM6Hz45/c309LS7cuXKjNr8+fOz9qPS\nyv71X/9VLvvggw8GbVOpVWqfj0ru8yW45dwzs9Hg4KCp5SaPKuVy2TyPff1naHqdWl8989/ef6XQ\nNL4i0vQmJydlPfSZoj6Pc9deyp66D32fsYjPHpra5+N7nis5fUst0/R86cD4P6pfdS69b722njoA\nAAAAUCMMpgAAAAAgAYMpAAAAAEjAYAoAAAAAEmSnL/gm76kggcrJ187pCf5vvfWW3OaOHTuCjunU\nqVOmtnTpUrlsEWEPKmxCqeWEROXixYumVquJi6otOJcXQOGcnSDqC2FobW01taGhIVO7cOGCqa1f\nvz7x6H5KnXdfW8g5H77J2+qzv5epAIoiJvgrMYEWqn2+9tprppYTNOHbTxF9VcwE4Jigomutfavz\nUUSAT7lcNqELvoCUUOq65W5TKSLswRc0oYKj1HtELYMm1HtUaChHbtCGaou+a1yNQKjKZ3rM/X7o\n0CFT27RpU/D6S5YsMTX1jqGOyfeunBNS5esH1P2g2mhPT49cf/ny5cnH5LN//35TW7x4samtXbu2\n6vvu7u42tVWrVlV1H3wzBQAAAAAJGEwBAAAAQAIGUwAAAACQgMEUAAAAACTIDqBoaWkJXlZNNlN8\nQRPPPvusqd13332mdt1115nauXPn5DaLCKA4evSoqalJnr5J7rkhDMqePXtMTQUU1CqAQk2YzVUu\nl82E55ggATXJPmYy5MGDB01tzZo1pqYmhxZxzWMmeqvJ/L5fe48JTQilJqeqicEDAwOmFtNm1eRx\n1Uaq/evozv30fFb2gb4QBXVvfu973zO1X/mVXwne/+OPP25qjz32mKnVKhgn5lyqtlzLCf4f//jH\nTe0f//Efq76f48ePm5oKwdm1a1fV9+2c7Zti2qe6Z3KDXKanp01NPUuL6JN8VHhSEe8RMVTYhHrO\n+EIQQqlzr66R6medi3tfVBobG7MCZkLDJtQ7nHPOXX/99UHrq3OSEzThE/PeoN65igia8Nm2bZup\nqbA4pa+vT9bb2tqC1ldhE6dPn5bLrl69OmiblfhmCgAAAAASMJgCAAAAgAQMpgAAAAAgAYMpAAAA\nAEjAYAoAAAAAEmSn+fmcOHHC1FQy2sjISPA23/e+95maShx78cUXTe2uu+6S21RpIioNcGhoyNR8\nqVehiS+1pBIS/+3f/i1oXZVe5Fx4OuO+fftMzXeOKtOGVCLRO6lMNVIpRz6VSYDO6RSxY8eOyfVV\nytCcOfYWUwk6qn05p9t3Ecl/Kp2rlrZs2WJq6tqp5L6Y5L3Q1K/cFLJQMec9JrlPUcl9V7NaJrgV\nkdynrFu3LqhWhIaGBvNM86W/qb4y955Rfb3q/9R1V+lpzukEM5Wqpj6n6rudc27FihWmFvN+UITQ\nlD51jmNSX9U5UedTvf85l5/mNz09bd4ZVcKgc/qzqv2HvgM651xPT4+pLVmyxNRi3juKSMFU1Htc\naBpeUXznuVJMG1XU/Zma2ufDN1MAAAAAkIDBFAAAAAAkYDAFAAAAAAkYTAEAAABAguwAivHxcVl/\n6623TE0FUKjJ9AMDA3KbX/rSl0zti1/8oqmpSeo+zz33nKk9/PDDpqYmk/qO8/z586amJs2q81FL\namLzuXPnTM0XuKBCPXp7e01t+/bt8Qf3v0qlUtSyvknDIZ5++mlTu+eee0xt/fr1cv2zZ8+aWmio\nhW+ysmpjoQEU3//+92X9oYceClq/lg4cOGBqN910k6nt37/f1NQEYOf0JN6c9uGccydPnpzxt6//\nU0ZHR92bb745o6bCWZxz7hd/8RdN7aWXXjK1O++8M3j/Of793/9d1nfv3p28zdHRUVmvdxiKcvfd\nd5va888/X/X9/NVf/ZWpPfLII8Hrf+UrX5nxt+qT3kllf3v58mW53NKlS01N3QuvvPKKqakgKefC\nwwn6+/tNzXdfh4ZAqBAF372t9q9ChWpJBSN0dHSYmjr2hQsXym2q/lOFNQwPD5va5s2b5TZfe+01\nWQ81NTXl+vr6ZtR8516FkqhAEnVOfMEIal9nzpwxNXXfbdu2TW4zNGxCBUj4QsB++MMfmtrP//zP\nB+2nKKqd+NpepZjQLdXGVNiEek93Lj1Ajm+mAAAAACABgykAAAAASMBgCgAAAAASMJgCAAAAgATZ\nARS+X6H/4Ac/aGpqMquaQOebiPrkk0+a2n/913+ZmppM6qPCJpTDhw+b2saNG+WyavJf6H5qSU30\n7uzsNLWYX3JXv1hfS5UTTNWEWef05GIVCKJ+IfyZZ56R2/zABz5gajFtUcn5xfiYoInu7m5TW7Vq\nVfK+Y23ZssXU1C/Yq4mkMb/iriZqq9CUTZs2yfXXrFkz429f/6dcunTJ/d3f/d2M2h//8R8Hr19E\n2MT3vvc9U/vEJz5hajlBEz5PPfWUrH/qU5+q+r5y/eVf/mXQco899pipPf7448H7OXjwoKnFTNz+\ngz/4gxl//+AHPwje9+TkpLt06dKMmi8MZGJiwtTUJPGtW7eamm/it+rr1H6GhoZMbcWKFXKboUKD\ngpzTfUi9AyjU/tV5Uu0m5pmtwhpUsMLg4KBc/+abbw7elzJ37lzX1dUVtKw61tbWVlPzBUOEUm1P\nhSL52lMo9a6sntvO6bCJerdb1fZU36b6kZggstDrefr06eBthuCbKQAAAABIwGAKAAAAABIwDJ3Z\nLwAAIABJREFUmAIAAACABAymAAAAACBBdgBFDDUpT03+bm9vl+sfOnTI1O655578AwugwiZefPFF\nuexsDJtQ1ORexRfioCYXqwme6tfA1XLOhf8itk9jY+OMv9etW5e1vYsXL5raAw88IJc9duyYqa1f\nvz5r/zn27t0r67fccoup1TJsQlGThdUv2OdOmFUTzX2/dq9UTuKdnJwMXnfVqlVRgRMh1CTaRYsW\nyWVV+1RhE7Wi+o/ZKnTifEzYhPKNb3wja/0cc+bMcUuXLq3qNlU/7+v7R0ZGTE1NPF+5cmX+gVVQ\n4QAqAMe52dluVdCROs8XLlwwtY6OjuD9qHc4xdcHqf63KL52Vin3nKgQBRUWkWt0dNTUfM9ttWy9\nQ1KUgYEBU1NtOSbIq/Id0GfDhg3B2wzBN1MAAAAAkIDBFAAAAAAkYDAFAAAAAAkYTAEAAABAAgZT\nAAAAAJCgpml+SktLS/CymzZtKvBI4t111131PoQsa9euDVouJr2or6/P1Lq6uoLXn21iUnnqmdyn\nqNS+2SonRey5556T9fe///2mtnr1alNTSYJNTU1ym5WJSHPm1LcLVUmZO3fulMveeuutRR9OlO3b\nt9f7EDCL+O65elFJglc7lYpWmVD6NpX+ptJ2p6amTM2XqKZSE+stJrlPKSK5T1mwYEEhy9ZTZ2en\nqanEx/Pnz8v1V6xYYWr79u0LWk7VcvDNFAAAAAAkYDAFAAAAAAkYTAEAAABAAgZTAAAAAJAge/b0\nwMCArIcGS/gmKuLq1NbWVrd9T01Nmfbom/AaOhFWLTc4OCiXXbRoUdA2UV0qaCJGa2trlY4kXm9v\nr6y3t7cHre8LmwCqYXp6WtYbGvh32KtRaL/iU8/nu8/w8LCsq7AMRfXBvnVnY4DGtUad45iwiHoF\nG9EjAgAAAEACBlMAAAAAkIDBFAAAAAAkYDAFAAAAAAmyAyhCgyaq4bnnnjO13MnnKN7Q0JCp+X7t\nPmdic7lcNr+e7dtezkRSgiZQLYsXL673IQDOOR3gU0T7JNQC1RQaNOGjQjkOHjwol92yZUvWvlAf\nKqRkampKLpva59F7AQAAAEACBlMAAAAAkIDBFAAAAAAkYDAFAAAAAAmyAyiAd9Pc3GxqZ8+elct2\ndXUl72fOnDlu+fLlyesDb6vVJPk5c+iC8c7Gx8dN7fz583LZ6667Lnk/jY2NNQmUqgwJepsvlAio\ntaVLl9b7EFBFCxYsMDVfAEUqvpkCAAAAgAQMpgAAAAAgAYMpAAAAAEjAYAoAAAAAEjCYAgAAAIAE\nV1WU1Pvf//56HwKqJCe1r94GBweDl120aFGBR4KiVDu1D0g1b948U8tJ7as39XlQGyrBrLGxsQ5H\nMrt1dHTU+xDw/xkdHZV1ldKnqOd5tZ/xvDEAAAAAQAIGUwAAAACQgMEUAAAAACRgMAUAAAAACbID\nKHInhqkJkb4J/q2treEHhnf1zDPPmNo999xjahMTE3L9xYsXB+1HtZGRkRG5bOW1Hx8fD9pHrAsX\nLpiamnSq2iehEtU3MDAQtNz8+fNNra+vTy67YsWKoG2qNuabJN/d3T3jb9+9EcrXvkMn6T/11FOm\n9gu/8Aty2TfeeMPUbrzxxqD91NvVMnH+ySefNLWHH364DkcSr1wum/YYExYxPT0tt1nJd93UsqVS\nKXj/tXLlyhVTC30WFqWyX3LOuVWrVplave8Z33O/Vnp7e02tvb29DkdSLHUvKkUELU1OTsr6nDlh\nw42hoSFTa25uzjqmWtyzfDMFAAAAAAkYTAEAAABAAgZTAAAAAJCAwRQAAAAAJIgOoKic2BYaNOGc\nc/v27TO17du3m1rMZLOTJ0+a2po1a4LXL4Ka/FfERD+lp6dH1pcvX25qDzzwgKmp8I+///u/l9tU\nE907OztNTbURX7upnAwaOwG6coJrU1OTXDb0F87rPWH3vaKlpcXUjhw5YmptbW2m5rvGoWLaWOWk\n7rlz5wavOzU1ZSZA+yY/h06Y/fCHPxy8fxU28fLLL5vazp07g7dZK+o+VO3DOeduuOGGqu//4MGD\nprZlyxZTU2ET586dk9tcunSpqcW0p2orlUpR90Il1WZVaFR/f79cXy07NjZmaiqEppbUBHkVlFFE\nUJE6H87psAl1PdS5y7nmzsUF+OT21eVy2ZwDX3tQxxUaNuELcFDXWV2TmPfiIoS+b8bci6FCgyac\n00Fg6p1+x44dcn11/OrYVfDJ3r175TZVCFsIvpkCAAAAgAQMpgAAAAAgAYMpAAAAAEjAYAoAAAAA\nEkQFUExNTZlJjb5fKFe/grx27dqwg/JMYFMTP9XE5Fr9yvXExISsq0nEKtjBd+5yfu1ZBU34hE4+\nf+SRR5KPxznnvvWtb5naZz/7Wbls5Tktl8vB+5mcnHTnz5+fUVu3bl3w+rlUm1cTQdV197WFHKOj\no7KuJseqiaAq7MG5/AnLodRkZTVpdPfu3XL9IoJg+vr6Zvw9NTUVvG5jY6Pph9Q96Jy+D1X7UjXf\n9VFBCGo/Bw4cMLWtW7fKbRbhxIkTpqY+UxFBEz4qbELt/+jRo6YW04cpaoK9L4igsj3k7tvXvtVz\nN3TSum85db+qz67afMyk91C+c7xs2bKg/ftCDEL7IPXOEBNqoe6ZmLCIixcvmpr67GqbquZcfqBT\nqVQybUIFbTinA3uGh4dNbeHChaYW85xQz9Pcd9DK54xz/uexosJ51LXLCZqoBhUEFhoO5lz48att\nqmuUg2+mAAAAACABgykAAAAASMBgCgAAAAASMJgCAAAAgAQMpgAAAAAgQVQETmNjY1b6h0ppitme\nSrlTyT65CSVnz541ta6uLlNTqX0+MSk8oUZGRkxNJaD5qCSvIvavkvt8KVGV5zQm5a5UKplkHZVI\n5JxOtslVRKJUKJV06UuFVCl/MQk6oXJTt1auXBlUi9m/SmlSCU++1KnKRKXcdCrfPXj8+HFTU8mU\nMeezs7MzaLlaJvcpoamvRYhJwPzGN75hat3d3Vn7/8lPfmJqvlQ5pbI9xPSf5XLZpKn62rfqv1Uf\n1NLSErx/dW+qz64S/mKohEN1nnL3k5scqo5J9WnOhacJxryHqGe5euarNuLrl2LemUL5zomizmlo\nwl+M3PRoldyn+ibVL/nWr3dyX6jc6xHaRjds2BB3YO+Cb6YAAAAAIAGDKQAAAABIwGAKAAAAABIw\nmAIAAACABCU1GdO7cKnU45yzKRJAcdaWy+XlIQvSPlEHtE/MZrRPzHa0UcxmQe0zajAFAAAAAPgp\n/psfAAAAACRgMAUAAAAACRhMAQAAAEACBlMAAAAAkIDBFAAAAAAkYDAFAAAAAAnmxCy8bNmy8rp1\n64KWHRsbM7X58+fH7C7I5OSkqU1MTJhaU1OTXH98fNzU5s2bZ2ojIyPB2zx48KCpbdmyxdQOHDgg\n19+6daush7hy5YqsL1682NSmpqZMrbGx0dQGBweD979o0aKg5dS+1f6PHz/uLl68WArZZlNTU7ny\nc65ZsyboeGIcPXpU1q+//vqg9YeHh01t4cKFWcf0yiuvmNrtt98ul1XXM/S65erv75f11tbWmuw/\n1KFDh2R906ZNM/6OaZ+q//S1JdVu58yx3fWbb75paqpPc865lpYWU1N9ckdHh6mpNuuc7i9Uv6ju\n9+npabnNuXPnmpr6CY+hoSG5fq3acl9fn6mpc/w///M/cv2bb77Z1NQ1PnnypKmpc+Scc8uXz/w5\nlFOnTrlLly4Ftc+2trZyV1fXjFpzc7NcVj3fVRtpb283tVOnTsltXrhwwdRUH1ZE/zk6OmpqR44c\nkcuqZ/np06dNrYhnj8/hw4dNTd3H6hxv3LgxeD8xzxmlp6fH1E6ePHkx9HemFixYUK5sk+vXrw/e\nf3d3t6mtWrXK1HzvPKpvCd1mrnPnzplaZ2enXDb3OuXw9esNDfa7m4GBAVNTzyT1/u2cc21tbaam\nrkdlv+icfs9XQp/xUYOpdevWuT179gQte+zYMVOLafShVOegGt327dvl+idO2N9/W7t2ram9/vrr\npnbTTTfJbe7cudPUXn75ZVO79dZb5fqh51j5j//4D1n/wAc+YGq9vb2mph5+//mf/ym3qR78P/Mz\nP/POB/gO+1b737FjR9D2nPvpgPETn/jEjNoTTzwRvH6oT37yk7L+3e9+N2h9dX1jPqdSKtl73deO\n1PW89957s/Yf6kc/+pGsf+hDHwpaX71Uq8+e64EHHpD1H//4xzP+vuOOO4K3qfrPT33qU3LZb37z\nm6amHgi7d+82Nd8A7cEHHzS1DRs2mNqjjz5qanv37pXbVA+zbdu2mZq639ULrHPOVb7QO6f/gUz1\nqc6F90G5nnrqKVO7//77TU39Q5Zzzj377LOmtmzZMlP7whe+YGrqHDnn3K//+q/P+Pu+++6Tyyld\nXV3u29/+9oyaepY5p1/eX331VVP7pV/6JVP7jd/4DbnNv/iLvzA11YcV0X++8cYbpvbQQw/JZZ9/\n/nlT++3f/m1TK+LZ46Pu7cq24Jw+Jl+frMQ8Z5S//uu/NrVHHnkk+Ed4m5ubzbPiySefDN7/7/3e\n75na1772NVN74YUX5Pqqb/n93/99U/vqV78afEyh/uRP/sTUfvd3f1cum3udcsQMRCufp87pZ9K+\nffvkNj/2sY+Z2pe//GVT+/znP29q6j1fCe1b+G9+AAAAAJCAwRQAAAAAJCip/zbjs2PHjnItvipU\n8wCcc27JkiWmpuYIhc5dyaX+v6dz+v+Mqv96o77OdE7/v/t6yp0jlGPHjh1uz549Qf+Pq1bt03fP\nFPHfzXKEzktDunq3T9XX+P6bhZr/oua+5M4/yaX+S5+aI+T7f/S+uaw51Nxcdb+reVy++U1FHGel\nerfPes7PfC8Jnf88G5VKpVfK5XLQ/6XKbaOqb1H9iJrf46vXs7/0zU+6dOmSqan/Jl7LdwT137rV\nVBFVq6fQPpRvpgAAAAAgAYMpAAAAAEjAYAoAAAAAEjCYAgAAAIAEDKYAAAAAIMHsis34X5s3bw5e\nViWU1EpM6p761fQFCxZU83AKU6t0xKvFbEvt8/El8qgETPXDoir5yDl/OhlqT6VLxfRL9U7uU9Rn\nUm2xlmlloQlTsy2Jtd6uxeS+8fFxU1Npj/PmzZPrF5FWdrUk99WbenZdzc8zX+pg6HtxLdvN1fK+\nm4pvpgAAAAAgAYMpAAAAAEjAYAoAAAAAEjCYAgAAAIAEszKA4r3izJkzsr5q1aoaHwneS1TYxODg\noKldi5PHMfupSdVTU1OmNjw8LNf3TfwHqkG1L9ocZhPVX46MjJgaz/jq4ZspAAAAAEjAYAoAAAAA\nEjCYAgAAAIAEDKYAAAAAIEF2AEV/f7+sj42NmVpHR0fu7q5aTU1NpkbQRPHUr9U7x4ThSkxErQ/V\nTzrn3Pz582t8JLNHqVQyNSb9zy5DQ0Om1tzcXIcjwXudClvw1d8rfUZjY6Op8YwvFt9MAQAAAEAC\nBlMAAAAAkIDBFAAAAAAkYDAFAAAAAAmyAyhaW1tl/ciRI6a2bNkyU7t8+XLQcjEmJiZMbe7cuVnb\nVBPFjx49KpfdsmWLqV24cMHUli5dKtdXkwdz/cu//IupffjDHza13/qt3zK1r3/968H7GRwcNLWL\nFy+a2rp164LWn56eDt53uVw219434XRyctLU1C+EL168OHj/ipoEq66vOm/O5U0aHR0dlfUFCxYk\nb7Pejh07Zmrr16+vw5FUx3s5aCKmzat+oKGhdv8WGHofq8CbmEnvaj+9vb2m5ntGDgwMvOv2qqGI\nsAn1OYeHh02tVsFNx48fl3X17Dp06JCprV69Wq6/cOHCnMPK0tPTY2rnz5+Xy27bti1omz/+8Y9N\n7Wd/9mfjDizQ1NSU6+vrm1Hz9QMtLS2mpt7jVB8c8+xU7w0qcKyWuru7TU3dN7UM6FL7Uu/qqm/x\nvQeqa79//35TU23Z9/yp/OzlclkuZ44laCkAAAAAwAwMpgAAAAAgAYMpAAAAAEjAYAoAAAAAEjCY\nAgAAAIAE2Wl+PjfccEPQcrnJfWfOnDG1lStXZm0zVGdnZ/CyHR0dBR7Ju1PJfUpMcp+ikrhiEukq\nk3VKpVLU/kOTV+bMsU1fJT6qxBdfytP1119vairxSyXT5CY8XblyxdR8SYQHDx40NXUfLl++POuY\ncr3wwgumdtddd5maSvxyTp/T//7v/za1973vfaZWRFpZuVw2KZK+tDXVFlXClEpDUoldzum2qJIQ\n1fn0JWblJEP6kgwr07qc0+fJl4ZaBHXu1Ll/7rnnTO3++++X21R929NPP21qu3btCjlE55xt80Ul\nHhaRrqj65K6urqB11bVwLjzFV60f89xSx+lLSqtnmp/q03P7+ZjkPvWcitHY2Oja2tpm1GISf0PT\nU2P6NZXcp47J9y4T+o6j3m1864YmXhaR2uejjjU0uTqmbwlNoQy9v0OvD99MAQAAAEACBlMAAAAA\nkIDBFAAAAAAkYDAFAAAAAAmyAyjOnj0r6z/4wQ9M7ZFHHjG1T3/606amJvQ559yXvvQlU1OT/pVn\nn31W1tWE4a985SumpiYu+iYzfu1rXzO1O++809R2794t168VNbFOTXL853/+Z7n+Rz7ykeR9X7p0\nSdYrJ5/7JvEqpVLJTKgcGxuTy6prpyadHjhwwNRefPFFuU01efyxxx4zNXXPHDlyRG7z7rvvlvVK\nhw8fNrW9e/fKZX/1V3/V1E6dOhW0n1y+6/HMM8+Ymmpf6jyFht0459z27dtNTV33Q4cOyfUrA1pO\nnDgRvO+xsTFz/Js3b5bLVgZVOKfbXeVkbOec+8xnPiO3+eCDD5qa6pN/+MMfmtrnPvc5uU1Fnc+v\nfvWrpuabjP7Rj37U1NauXWtqIyMjcn3f8yPEuXPnZP0f/uEfTO0LX/iCqakggosXL8ptqon/t912\nm6n96Z/+qan5Jt3fc889M/7u7++Xy+V69dVXTW3Hjh1B66q+yjndL6rJ5EuWLDE1X9DE5cuXg9ZX\n95tvgrp6JqllY55dRdi/f7+pbdmyxdRUyJJzzrW2tgbt58KFC6amwkSc0+c+l3pGOxceRKDeRXzh\nNs8//7ypqRAfFQBx+vRpuU31TFTPNPW+5uuvVF29K7e0tMj1i6D6e1VTfWgtgzIqn+mh9zHfTAEA\nAABAAgZTAAAAAJCAwRQAAAAAJGAwBQAAAAAJSipwwGfHjh3lPXv2BC37k5/8xNQ++MEPBu+rVnp7\ne02tvb09aN1HH31U1p944omsY8oxOjoq6zG/6F3pb/7mb2T9137t14LW/853vmNqf/RHfySXrQxx\n+MhHPuL27dsX9BPUMe3z6NGjphYaZvJeUURbqgwYeZsKUpiNKif+79q1y+3Zs6fq7VNNelWTcNVE\n487OTrnN48ePm9q6deuCjifXG2+8YWq+YAY1eVsFBGzcuDH/wCr4gh0aGtL/3dEXUqJCNXJVhjt8\n7GMfc6+//npQ+7zuuuvKX/ziF2fUfG1JBUd9/vOfN7WPf/zjpuabNH/vvfea2sTEhKmpQCQVruKc\nnuB+xx13mNp3v/tdU/vkJz8pt6na8o033iiXrTZ1Ppxz7pvf/KapqSCa1157zdTuv//+4P2r9f/2\nb//W1H7nd35Hrr9y5UpTK5VKr5TL5aD0EtWHnj9/Xi47NDRkasPDw6amQjnUcs7pkCnVxpWXX35Z\n1nfu3Bm0/rFjx0xNBb0559xv/uZvmpoKJAkN6agGFd4RGrAVQ113FUrk69NfeumlGX9/7nOfcwcP\nHnzXPpRvpgAAAAAgAYMpAAAAAEjAYAoAAAAAEjCYAgAAAIAEhQVQhFKT6tQvStebmnS6evVquazv\nl9PrSV1n9YvaRVCTJH2TXpubm2f8vWPHjqwJ/mriunP+X2ivpCZL+yYuqoCA+fPnm5qaDFlE2EMM\n38R7JWcy/tVCTVx3zrnFixfP+Du3fU5NTcll1QToyn0759zg4KCp+fof1cZU+1T9Qu59FEPt6/Tp\n06ZWq/AMH3Wc3d3dprZs2TK5fmVf5/OjH/3I1B544AG5bOX1yG2fPqotqb5K9Ssx/YcKYmlsbAyq\n5fLdm6H78oVFzJ07N/mYcql+ZeHChXU4kv+TG0ChAgec0+dZPaMV1e5i1lfvW75Qi9B+IMbIyIip\nqb7a9/4f+jljqPAp9dmLuD/Onj1ral1dXUHrhvah1/5bEQAAAAAUgMEUAAAAACRgMAUAAAAACRhM\nAQAAAEACBlMAAAAAkKD6UUyRlixZUu9DCHLjjTcGL9vT02Nqy5cvNzWVxOVcMWmAocl9TzzxhKk9\n+uijwftRyTqdnZ2mVkSCjXM2PSom5am3t9fU1LEXoYjUvpg0qtmY0Bd6H+WmbikqOa8IvmMM3b+6\nr33JjGNjY6YW2u6KSO2L2ZdK7iviusdQx6kSXnOP50Mf+pCpqWvpO6YihLab0NQ/53QfVESqWKiY\n63bhwgVT86U41pP6TCplzTnn2tragraprrGvD6pGcmDltn37ymk7ue1O9ctFvfMoKjFY9Ze16iud\nC29Pqj363l9bW1tNTaVoqvcGlXjonD53IWbfGxQAAAAAXAUYTAEAAABAAgZTAAAAAJCAwRQAAAAA\nJIiarTo6OurefPPNGTVfiMLtt98etE01GfX555+Xy952222mVo0JjdWmJrspRQRN+Jw8edLU1qxZ\nY2oxYROKmmR5xx13ZG0z1Pj4uDt9+vSMmq99qMnBaoKkmszoC2uo5WTOEDHHMzk5aWq1DB1QQu+j\n2XbeY5TLZVlXE25V6IC6Rr72GRpCU2/9/f2mpvqVWrZPNcldnedaneP58+fXZD8x1DmKeT6rvnbu\n3LlZx5RjfHxc1lU4QUdHR9GH847UZHrVFtX7Vm5bKiI86Z1U3ncxYUHqPKUGDswG6rntnO4b1f1Z\nxLPTFwgSGnKlrkdMQFZon1Ht5wffTAEAAABAAgZTAAAAAJCAwRQAAAAAJGAwBQAAAAAJomZgLViw\nwG3evLmqB6AmwN19991yWTVBFTP5ftVZhU1caxoaGsxE9aVLlwavHzrp3xccUkSIQ62CIWo1mf/K\nlSuyHhrGcrWEKCjlctlcz5jzrvrKmPVbWlqCl63kCxpSk9dzQwPUcdb7uocGUMRMlJ5tpqamXG9v\n74xae3t71PqVVP+lAhyc0+1GbbNWgTO+41SGhoZMzRcuU0Tw1NUcohBjenra9EUx5zP3PA0PD5ua\n6pti9pMTvOLr/31tL3S5nP42tw+cjeE6Ia7enh8AAAAA6ojBFAAAAAAkYDAFAAAAAAkYTAEAAABA\nguxZ593d3bK+atWqsAOImECtJkHHTJCdbdTkWufyJti+VyaiKnPmzIkKnKjU19dnam1tbVH7r5Qb\nIFFEMIQK1VCTPkdHR+X6Ob94H/Nr9dea6elpM1Hd9wv2qh2r/kIFI/jaTM7E4CImzfvUO2xCqVVA\nSz01Nja61tbW5PXVOVLX0heSpJ5doc9CX0BKrdqt+kzLli2ryb7fSxoaGrKuqQpcUG1U9avO6VCS\n0L5hfHw8eJu51GdSz/P38vO42vhmCgAAAAASMJgCAAAAgAQMpgAAAAAgAYMpAAAAAEjAYAoAAAAA\nEkRFFE1PT7vh4eEZtdDUPufCk1S+//3vy/Ufeuih4H3VgkpFc04noynqfFyLVIpMTiJcUWKS+0LN\nxhQw1T5VW8xJlYSl0tImJiaC18/tV1Qa4Gy8xqq/UH2tL9VrNn6mHCrx0fcZc5IQp6enTSpdc3Nz\n8Pqh+/alSl65csXUQtPGapk2qVLZSO6rncqkPV8q8ty5c5P3kftupxSR2leZDvtO+1L3ki9Ndja+\nt1Sb7zmZ2ofyzRQAAAAAJGAwBQAAAAAJGEwBAAAAQAIGUwAAAACQIGqWWUNDg1u4cGHyzkIndt17\n772ynjOB+vDhw7K+cePGoPWVmMmI3/rWt0zts5/9bPK+qyF0wm/lpOS3NTU1Be1HhU0MDAzIZVta\nWoK2qZTLZTOhst4TKXMmVeeKmVyq7s2cCbzV0Nvba2rq2H1hJqHHryaUFzFZWIkJoVHLnjx50tR8\noQFLly4N2qbqZ30TsmMCCiqpoAnn9PU8f/68qfn6/iLCCNSxqvtLPR99gQvK4OBg0H4qg0yqoaGh\nIet6ht5HvudmTBhLPanPdOLECVNbu3ZtLQ7HOefcxYsXTS00FCNmIn5l+INzun37rmXuMyX3GR/6\nDup7t1F9Y2jAVu57lJJzvzrn79dr9d4U+k6v2p1zcX1rpZywHoVvpgAAAAAgAYMpAAAAAEjAYAoA\nAAAAEjCYAgAAAIAEUbPMyuWymWznm/wdSv2Cs5oo7Zxz//RP/2RqP/dzPxe0n5ygiVhqQmLMpO6c\nX9n2efrpp01t8+bNpqYmb8dMkFShAX/+539uan/4h38YvM1QpVKproETatJtaNhEEZNTfedC3XO1\nmuQeo7293dRyQmh8ahk2UXmeYwIo1ITZ3Enuqg9S/Y8677linh21nMyv5DznYvr50PAMFVQRs34R\nVBvp6+sztba2Nrl+PY89hrpn690+VdiEeh6pAAjfs0eFqai2rJ5RRYYXVYYOxIQQDA8PBy3nC1qL\nCUeoVO3Ag3fS399vaup5Xsv3JfWOoc6JCrKJecarNqrauC/sLDXUgm+mAAAAACABgykAAAAASMBg\nCgAAAAASMJgCAAAAgAQMpgAAAAAgQXSaX2hyiUq8OX78uKmtX7/e1L785S/LbT722GOmFppG9cIL\nL8htNjc3m9rNN99saioBzZcwopKfdu/eHXScRbn99ttNTR3/M888Y2rqfDjn3IoVK0xNJbCpJMVL\nly7JbfqSHGvhzJkzprZy5UpT8yWwDQwMmJr6PGo5n5w0P99+fCk2s83Zs2dNTSXt+NqMSioKTbjy\nXePKFLXQ/tA5nTYZk6ak7pmDBw+a2qZNm+T6HR0dpqb6oGPHjpmaL+Fo9erVpqb6FXXF6zGrAAAN\ng0lEQVTefefu8OHDpqZSMWuZoKb6f5UMptKpVNKaj+qDVM3XPnfu3Bm8r2pTbUTVfH3/kiVLTE0l\nBMYkYKq2qI4pZpvd3d2m1tnZaWq1TEpT5yk0US/mPST0eXThwgVZV31QjHK5bJLZfCl56lhVcqu6\nTm+88YbcpmqjqqYS6XzHefny5aBtKr50QvWZVH9by3dQdUzqPKma715S93doGq0vZbVy/6FJtnwz\nBQAAAAAJGEwBAAAAQAIGUwAAAACQgMEUAAAAACSIniFZOVGzv79fLtfa2mpqamLzn/3Zn5na9u3b\n5TZjJvJWWrRokaz79lVJBVW8/vrrctmbbrrJ1K6//vqg/RQlNNhBHacKmojx8MMPBy9bOVE9ZmLw\n9PS0u3LlyoyamrjunHO9vb2mpsImFN9E0tBzHBMAoSY/+oJPcvYzG3V1dVV9m6GTsn3XuLI9+YIZ\niqDa12233WZqp06dkuurQJINGzaYmgoFUgESzvnPUyV13tXzwDnntm3bZmoqjKSWVP+vgobUvanC\nK3zbVH2Qqk1OTsptVtv58+dlXX1OdY3VZ4wJZghd1jeZPPR+V+1bhRU4p0NX6u3VV181tdAwktDn\niXP6nUetv3Xr1uBtxmhoaPA+00Oo63zgwAFT872vqXteqQzJcM65vr4+uWzoc07d8wsXLpTLnjhx\nwtRqGdgTSn0mdd/57kXl5MmTpqae0yoszTk7Vgi9P/hmCgAAAAASMJgCAAAAgAQMpgAAAAAgAYMp\nAAAAAEgQFUAxNjbmjhw5MqPmC3AYHR01tfvuuy+oVoQtW7ZUfZsqaMI5/QvOMRPo6klNSFeTKZ3T\nvzCuJv+tWbMmeP+VE4ZDJ7g7pyenHj16VC6rJpiqXyJXk1Pvvvvu4GM6c+aMqalfLVfn3bnwyY9v\nvfVW8Db3799vamrSf71dunTJ1EJDPnL5flneN+E3RLlcNn2Db+K8avfqmFQoz+bNm+U29+7da2oX\nL14M2qavHcbcn5V8E69feuklU7vllluS91MUdU7U+VRhTD7q2VEZquOc/z6oXD8mwEfxPbfUZwoN\nY1FBKM7p+12FPajnkS9gKtT09LSpqXbonHN33nmnqan3ndCwgmpQYRNqcv/BgwdNbcmSJXKbq1at\nMjX1ztPT02NqvncGX78aanJy0uxv+fLlweurQKciwjLUuS8iUMlnNoZNKKHP05jnsWq36t1OhePk\n4JspAAAAAEjAYAoAAAAAEjCYAgAAAIAEDKYAAAAAIEFUAEVTU5M3cKJSzuRL9SvVzumJ8zfeeKOp\nqWCE0F9Cj/Gd73xH1j/60Y+a2tUSQKHMnz8/eFk14fnb3/62qf3yL/+yXP/UqVMz/lYTsmP4fslc\nURNx77rrLlNTk0ud05NbV65cGbz/HL6wCWU2hk0oalJ4LjVZWk1g9vUXlev72oJSKpVMPxDTL6hJ\n9qrN+Y5J9d2hxx8aLuCj+gXfZ9+1a1fV959LnSdVU+Ed6rnlnL4P1TmJaSM5AT5Ke3t71voqmKGl\npUUuq+ox6+dQ7ysqaMI5HRpTy7CJUHPm2Nc7FSBx9uzZrP3EBECod7MYc+bMidpfpSKuk3pfrQzC\nqoaYe1kdUxHvwDFUf6mOU7WR0CAu55zr7u42tZgQtKGhoRl/h76H8M0UAAAAACRgMAUAAAAACRhM\nAQAAAEACBlMAAAAAkIDBFAAAAAAkiErzqxVf6sitt95a4yN5Z5/+9KfrfQg14UstfPjhh02tubnZ\n1GKS5q677roZf9c7BTEmRUalJyFdTmqTj0q/U3x9UOUx1fuaq/bp+4wqEa9W95dKospNmqsldZ1V\nTSU/xSQ+Dg8Pm5rqU31m2zmN6T+V2ZiSF5NuO9sMDAyYWldXV/D6szElLpdKGo25j2r1+WPupdl4\nTUL7UCXmnsvtMyr729AkWb6ZAgAAAIAEDKYAAAAAIAGDKQAAAABIwGAKAAAAABJEzZ6enp52V65c\nmVFbvHhx1gHkTv5D8VTQhM+yZcuCarXim/wdOvGxt7fX1Nrb27OOCfXT2dlZt31PT0+bgAFfO8wJ\nhqD/rB81WfmWW24JXn/hwoXVPJwoRTzf1UR4FdLhXPhEb6RraWnJWn82Bhvkor+8tnR0dNRlv/Re\nAAAAAJCAwRQAAAAAJGAwBQAAAAAJGEwBAAAAQIKoAArn7K8w507wZ/Lfe9NLL70k63feeWfyNouY\nQK3CJk6cOCGXVRMfm5qasvaP4k1MTJhaEROtGxoaTMBAZXt9W04Axfj4uKzn/jI86kM9Y0dHR+Wy\nixYtSt5PQ0NDdn8Zoq+vT9ZVOELoewRml9z3wncyNTU14+/Kd1IgRLXbKN9MAQAAAEACBlMAAAAA\nkIDBFAAAAAAkYDAFAAAAAAmiZlqpCdRFUBPCnXPuzJkzprZ27dqiDwcFuP3226u+zVpNoKbNXVtU\n2IQvxCEnGEIpor2OjIzI+tGjR01t69atVd8/qktNsK92O6yl1tZWWSdI4NpRZHAI7QTVMD09XdXt\n8c0UAAAAACRgMAUAAAAACRhMAQAAAEACBlMAAAAAkIDBFAAAAAAkKC5yJYNK13LOuWXLltX4SFAU\n3zUGZoOrOS3Nl7hKCmXxJicnTS032axUKpna1dw+SWOrn7GxMVPzXY8iE/lmu3K5LOvqXkR1FdGH\nKtXuQ/lmCgAAAAASMJgCAAAAgAQMpgAAAAAgAYMpAAAAAEiQPaurt7dXb1hMGGtqagpazmd6ejr8\nwGaZ/v5+U2ttba3Z/vfu3Wtqt9xyi6m99dZbprZu3Tq5zdBrd+LECVPzTYYfHx+f8bdvIqhSLpfd\nxMTEjJpvwujU1NS77ts550ZGRkyto6NDbnN4eNjUfGEA9aQ+uzr2xYsX1+JwnHPOXblypW77V5Oy\n58+fL5cdGhqa8Xe9+yS1f9+xX80Tyms1KTlXEccU89lHR0dn/B3Tfyqqr3COEIlKlefdOecWLFhQ\nhyP5PwMDA6bW0tJiarl92ODgoKktWrRILnv58uWsfU1NTbm+vr4ZNV9/p+qV7wc+vuV8n2u2Ue8t\n6v27COp56pwOfFDHqZZT95dz4fdYLe5PvpkCAAAAgAQMpgAAAAAgAYMpAAAAAEjAYAoAAAAAEkTN\nlh0fH3enT5+eUVu9enVVD+id1HJCfLXVKmzi7Nmzsq7CJpQNGzaY2rFjx+Sy69evD9qmL2xCqZx8\nGPOL46VSyc2dOzdoWTWBu6enx9TUhNMzZ87Iba5cudLUZuPE+coQBed0QEoR99uFCxdkfdmyZaYW\nOrH54sWLwdtUfBOYlebm5hl/NzSE/3vUxMSEuT+XLFkil1XtWJ0PNdnXt00VsFKrSckxKieYO6f7\nAd91K2Liv5rMr0Jb1GT+ymfm23bt2hW0b9VfqInbzul2k8MXNKE+p7oXVLCM7/qocIIVK1a82yHO\nCiqwwBdikNOvqueJjwqbUM+45cuXy/VD+191H/rapy/QJFRjY6Nra2ubUfMFaKj2qPoRFXig+sqr\nSbX7gRi+PkOd+9CArtzAm1qEwfDNFAAAAAAkYDAFAAAAAAkYTAEAAABAAgZTAAAAAJAgaib8vHnz\nggMn1IR2FcKgJvqpCYHOxf3SdrX19vYG7zt08p/v18B9E8grqV917uzsDFrXOT1Bdu/evaa2c+fO\n4G0qn/nMZ0zt8ccfl8uWy+UZf8dMuFXUZHbndFsMbduVE2DfSeik7Nywh5igCzUxWdV8k3B992el\n0F83d06fp9B72xc0oUIDzp8/b2obN240tZhJzaEaGxvNdY4Jvwi9Rr7JuqFhE0X8WrxqC77jUe1W\nTVTOuRY+vusees8oKpjG59KlS6a2dOlSU6vsJ99Wee5iAnwU1Vf5qD4spl9TYRNFtEVFnU/fuVNt\npFbhWL5jUvd86HNGvas5p5+R6jmj3nd870BFBN7EtPHQZ1fM9VTvUfUMgHAuPORKheg4Fx4Moe6F\n3LAIxXeNVaBJ6P59YSipzxW+mQIAAACABAymAAAAACABgykAAAAASMBgCgAAAAASMJgCAAAAgARR\naX5TU1MmIcuXaKSSYFRSkUrm8SWu1Cq5TyWUtLe3V30/oal9PiqtJybpSCXOxCT39fT0mNry5ctN\n7etf/7qpqXQv55xbs2bNjL9DU2l8fMl7KhlSJUf5kuJCqbSc3HasUiBVW8pN4wtdzke1r9w0J5XG\np1LAnNOJRCq5TykqKW5sbGxGLTcxLDc5SbWRIhLU1HUPTaRzrpjroVK4fAlP6vP7kv8q+Y5d7V8l\n9ymhaVsxyuWySWvzXSP13FfJqTHJp4pKu8xN9VXXTV0LX9JmEW0xlO96KKpvUO045t4+fvy4qd1w\nww2mlpsiGSNmXznpbz5DQ0Omltvuc/btnHPNzc1B6+f2I+p8xiQZque56lt87w3qXlbtQd2z1U4d\n5JspAAAAAEjAYAoAAAAAEjCYAgAAAIAEDKYAAAAAIEEpZkJjqVTqcc6dKO5wAGNtuVy2qRYC7RN1\nQPvEbEb7xGxHG8VsFtQ+owZTAAAAAICf4r/5AQAAAEACBlMAAAAAkIDBFAAAAAAkYDAFAAAAAAkY\nTAEAAABAAgZTAAAAAJCAwRQAAAAAJGAwBQAAAAAJGEwBAAAAQIL/B4Up61i5epNmAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPkAAAN9CAYAAADhX6xBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuQZVdd//21zrXPpe+36ZnuuWYySUzNJNKJSBE0IUCC\ngSRoBVARJRpAgQcvVKEliv6wfOqHPFqWXCqYWGA9EayS8CAiwo/8gCARMwkhhPwmySSZS8+1e/p+\nO6fPOev5IxNtJuf77e7Ve+9z9pn3qyqVmf7M3nudvfe6nNX7Yp1zBgAAAAAAAEB8JRpdAAAAAAAA\nAACbwyQfAAAAAAAAEHNM8gEAAAAAAAAxxyQfAAAAAAAAEHNM8gEAAAAAAAAxxyQfAAAAAAAAEHNM\n8gEAAAAAAAAxxyQfAAAAAAAAEHNM8gEAAAAAAAAxl9rIP+7r63M7d+6smz3yyCPici972cvEbH5+\nXszOnj0rZsvLy2JmrRWzvXv3ei2nlaWtrU3Muru7xWxlZUXMpqenxaxWq4nZ+Pi4mF1++eVilkwm\nxSwMx44dE7P29nYx046Rdi4NDw+LmbbPZmdnxWzr1q1iJu3PsbExMzk5KX8IhVb/tHMpnU77bM4s\nLS2J2djYmJht375dzKrVqphpx29gYEDMtLrS1dUlZlobotVp7TMsLi6KmbY/tc8XF+fOnRMz7Tg8\n9thjYqb1HVqbrO3PRx55ZMI51y/+A0FPT48bGRmpm2ntmVYftLr56KOPrr9wq1xxxRVilkrJXb6W\nHT58WMx27NghZtrn0+qR1h+Vy2Ux09rybdu2iVkYKpWKmGn7emFhQcwKhYKYzc3NiZnWp2q0cd3u\n3bvFTBv3+NY/Y4wpFAqup6enbjY4OOizSnPixAkx6+zsFDPtOCUS8u/P+/vlj66dvx0dHWKWzWbF\nzNfp06fFTDuftHM0as45MTty5IiY7dq1S8y0/uqqq65aV7ku5Pv9SWtjpqam6v783LlzZn5+3msM\naq0Vd6jWph04cEDMZmZmxEwbf2v1SBu/aU6ePClm2nhf65MymYxXWSYnJ8VMq+9apq0zjDGo9l1V\nGzNp39e07x5a29Pb2ytmWnutHVttnCJlR44cMRMTE171r5VpbUuT+jfn3E2NLsRarNYJXmh0dNQd\nPHiw/oqUyRdtGw8++KCYfeITnxCzQ4cOiZlWYb/61a+KmdZJffzjHxezSy+9VMzuuOMOMdMGUfff\nf7+YlUolMdP22fe+9z0x0wblYXjPe94jZtddd52YaR3md77zHTH72Mc+Jmaf/OQnxezrX/+6mP3J\nn/yJmElfDm655Rbz+OOPezXwWv07c+aMuJzvl58nnnhCzH73d39XzLRzUBvQacfvfe97n5hpdeX2\n228Xs6eeekrM9u3bJ2bS4NkY/QuAtj/f+973illcfOYznxGz2267Tcy0CUCt7/ibv/kbMdPaF2vt\nI865UfEfCA4cOOCk/uO3fuu3xOW09kWrm/l8Xsy0CTLtHOzr6xMz7UuTdvy0zzc0NCRm2hc4bULj\n6NGjYvbpT39azD7ykY+IWRi0CRttXz/00ENi9tM//dNi9sADD4jZDTfcIGbaFzHtS8znP/95MdPG\nPb71zxhjRkZG3G//9m/XzX7nd37HZ5Xm93//98Xs9a9/vZhJfbEx+pfNu+66S8y0vvN1r3udmO3Z\ns0fMfP35n/+5mN14441ids011wReFl/aLz/f/va3i9l9990nZtpkgfaLLo3v96eJiQkx+8IXvlD3\n53/2Z39mjh49Gvgkn9aXnTp1Ssy072Rf+9rXxOyd73ynmF122WVipvnjP/5jMdPG+1qfpP0STPO5\nz33Oa51aW/CP//iPYqaNmXxpv9h+17veJWYf/ehHxeyDH/ygmGltz6/+6q+KWS6XEzNtUlEbp0jZ\n6OioOXjwIJN8F4jhJJ/3OCZK3K4LAAAAAAAAxByTfAAAAAAAAEDMbeiZfAAAAAAAAMBmaY8taDYb\nedRdI3ElHwAAAAAAABBzTPIBAAAAAAAAMRfY23V9+b56XHtrj/Za+WKxKGZxulRUMjc3J2bt7e0R\nliQc2psAl5eXxUx7U2WUNvNmpTDqH6KjvRU7m81GWBLd/Py8mGn1SHuTYTN9Pt+3e0Zd/3z7Ro3W\n37dC/9cKFhcXxUyrf9qYSHt7YNQ283bdMOpgGHVicnJSzLQ3MqZS8XiCjtbWa29k1va1tlwzCaNd\njlKzjUHjvj/DotWxdDotZtrbYLdt2yZmcen/4z6G4e269VlrXSIRn+vOarUab9cFAAAAAAAAED4m\n+QAAAAAAAICYY5IPAAAAAAAAiLl4PAAEAAAAAAAALSMOz1SMG67kAwAAAAAAAGKOST4AAAAAAAAg\n5hp+u67vK9JzuVzAJWkNrX65q/aK7Xw+H2FJgJdaWVkRM+dchCXxVywWvZbLZrMBl+Ti5ts3alqh\nfyiVSmKmnYNLS0ti1kzjCd9+rJk+Q5yEUSd6enoCX2czSafTXstVKpWASxK9MNrlixn7sz6tjtVq\nNTEbHh4Ws7iMQTWtMIZBfRzb4HElHwAAAAAAABBzTPIBAAAAAAAAMcckHwAAAAAAABBzDX8mHwAA\nAAAAAC4e1lqeyRcCruQDAAAAAAAAYo5JPgAAAAAAACDmuF03hqrVqpgVi8UISwJgtXQ67ZUBWB/f\nepTNZgMuCXBx0saglUpFzOgDgc1zzonZysqKmFH/0My4XTd4XMkHAAAAAAAAxByTfAAAAAAAAEDM\ncbsuAAAAAAAAIsXtusHjSj4AAAAAAAAg5pjkAwAAAAAAAGKOST4AAAAAAAAg5ngmXwwlk8lGFwEx\nMjs7K2YdHR0RlgRoTc45MatWq2KWStEFb1Qi4fe7Sd/lAPw4bQzK+BQIF/UPrYhn8gWPUS8AAAAA\nAAAQc0zyAQAAAAAAADG35r1C1tq7jDF3GWPM9u3bQy8QgP9G/QMah/oHNBZ1EGgc6h+AKHC7bvDW\nvJLPOXe3c27UOTfa398fRZkAnEf9AxqH+gc0FnUQaBzqHwDEE7frAgAAAAAAADHHJB8AAAAAAAAQ\nc2s+ky+Ozpw5I2bd3d1ilslkxGxxcVHM8vn8+gp2gVqtJmaJhDz/OjU1JWbZbNZrnW1tbWIWtYmJ\nCTHr6+sTs7GxMTEbHh72Kot2Li0sLIjZ7t27vba3Fudc3Z9rzzLo6OgIpSw+5ufnxaxYLIqZ9LmN\n8X+Og2/98zU3Nydm7e3tgW9PE0Z75mt6elrMurq6xGxlZUXM0un0psq0Udr+LBQKYtZMnyGMOqZZ\nXl4Ws2bqj1pdM52D6yG129rn0MZFWj+gtU1aH6G1W9VqVcySyaSYRU0b32j7U6vXqZT8lSPqOl8q\nlbyWO3bsmJgNDg6KmTYOe/7558VMO896e3vFTOt3LmYXc78Tt7a+2WnjvnK5XPfnWvt/MbPW8ky+\nEHAlHwAAAAAAABBzTPIBAAAAAAAAMcckHwAAAAAAACL14i27cfhvHZ/lJmvtU9baw9baD9bJL7PW\nPmStLVlrf2/Vz/dZax9b9d+stfb957MPW2tPrMpev1Y5WvKZfAAAAAAAAEDYrLVJY8zHjTGvMcaM\nGWMettZ+yTn35Kp/NmmMeZ8x5rbVyzrnnjLGXLVqPSeMMfev+id/6Zz7i/WWhSv5AAAAAAAAAD/X\nGmMOO+eec86VjTGfM8bcuvofOOfOOuceNsbIb8Mx5tXGmGedc0d9C8IkHwAAAAAAACLV6FtwN3i7\nbp+19uCq/+5a9VG2GWOOr/r72PmfbdRbjDH/cMHP3mutfdxae6+1tnutFURyu672yuhkMhn49paW\nlsSsvb1dzDKZjJjl8/lNlake55yYjY2Nidnw8LCYnT59WswGBgbWV7AG047D9PS0mBWLxcDLUiqV\nxKyvr0/MZmdn6/58s69Pl54FoL3KXatj2WxWzGZmZsSsUCiI2aFDh8TsyiuvFLOo24lEQv4dx6lT\np8RsaGhIzI4dOyZmg4OD6ytYBLQ6pnn44YfF7JprrvFaZ1dXl5g99thjYrZ3714x085dX7VaTaxn\n2rm0siL/oq5Wq4mZ9hmWl5fFTDvPKpWKmKVS8nCgXC6Lme+55Ltc1O1EGLT2Whu/9Pb2itnzzz8v\nZrt27RKze+65R8xe85rXiNmePXvELExSXfM9n7S629PT47VOTVzOUa2cWlsRxjgsDL6fT+t3fGn1\n05fU72jfO9ZSq9XE9imXy3mtc2FhQcy0Y9TW1ua1vampKTHT6rvWLmtjmDBo3/O0PuLIkSNiFsZ5\nHYbHH39czPbv3++1zi9/+ctipn3n/OVf/mUxk+YM4tL+Y00TzrnRsFZurc0YY95ojPn9VT/+pDHm\nfxhj3Pn/f8wY8w5tPVzJBwAAAAAAAPg5YYwZWfX34fM/24ibjTGPOufOvPgD59wZ51zVOVczxnza\nvHBbsIpJPgAAAAAAAMDPw8aYvdbaXeevyHuLMeZLG1zHW80Ft+paa1ffRna7MeaJtVbC23UBAAAA\nAAAQKelxVHHjnKtYa99jjPk3Y0zSGHOvc+5H1tp3nc8/Za3dYow5aIzpMMbUrLXvN8Zc4ZybtdYW\nzAtv5n3nBav+n9baq8wLt+seqZO/BJN8AAAAAAAAgCfn3FeMMV+54GefWvXn0+aF23jrLbtgjHnJ\nwzWdc2/baDm4XRcAAAAAAACIOa7kAwAAAAAAQKRa5XbdZhLYJN/4+LiY9ff3e63z2LFjYqa9zlx7\nDbr0WmtjjHnsscfE7KmnnhKzN7/5zWKmGRsbE7Pnn39ezIaH617haYwxZmZmRsy2bNmyvoIFZHFx\nUcza2trErKOjQ8yeffZZr3X6vuI+nU6L2b/+67+K2ctf/vK6P69Wq17lWIt2Xp8+fVrM2tvbxayz\ns9OrLFu3bvVarpleLa8dd+ecmJVKJTHLZrObKlOQUim/pl/bL08++aSYXXHFFV7b27Vrl5gVCgWv\nzFcikRDr2UMPPSQud+218guwtP35l3/5l2L2rne9S8wOHjwoZlp937dvn5hlMhkxO378uJiNjIyI\n2alTp8Rs27ZtYqbt61e84hVipkkkor2pQWuvv/71r4vZrbfeKmZaXdG87W3yHSBaPZqbmxMz7Tzb\njFKpJI6NfD+/Rus7tXGmVl+0sXJv70vu0Pkv2jk6Pz8vZsViUcw02njqiSfk531ffvnlXtuLuv/X\n+sBarSZmUbcVGm28L43fNvNFOpFImFwut+HltLZ+aGhIzLTvEL607Wm++c1vitnrXvc6z9LIZmdn\nxUz7Lnf48GEx27t376bK1Az2798vZr5j0FtuuWVTZapHaucrlUrg2wIkzdNbAQAAAAAAAPDCJB8A\nAAAAAAAQczyTDwAAAAAAAJGx1vJMvhBwJR8AAAAAAAAQc0zyAQAAAAAAADHH7boAAAAAAACIFLfr\nBi+wSb5yuey13Pe//30xy+fzYqa9Xlx6dbUxxrS1tYmZc07MpqamxOwHP/iBmB04cEDMurq6xGx5\neVnMjh8/LmaFQkHMqtWqmCWTSTHztbKyImaLi4ti1tfXJ2baeTY4OLi+gm3A008/LWYve9nLxEw6\nJ7TPHZbe3l4xS6fTgW+vp6fHazntfAmjnBqtfdHOzx07doRRnKZx1VVXRbq9zs7OSLenqVarZnp6\num526aWXisv5Dlx+6Zd+Scy0dn50dFTMTp06JWYLCwte2xsZGREzjW9beMUVV4hZItE8Nydo/a3W\nvtx6661hFEekHVtNe3t7wCVZWzabNbt27drwcs8884yY7d27V8w6OjrETKsv2lhyfn5ezPr7+8Ws\nVCqJ2cMPPyxm119/vZgtLS2JWTabFTNt7KqNJX3bGF/aOFr7LhCXL5va8Tt58mTdn2v7JCy++1P7\nDqjVB+3cHRsbE7Ph4WExe93rXidmjz/+uJjt379fzI4ePSpm2lhS68e1zz4zMyNmzTTWeu6558Rs\n9+7dYqaNDTTnzp0TM+37k0Zqy1Mprq1CdJpnRAwAAAAAAADAC1PKAAAAAAAAiFRcrqCOE67kAwAA\nAAAAAGKOST4AAAAAAAAg5pjkAwAAAAAAAGKOZ/IBAAAAAAAgUjyTL3iBTfJJr4tey4EDB8RMez18\noVAQs4mJCTErFotidvXVV3tlvrSyvOpVrxKzcrnstc5qtSpmyWRSzHxpr2RfWVkRszNnzojZ5Zdf\nLmaLi4vrK9gFtP3yMz/zM17rvOSSS+r+/E//9E+91rcZc3NzYtbT0xP49mZnZ8Wso6NDzNLptJhp\nbUEul1tfwS5Qq9XEbPfu3V7rzGQyXstFzTknZlpHOzY2JmZafW9vbxezr33ta2J25ZVXillbW5uY\nhXFeJ5NJ09XVVTfT2pBEQr5gXjsHh4aGxEzbnkZbZ9T27t3rtVwqFY/fTWp9and3t5hp54RW/0ZG\nRsRMq9M/+MEPxGzHjh1iptXpSqUiZo2wc+dOr+Xy+byYaeehVud37dolZtrYTutbrr/+ejHTaH2n\ndgz7+vrEbH5+Xsy08WkYtD5Co9UX7fMtLCyI2eDgoNc6tX2m9ePSWNl3n6xlZmZGzLRxn0arD6VS\nScyy2ayYDQwMeJVFs3//fq/ltm/f7rWcdi5pbU8z0Y5fb2+vmPm2kRpte77nGdAM4tEaAAAAAAAA\nABDF41fiAAAAAAAAaBncrhu8Na/ks9beZa09aK09OD4+HkWZAJxH/QMah/oHNBZ1EGgc6h8AxNOa\nk3zOubudc6POuVHf5+4B8EP9AxqH+gc0FnUQaBzqHwDEE7frAgAAAAAAIDLWWm7XDQEv3gAAAAAA\nAABiLrAr+XxfXa297rtQKIjZ2bNnxSyMV6SHIZlMilk+nxezSqUiZs8++6yY7du3b30Fi0A6nRYz\n7fXws7OzYtbR0eFVFu04nD59Wsy2bNnitT1fzjmzsrJSN9P2Z09Pj9f2tFfVa/XWty3Q5HK5wNep\nfQatjqVScrM5Pz8vZtKxM8aY7u5uMQuD72/MhoeHxWxpaclrna997Wu9lotarVYzi4uLdTOtvdbM\nzc2JWWdnp5hp52AYbWTUtLqifQbtmVFxudVMa5e0c0Jre9rb28XswIED6yvYBmh96mY55+r+vFqt\nisto/aMvbZ1a36nV3TD6Tl9aObVM++xa1kyfXWt/isWiV6bR6q62X3p7e722txlSPdPaJo22r7XP\nrp2DmmY6z7RxmNTOGaN/L9m6dauYzczMiJnv8fOVzWbFTOs/jhw5ImZ9fX1i1tXVta5yXUgrp3bu\nhtHnABvFlXwAAAAAAABAzPFMPgAAAAAAAESKZ/IFjyv5AAAAAAAAgJhjkg8AAAAAAACIOW7XBQAA\nAAAAQKS4XTd4XMkHAAAAAAAAxFxgV/LNzc2JWXt7u5hJr2M3xphEQp6DHBgYWF/BYqpcLouZtj87\nOjrCKI4X7fXitVpNzLTjHvXn27JlS6Tb01hrA38tu3YcMpmM1zpTqfhfILy8vCxmxWJRzPL5vJhp\n53Uz0doe7ZxIJpNhFKdp1Go18bzQfgOZy+XErLOz06ss2jFqpj7Al9bOzczMiFkznYPa2EYrp3NO\nzLTzRTsnWolU1+bn58Vlurq6xEwbp1QqFTHTttfb2ytmcbG4uChmWj/nO24Ig1aXtDbbtx3xHdc2\n0zhzLdK+KZVK4jLZbFbMfMe0s7OzYra0tCRmQ0NDXtuLmnZ+bt261WudvuONqGnfIS655JIIS6IL\n+vsYELR4fOsEAAAAAAAAIIr/JTcAAAAAAACIFZ7JFzyu5AMAAAAAAABijkk+AAAAAAAAIOa4XRcA\nAAAAAACR4nbd4HElHwAAAAAAABBzG7qSzzlnKpVK3Syfz3sVwPdV9b58X3Ef9TozmYzXcpowyqnR\n1umcE7Ooz4m4qNVqZmlpqW6Wy+W81qkdo2q1KmatfoyKxaLXctr+XF5eFrO2tjav7flaXFwUM9+2\nPIw2q5mkUinT09NTNyuXy17rlPrTF7cn0fa11rb6/qbUt5xh6Ozs9Fou6s+gHQff5bTj1+r170XS\n/ikUCl7rS6fTXpnW52rH0LdfDaNea3z7gajLqdG2F8Z4OIxxdDNxzonjGN/2R6sP0njXGGO6urq8\nMl9aH99MbW8YY7uotcJnAJoBt+sCAAAAAAAgMtZabtcNQWv/2gkAAAAAAAC4CDDJBwAAAAAAAMQc\nk3wAAAAAAABAzPFMPgAAAAAAAESKZ/IFjyv5AAAAAAAAgJjb0JV81lqTSjXHxX/aa9eTyaSYhTFT\nnEg0z1zpyZMnxWzr1q0RlkQ/DloGWaVSqfvzWq0mLuN7fs7NzYlZV1eXmC0uLnptL5/Pey3XTLTj\n0NbWFmFJdK2wr6NWq9XM/Px83axYLHqt0zm3mSLVJbURxuj9n9a3N0u/b4wxp0+fFrMtW7ZEWBKd\n7z5rpvFEM5LO4XQ6HXFJZFo98x37NNNVDr7jjXK5LGaZTGZTZdoo6tnGWWsDH8do9UGr09p3nc7O\nTjErFArrK9gFmul88e0DtbF5M40Jm6ksQJw1z8gdAAAAAAAAF4Vm+kVWq2ieX00AAAAAAAAA8MIk\nHwAAAAAAABBzTPIBAAAAAAAAMccz+QAAAAAAABApnskXPK7kAwAAAAAAAGIusCv5lpaWxCyXy4mZ\nc07MyuWy1/a0V6Rrr2SPC22/bN26NcKSIErWWrUu+ahWq2KWyWTEbHx8XMw6Ozu91tlMtP2STCbF\nbGZmRsy6u7s3VSb8OK3vCOM3golEwhSLxUDX6dsfzc7OillHR4dvcWJhy5YtYlapVMSsVquFUZyW\nFnUdawTtM2rnzKlTp8Qsm82KWX9///oK1mDaZ08k5OsD5ufnxUzbL9g433GKr1qtZhYWFupmWl+m\njfu080w7X7TvOtr4VPt+qEmlmufGN60P1OTz+YBLAqCZNU+rBQAAAAAAgItCq/zisJlwuy4AAAAA\nAAAQc2tO8llr77LWHrTWHtQugQYQvNX1b2JiotHFAS4q9H9AY1EHgcZhDAoA8bTmJJ9z7m7n3Khz\nbjQuzxIBWsXq+tfX19fo4gAXFfo/oLGog0DjMAYFEDZrbaz+iwtu1wUAAAAAAABijkk+AAAAAAAA\nIOYCe7uu9op0je/r08O4XLJSqYhZM70+XSun73GI2tLSkpjlcjkxC+MYLS8vi1kiIc+DV6tVMdM+\ngy9rrUkmk4Guc2Zmxms57bYpbX+Wy2Uxi3p/arT9rJ2D3d3dYqZ9vqCP61oWFhbErFAoiJlzTsx8\n2+SpqSkxm5+fF7ORkRGv7fmqVqtmdna2btbR0eG1Tt/j4NvWafVda+va29u9tudrcXFRzE6fPi1m\nw8PDYqa1PVH3m1obMjY2JmY7d+4UM9/2xXc57Vzq7OwUs7CsrKyIWTqdFjOt3ZqbmxMz7dZFrZ3U\nzu18Pi9mUdPaA02xWBQzrQ42k8nJSTHr6ekRs6j7+KjHDcbI57ZvG+p7nml1sxHtT7M4d+6cmHV1\ndYlZ1OeSNu7TziXtfIn6e0IzjSmAeppn5goAAAAAAAAXhTg96y4uuF0XAAAAAAAAiDkm+QAAAAAA\nAICY43ZdAAAAAAAARIrbdYPHlXwAAAAAAABAzDHJBwAAAAAAAMRcYLfraq+S1l5rXSqVxCyfz4tZ\nOp0Ws0qlImbS69+NMSaVknfH0tKSmEX92m5tv5w+fVrMtmzZEkZxvISxz1ZWVsRMO1/a2tq8tqed\nZ2EJ+nLmnp6eQNdnjL4/Z2ZmxKyzs1PMFhcXxUyrD2HQ2gmtPctms2EUx4v2GWq1mlemrVPT1dUl\nZlEfW4211iQS9X8v5tv2FAoFMdP2tbZfFhYWxEyrY81E+3wjIyNipu3rTCazqTIFSasrO3fuFDNt\n/OIrmUx6LdeocynofaCN7YrFophpbb3WT2vntvbZmulWpmq1Kma+Y/qoad9ZtHGR1tZrY8Iwxry+\n4ylfzjm1X4pSe3u7mJ09e1bMtDo2ODi4qTJFRevje3t7xawR31kk3d3dYnb8+HEx0/r/qakpr+1p\n57Q05jOmucYUQD08kw8AAAAAAACRaqZfZLUKbtcFAAAAAAAAYo5JPgAAAAAAACDmuF0XAAAAAAAA\nkeJ23eBxJR8AAAAAAAAQc0zyAQAAAAAAADEX2O26bW1tXsvl83kxm56eFrOuri4xS6fTXmUplUpi\ntri4KGa5XM5re9rrzKvVqphls1kxKxQKXmWJmravtc83MzMjZtqr4zXOOTE7fPiw13J9fX11f76Z\nV9hXq1XxFfHa6+E1y8vLYqaVtVgsem2vs7NTzMbHx8XM99iGQaubWtZMtDqmHfdUKvgnPJw5c0bM\nFhYWxEy7tH/37t2bKlM9iUTC67zX6pjWbyYS8u/gTp06JWba8dPWmclkxCyZTIqZdvwGBwfFrFar\niZlWztnZWTHT+mJtrNFMxsbGxGx4eFjM5ubmxEwbL2m0/k9rk337o/WQ6r027tPaZd/xm9YWaue2\nNm7wvV1pZWVFzHzHwxptPNze3h749sKgtXcabX9q7ZbGty2Muk1LJpOmo6Ojbnb27FlxuZ6eHjHz\nHVM8++yzYqb10/39/V7b09pXrR/3rX/a2Mf3uIcxfvM1OTkpZiMjI17r9G17fOutRhr3ae3/xcxa\ny+26IeBKPgAAAAAAACDmmOQDAAAAAAAAYo5JPgAAAAAAACDmmucGfQAAAAAAAFwUeCZf8LiSDwAA\nAAAAAIg5JvkAAAAAAACAmNvQ7brVatXMzMzUzTo7O8XltFdla69W7+rqWn/h1kl7Dbr2+u1sNhtp\nWbq7u8VMewW37yvEo5bJZMSsVCqJWblcFjPtlfOFQkHMtEuE9+7dK2aa6enpDW9rLclkUj0vfLS1\ntQW6vs3o7+8XM996G4ZkMilm+Xw+wpL4W15eFjPtnDh37pyY9fb2epVly5YtXstpnn/++cDX6dv/\nhVHHhoaGAl+ndk5o5/zg4KDX9hIJv98x+p5nzeTIkSNi5ntsOzo6vJZ78sknxUzr/9LptJjVajWv\nsmzGysqKmGll1fqW2dlZMSsWi2KmjdFSKXnYra1T26eLi4tiprVN2jq1LC7jTI22z7R+XGsntbGr\ndhx820IOJjQaAAAgAElEQVTtXJqYmKj780ql4rWttQwMDIiZtq+1z6DZs2eP13K+3xOiPue1sviO\n35qJ9t1fOneNMaavr0/MfOtRGKTjwC2pMvZN8JqnRgAAAAAAAADwwiQfAAAAAAAAEHNM8gEAAAAA\nAAAx5/cwBAAAAAAAAMATz+QLHlfyAQAAAAAAADHHJB8AAAAAAAAQcxu6XTeZTIqvgT906JC43MjI\nyMZKdd4zzzwjZh0dHWKmvXo8k8mI2dLS0voKdgHtElPtdebd3d1i9vTTT4vZJZdcImbaq8f7+/vF\nLGraPpuZmRGzdDotZtpx16ysrHhtb2pqSsxmZ2fr/rxara6/YBHw/eyaM2fOiFlPT4+Yzc3NeS1X\nLpfFTKvvmmPHjonZ9u3bvdbZTLR2SdPb2ytmWn3Q2rparSZmWn3Rzs9t27aJma9arSb2EVK/aIwx\n09PTYpbP58VMqw/PPfecmF1zzTVidvr0aTHTzgmtHp07d07MtD5HaycGBwfF7NlnnxWzrVu3ilku\nlxOzqGltiDbu2bdvX+Bl0Y7R4cOHxay9vV3MhoeHN1UmH8ePHxez3bt3i5lWB7U6kUwmxcw5J2Za\nO6m1aVpbqB0LTSIh/57/1KlTYtbX1ydm2WzWqyxR8y3nwsKCmBWLRd/iiE6ePClmAwMDYiYdo1TK\n/ylNpVJJbH+1tlf7bqWd19/61rfE7JZbbhEzje/3BM3k5KSYaWNXX1q7fOWVVwa+vahp4ynN+Pi4\nmGljCjQHbtcNHlfyAQAAAAAAADHHJB8AAAAAAAAQc2tet22tvcsYc5cxrXGbGhAn1D+gcVbXvzBu\nAQagow8EGmd1/dNuyQUAX9ZabtcNwZpX8jnn7nbOjTrnRpvpmW7AxYD6BzTO6vqnPY8QQDjoA4HG\nWV3/wni+HAAgHNyuCwAAAAAAAMQck3wAAAAAAABAzPm/S/0Cl112WVCr+i+7du0Ss2QyKWZxua+7\nVquJ2aWXXuq1zla4nWVgYMBruXK5LGaZTEbM0um0mC0sLIhZd3e3mLW1tdX9eSoVWJULhPbZl5eX\nxUz6fMbor6p3zomZ760g2rH1pT37STsnCoVC4GWJ2tLSkpjlcjkx0+qDZn5+Xsw6OjrErFQqiVk2\nm/UqiyadTpstW7ZseLmuri6v7Wm3B7e3t4tZpVIRM61/0PpUjW+fo7UTmp07d4qZ72eIWiIh/351\n3759ga9Tox0/32NbrVa9ltuM3bt3ey2nnTNaNjMzI2adnZ1i1tfXt76CRUAbMw0NDUVYkuhp42+t\nDdXac23M5Nsnaf2AVs4w2sJsNmv27Nmz4eW0cYPmlltuEbOVlRWvdWpjXl9h3MasjYta4dmk2ncB\nX1qd9qW1kdp3Aam+h1HGVhGXuZs44Uo+AAAAAAAAIOaY5AMAAAAAAABirrnuHQQAAAAAAEDL43bd\n4HElHwAAAAAAABBzTPIBAAAAAAAAMcckHwAAAAAAABBzTf1MPu3V1fl8PsKShCORYI41SCsrK2KW\nyWS81jk7OytmhUJBzHK5XN2fx+mYt7W1Bb7OVnjmgnbcW4F07hpjzNmzZ8VsYGDAa3sdHR1ey2Wz\nWa/lWoFve9YKkslko4vQUo4fPy5mIyMjXutslWO0tLQkZul0OsKShONibkd8j59zLuCS6FIp+Wta\nq9QzH9p4vxW+HxaLxUYXIVTadwGtblarVTHr7u7eVJk2ymd7cfoOGLVW+H7YbDjbAAAAAAAAgJhj\nkg8AAAAAAACIuaa+XRcAAAAAAACth9t1g8eVfAAAAAAAAEDMMckHAAAAAAAAxBy36wIAAAAAACAy\n1lpu1w3Bhib5nHOmUqnUzbSD4/uad+016EtLS2KWy+W8tod4KxQKga9zaGgo8HX6qtVqZnFxsW6W\nSslVOZPJhFUkXGQGBgYaXYSmNDMzI2adnZ1e65TqujF6H8dACRsxMjLS6CIEYmVlRczS6bTXOrPZ\nrJglEtwIczHS2tcwxqC+359anfb9EK1Lqw9h1BW+PyHOGKUAAAAAAAAAMcckHwAAAAAAAODJWnuT\ntfYpa+1ha+0H6+SXWWsfstaWrLW/d0F2xFr7Q2vtY9bag6t+3mOt/bq19pnz/+9eqxxM8gEAAAAA\nACBSLz6XLw7/rfE5ksaYjxtjbjbGXGGMeau19ooL/tmkMeZ9xpi/EFZzvXPuKufc6KqffdAY8w3n\n3F5jzDfO/13FJB8AAAAAAADg51pjzGHn3HPOubIx5nPGmFtX/wPn3Fnn3MPGGPlhwi91qzHmM+f/\n/BljzG1rLcAkHwAAAAAAAOBnmzHm+Kq/j53/2Xo5Y8z/stY+Yq29a9XPB51zp87/+bQxZnCtFW3o\n7boAAAAAAADAZq11G2yT6Vv9vDxjzN3OubsDWvcrnXMnrLUDxpivW2sPOee+vfofOOectdattaIN\nTfJZa00q1RzzgrlcTsyWl5fFrK2tLYzioEU5J9ehcrksZtlsNvCyJBIJk8/nA18vEEcrK/JV7ul0\nOsKSGNPZ2Rn4OqnraLRSqSRmYfRxa3HOiWUKY2yaSMg3u1QqFTHTvqwkk8lNlQl4UdR9oHNO3KY2\nVs5kMoGXBQAaaOKC5+WtdsIYM7Lq78Pnf7YuzrkT5/9/1lp7v3nh9t9vG2POWGuHnHOnrLVDxpiz\na62L23UBAAAAAAAAPw8bY/Zaa3dZazPGmLcYY760ngWttQVrbfuLfzbGvNYY88T5+EvGmLef//Pb\njTH/31rra47L8gAAAAAAAICYcc5VrLXvMcb8mzEmaYy51zn3I2vtu87nn7LWbjHGHDTGdBhjatba\n95sX3sTbZ4y5//zdACljzH3Oua+eX/X/bYz5R2vtncaYo8aYO9YqC5N8AAAAAAAAiFTMnsmncs59\nxRjzlQt+9qlVfz5tXriN90KzxpgDwjrPGWNevZFycLsuAAAAAAAAEHNM8gEAAAAAAAAxx+26AAAA\nAAAAiFQr3a7bLGI7ybewsCBmyWQywpLgYpXNZhtdhIYpl8titrS0JGadnZ1hFAcXoUqlImbpdDrC\nkjQXrW8sFAoRlgRx55xrdBF+jLW2afrd5eVlMSsWixGWBBerqOuntbZp+tbZ2Vkx0+pfIsENbFg/\n7btOtVoVs1wuF0ZxgA2htQMAAAAAAABiLrZX8gEAAAAAACB+rLXcrhuCNa/ks9beZa09aK09OD4+\nHkWZAJxH/QMah/oHNBZ1EGgc6h8AxNOak3zOubudc6POudH+/v4oygTgPOof0DjUP6CxqINA41D/\nACCeeCYfAAAAAAAAEHM8kw8AAAAAAACR4pl8wYvtJF+hUBCzubk5MWtrawujOGhRNDr1ZTIZrwwI\nSi6Xa3QRmlI6nW50EdAA8/PzYlYsFr3WyXhJRj+HCy0uLopZPp8PfHsX8znY0dEhZtVqNcKSIEpT\nU1Ni1t3dHfj2LuY6hvjjdl0AAAAAAAAg5mJ7JR8AAAAAAADiiTvngseVfAAAAAAAAEDMMckHAAAA\nAAAAxByTfAAAAAAAAEDM8Uw+AAAAAAAARIpn8gWvqSf55ubmxKxYLIpZe3t7GMWJhZWVFTFLp9MR\nlsSYUqkkZtlsVswmJyfFrKenZ1NlClK1WhUz6Tg45za1TWn5Zmoctf2STCYjLMnFTTsOWt3M5/Ni\nVqlUxEw7ts10fobBt63zrStaO5/JZMQM0ZmfnxczbfyiWV5eFrO2tjavdYZBO683q1ar1f15IhHt\njSn0ZbiQ1nf68u1bwhqDxgF1s3VpdWx6elrMurq6vLZXLpfFjLEWmh236wIAAAAAAAAx19RX8gEA\nAAAAAKD1tPodP43AlXwAAAAAAABAzDHJBwAAAAAAAMQct+sCAAAAAAAgMtZabtcNAVfyAQAAAAAA\nADEXyZV81WpVzLRXnbe3t4uZ72vga7WamCUS8Zjz1D774uKimHV2doZRHFE2m/VarlQqeS03Pj4u\nZv39/V7rPHHihJh1d3eLmXSMfM/bF5eV6pL2mnetji0sLIhZT0/P+gu3yvz8vJil02kxy+fzXttD\nfdpx993XTz75pJjt37/fa50arS1IpeTuS/vsvpxzZmVlpW6m9SvSMsbo9eHo0aNi1tvbK2bab0O1\n/VkoFMSsmWj7c3JyUsy09jqTyWyqTPVox1Y7X7Q+XLO0tCRm2mfXLC8vi9l3vvMdMbvxxhu9trce\n0jhN61ub6QoBbZ+2tbVFWJLoaeOUMOqg73cPX1rd1b5faMdd6+e0Ma/0+bR9sh5SPfOtY2fPnhUz\nra3ftm2b1/Zage+YIi5820jf75yazXxnAxotHrNaAAAAAAAAAEQ8kw8AAAAAAACRaqYr7lsFV/IB\nAAAAAAAAMcckHwAAAAAAABBz3K4LAAAAAACASHG7bvC4kg8AAAAAAACIucCu5NNe6a29At73Vdm+\nM77aa+xrtZrXcppKpSJm2n7RlMtlMdNeIa69CryZZtB994vvcpqhoSEx084JqT5sZj9ba70+o7ZM\nGK+c7+zsDHydzSSMOh0X+/fvj3R7Wh1LJpMRluSF+pdOp+tm0s+N0dtdzY4dO7yW0/qxTCbjtc6o\naZ9B29c9PT1i5tuH+/JtW7WxVHd3t29xRNp4QhuD3XjjjYGXZT2kc0M7Z7S2QhuDavXFt/3R9mnU\nfPsy37Fk1ONM33PCl7bPtHNJq4PaclobI2Wb/dzSMdTOJe04DAwMiJnWFmq0smjnrrZvfPsP7TNo\nfZlmYWHBa51a/cvn815lCUMYbWSpVBIzrR5p9a9arYpZ1OMNoB7OQgAAAAAAACDmWvuyEwAAAAAA\nADSdZrqjsFVwJR8AAAAAAAAQc0zyAQAAAAAAADHH7boAAAAAAACIFLfrBo8r+QAAAAAAAICY29CV\nfJVKxUxMTNTN+vr6xOXm5+fFrFAoiNnS0pKY5XI5MfMVxiuvtZlp7TXo2mu7tayZZsK114trr6rv\n7+8XM+016N3d3esr2AXOnDnjtU7tOEivsd/M8XHOmeXl5bqZtj81lUpFzFKp4C/0LZfLYraysiJm\nWjvhSzuXtOOklTOMfabR2tZisRj49sbHx8VMq7e+5ZTqUSPUajWxT9LKqZ0TWh/ge85r/Zh2Xk9N\nTYmZb9uq1bFsNitmWt+vLddM58vi4qKY5fN5MWtvbxezc+fOiVlvb+/6ChaQWq0mZmGMpYx5oQ+U\n+iytP466nYwL3/7KdxwTRv10zkW6Pd96rZVTO3c1WlshHaPNfkeQ6r303dAY/fuh9j3B9/j5ntdz\nc3Nipu1rje9n0PpArSy+3wV8aee177k2OzsrZh0dHV7r9K1j2mfwzYCocLsuAAAAAAAAImOtZWI0\nBNyuCwAAAAAAAMTcmpN81tq7rLUHrbUHtVtFAARvdf3TbpUEELzV9U+7HQlAOKiDQOMwBgWAeFpz\nks85d7dzbtQ5Nxr1M1+Ai93q+qc98wxA8FbXP+25QgDCQR0EGocxKADEE8/kAwAAAAAAQKR4Jl/w\neCYfAAAAAAAAEHNWe/31S/6xtePGmKPn/9pnjGmWB6RQlvooS32NLMsO55zXPQ/Uv3WhLPVRlv/m\nVQcvqH/GNP5zrEZZ6qMsL9XoctAHhouy1EdZXkD9CxdlqY+yvMC7/rWy9vZ2d/XVVze6GOv24IMP\nPuKcG210Odayodt1V5+Y1tqDzfIBKUt9lKW+ZirLRlD/1kZZ6qMsm3fhwKyZPgdlqY+yNG85fNAH\nro2y1EdZNo/6tzbKUh9lwVq4XTd43K4LAAAAAAAAxByTfAAAAAAAAEDMbWaS7+7ASrF5lKU+ylJf\nM5XFVzN9BspSH2Wpr5nKshnN9DkoS32U5aWapRyb1Uyfg7LUR1nqa6ay+Gqmz0BZ6qMs9TVTWYDQ\nbOjFGwAAAAAAAMBmtLe3u5e97GWNLsa6fetb34rFize4XRcAAAAAAACIOSb5AAAAAAAAgJhLNboA\nAAAAAAAAuLhYaxtdhJbDlXwAAAAAAABAzG3oSr6+vj63c+fODW/kxIkTYlar1cRsZGRkw9syxphj\nx46JWTqdFrOhoSGv7YXh7NmzYjYwMCBmp06dErN8Pi9mnZ2d6ytYQB599FEx+8mf/MnAt1cul8Us\nk8mI2cTEhNdy0nl28uRJMzU15fXrCq3+aef89u3bfTanevrpp8Xs0ksvDXx7cfH9739fzK6++uoI\nS6IrlUpils1mxUyrD319fV5leeSRR8Sst7dXzHz6ovPbm3DO9W90uWw26wqFwoa3t3v3bjF77rnn\nvJZDfUtLS2Km9f2pVLQ3Nfi2n0899ZSY7du3T8y0F6xpvz1fXl4Ws7a2Nq/tPfroo171zxhjurq6\n3JYtW+pms7Oz2nJiprV3lUpFzJ544gkx09rCHTt2iNn09LSYjY+Pi5nWViSTSTHT9pl27LUx6OHD\nh8Vs165dYqaV05c27tPaCt91amNC3zG2NrYbHBwUM6kOnjhxwnsM2tPT44aHh+tm586dE5fr6OgQ\nM58+1Rhjjhw5Imba2ODkyZNi1t7eLmbFYlHMVlZWxMz3+4XWhmhjpv5+uWnV2kHtGPmKepypnRPa\n96D5+Xkx0/aLT1tw5MgRMzExwSVriMSGRrY7d+40Bw8e3PBG/uAP/kDMtMr113/91xveljHG/OZv\n/qaYSQNEY4z5oz/6I6/thUH77O973/vE7CMf+YiYaW+uufnmm9dXsIDkcjkx8znH1jI2NiZm0qDF\nGGPuueceMdM6DWnC+M1vfrO4zFq0+qed85/4xCe8tym54YYbxOyBBx4IfHtxoQ0SwzivfT3zzDNi\ntnfvXjH727/9WzH79V//da+yaJMMb3jDG8Ts7/7u73y3d9RnuUKhYF796lfXzRIJ+aL4z3/+82Km\ntQfacqjvhz/8oZht3bpVzLTJ5DC89rWvFbOvfe1rYvazP/uzYvbNb35TzHwnJg4dOiRml112mZhp\nE0S5XM6r/hnzwvhNaoO+8Y1viMvdeuutYqZNuk1NTYnZnj17xOznf/7nxexTn/qUmH3xi18Us7vv\nvlvM/uEf/kHMtMmlr371q2KmTURrY9DbbrtNzD772c+KWRiTDNoE2eOPPy5m2oTj8ePHxUwbS950\n001ipvUf7373u8XsAx/4gJhJdf4XfuEXxGXWMjw8bP7lX/6lbqb1x1p79/KXv9yrLG9/+9vF7DOf\n+YyYfehDHxKz66+/Xsyuu+46MdMmDrX25d577xWzd7zjHWKmjZnuuOMOMXvjG98oZtox8vX888+L\nmTbhr33vuvPOO8VMOye070EPPvigmGn11meieXS06V/I2hDWWm7XDQG36wIAAAAAAAAxxyQfAAAA\nAAAAEHNM8gEAAAAAAAAxF+3TpgEAAAAAAHDR45l8weNKPgAAAAAAACDmrPSa9XpGR0ddM70hEq1J\nOyd9X1XfLEZHR83Bgwe9fl0RRv3zfcW9ZmlpScy0tzxqbwFsJr5vqtTO62b6DZZ2Tmh8z5eoWWsf\ncc5t+BVncen/KpWKmKVS8bh437eOxUW1WhUz7c2eWv+XTqc3Vaao+NY/Y5qrDsalPcfGace2VquJ\nmVZ3m0WzjUG1/anR3kista/a9pqpDQ2jfWmmsYF2HLRjq4lDm7yZ+tfKOjo63DXXXNPoYqzbAw88\n4D2OiVI8RvwAAAAAAABoGc0yEdtKuF0XAAAAAAAAiDkm+QAAAAAAAICYY5IPAAAAAAAAiDmeyQcA\nAAAAAIBI8Uy+4HElHwAAAAAAABBzXMkXQ+VyWcwymUyEJQmHNpvfCp+vmWSz2cDXmcvlvLK4qFar\nYqbVzfn5eTHr6enZVJmCFMY5geikUvHv1n3b+bj0jclk0mu5dDodcEngi6sOWpd2bH3rLupLJIK/\n1kQ7RnE5fmG0L5VKRcyiHjeEcdxpk4EfF/9vAwAAAAAAAIgVJmmDx+26AAAAAAAAQMwxyQcAAAAA\nAADEHLfrAgAAAAAAIDLWWm7XDQFX8gEAAAAAAAAxxyQfAAAAAAAAEHPcrhtDmUym0UUALlq5XM5r\nuXw+H3BJgItPpVIRM/pGIHzOOTHjliugcWq1WqOLAKBJMMkHAAAAAACASPELouBxuy4AAAAAAAAQ\nc0zyAQAAAAAAADHH7boAAAAAAACIFLfrBo8r+QAAAAAAAICYY5IPAAAAAAAAiLnAbtddXl4Ws4WF\nBTHr7e0NqgjARWtpaUnM2traxIzLo6OjHQfEG/UvOqkUTxnBS9VqNTGrVqtilk6nwyhOS6PdwoWo\nf80hkZCv3WEMClxcGC0DAAAAAAAgUvzyKHjcrgsAAAAAAADEHJN8AAAAAAAAQMytebuutfYuY8xd\nxhizffv20AsE4L9R/4DGof4BjUUdBBqH+gcgCtyuG7w1r+Rzzt3tnBt1zo329/dHUSYA51H/gMah\n/gGNRR0EGof6BwDxxO26AAAAAAAAQMwF9nZd7dXcWra0tCRmTz/9tJg9+eSTYvbWt75VzFZWVsRs\ndnZWzHp7e8XMV6lUErNz586JmbY/e3p6NlWmZnD06FExe/DBB8XsjW98o5h1dHSI2QMPPCBmQ0ND\nYqadL5lMpu7PFxcXxWXWUq1WzfT0dN2sUqmIy+VyOTE7deqUmA0ODopZIhH87we0/akdP2ycdB4Z\nY0xXV5eYfeELXxCzN73pTV5lueGGG8RMq5uayclJr+V8aXVMo9XbVCqw7hlNRusH8vl8hCVpHdVq\nVczCqEvlclnMpP4/TrSxcjqdjrAk4XDOiZl225j2nUU77slkcn0F28D2tH5HOj+1z70Z2pgwjPFi\nK/A9B1uB9tm1cVErtD14KWtty5/zjUDLCwAAAAAAAMQck3wAAAAAAABAzDHJBwAAAAAAAMQcD/0B\nAAAAAABApHgmX/C4kg8AAAAAAACIOSb5AAAAAAAAgJjb0O26lUrFTE5O1s2018N3dnaKWTabFbMD\nBw6I2X/+53+K2ZNPPilml1xyiZj19vaKWRivOp+amhKzfD4vZv/0T/8kZnfeeaeYlctlMctkMmIW\nhoWFBTErFotidt1114nZoUOHxOzaa68VsxtuuEHMNJ/85CfF7NWvfnXdnycS/vPqyWTSdHV11c2q\n1arXOoeGhsTs7NmzYjYwMOC1PY3WhkTt+eefF7Ndu3aJWa1WE7PNHPugSefRWvr7+wMuiTEPPPBA\n4Ovs6ekJfJ3GyP3A+Pi4uEx3d7eYpdPpTZdpIyqVipilUvJwQGuvC4WCV1l8+9Tp6Wkx087rUqkk\nZto4JAxh9Lezs7Ni1tHREfj2ms3KyoqYhVHPtGPoW880Wh8fRt+p1U/NzMyMmGnfBaLmO27XxkU7\nduzwLY5I+56Qy+XETGqztTFKWLS6qdWHMG7fO3funJhF/R3QdzmtrV9cXBQzrc0Ka8wkaYVbM5eW\nlsRMq5uorxXOiWbTPN86AQAAAAAAAHhhkg8AAAAAAACIOSb5AAAAAAAAgJjzezgIAAAAAAAA4Iln\n8gWPK/kAAAAAAACAmGOSDwAAAAAAAIi5Dd2u65wz5XK5brZlyxavAkxPT4uZ9krv3/iN3xCz48eP\ni5n2CnFNIiHPh2qvVtdo+2xgYEDMzp49K2ZPPfWUmO3bt299BYvABz7wATH7xCc+IWbLy8tidu21\n126qTBv17ne/W8yuvvrquj9/7rnnvLdXrVbF+tLV1eW1zve///1i9ld/9Vde6/T1yCOPiNmrXvWq\nwLf34Q9/WMw+9KEPea1TayeiVqlUxOzo0aNitmfPHjG78sorN1Wmer773e+K2f79+8WsWCwGXpa1\nSLcTaLcZpNNpr23NzMyIWaFQELNUSu7WtUzzlre8Rcz++Z//2WudR44cEbPdu3eLmdbfPvPMM2K2\nd+/edZUrKFo5//7v/17Mfu3Xfk3Mjh07Jmbbt29fX8ECcujQITG77777QtnmwsKC+d73vlc3Gxwc\nFJfbuXOnmH3xi18Us0suuUTMLrvsMjHzrWeHDx/2KovWVnR2dorZ+Pi4mM3NzYnZxMSEmEU9DvN1\n//33i9ntt98uZgsLC4GXZXZ2Vsy0fb1161Yxk/qIRoxRfPvAMPT29not10y3EnZ0dIiZ1vbk8/kw\niiPS6oo2hmmm80WTy+XETPquVq1WwypO7DVTHWsVzfONFAAAAAAAAIAXJvkAAAAAAACAmOPtugAA\nAAAAAIiMtZbbdUPAlXwAAAAAAABAzDHJBwAAAAAAAMQck3wAAAAAAACAJ2vtTdbap6y1h621H6yT\nX2atfchaW7LW/t6qn49Ya/+3tfZJa+2PrLX/16rsw9baE9bax87/9/o1y+GcW3ehf+InfsLdd999\ndbMDBw6sez3rNTk5KWY9PT2Bb+/QoUNidtlllwW+PV9PPfWUmI2MjIiZdqy115mHYXl5Wcza2trE\n7OGHHxaza665xqss5XJZzDKZjNc6JaOjo+bgwYNeDx4YHR11Bw8erJv9yq/8irjcH/7hH4rZpZde\n6lMU84UvfEHMHnroITH76Ec/KmYTExNe63zDG94gZlG75557xOzOO++MsCS6hYUFMdPagnvvvVfM\nisWimN1xxx3rK1hATpw4IWbDw8OPOOdGN7pOrf5pzp49K2YDAwMbXl+zifrzLS4uilk+nxezUqkk\nZtlsdlNlwo/T2vL+/n6v+meMfx1sJr7nbxh8+4G5uTkxSyaTYqaN7RKJi/eagyi/64Q1Bp2dnRWX\nO3nypJhp362+/OUvi1lnZ6eY9fb2itmePXvErFqtitnjjz8uZsPDw17Z2NiYmH37298Ws6uvvlrM\ntM9w5ZVXilkYarWamGnjBq0NSafTYlapVMSsr69PzLTvxv/+7/8uZv/xH/8hZjfddFPdn7/5zW82\nP/rRj3j43AW6u7vd9ddf3+hirNv9998vjmOstUljzNPGmNcYY8aMMQ8bY97qnHty1b8ZMMbsMMbc\nZoyZcs79xfmfDxljhpxzj1pr240xjxhjbnPOPWmt/bAxZv7Ff7seF2+vCgAAAAAAAGzOtcaYw865\n5zpARMgAACAASURBVJxzZWPM54wxt67+B865s865h40xKxf8/JRz7tHzf54zxvwfY8w234IwyQcA\nAAAAAADI+qy1B1f9d9eqbJsx5viqv48Zj4k6a+1OY8zVxpjvrfrxe621j1tr77XWdq+1jtRGNwoA\nAAAAAABshrWxuot5wvexI+thrS0aY/7JGPN+59yLz0L4pDHmfxhj3Pn/f8wY8w5tPVzJBwAAAAAA\nAPg5YYxZ/YKE4fM/Wxdrbdq8MMH3/zrn/usB+M65M865qnOuZoz5tHnhtmAVk3wAAAAAAACAn4eN\nMXuttbustRljzFuMMV9az4L2hcsZ7zHG/B/n3P9zQTa06q+3G2OeWGt93K4LAAAAAAAAeHDOVay1\n7zHG/JsxJmmMudc59yNr7bvO55+y1m4xxhw0xnQYY2rW2vcbY64wxuw3xrzNGPNDa+1j51f5B865\nrxhj/qe19irzwu26R4wx71yrLBua5MvlcubAgQN1s6mpKXE57XXY2iuvtdeLP/jgg2L2Uz/1U2LW\n398vZkNDQ2LWTFZWVsTs+PHjYrZv374wiuOlra3Na7kjR46I2TXXXOO1zjNnzojZyMiImGm019iH\n4bOf/ayYhVGWN73pTV6ZplAoiNnP/dzPea3Tl9YuTU5Oitmdd94ZRnECp+3riYkJMbv55pvFTGuX\nNN/97nfF7BWveIXXOrdt834ZlRftnOjq6gp8ezMzM2LW2dkZ+PY0AwMDga9TO5fy+byYOefELJvN\nbqpMUdHaa20s5UvbZ9pxePbZZ8Xs8ssv31SZoqR9ft9nBC0tLYlZLpfzWqfWJ6VSfr+vTyT8buZp\nb2/3Wq7Vaf1AT0+PV6bR+uq+vj6vdfrSzok9e/aIWblcFrNXvvKVYqb1q6VSScy0+q71LS9/+cvF\nzNfw8LCY/eIv/qKYae1yOp0WszDaJY3WvmzZssVrnWH0j1o7r52Do6PyI9mk77hh7OdWEbNn8qnO\nT8p95YKffWrVn0+bF27jvdB3jDF1d4Rz7m0bLQe36wIAAAAAAAAxxyQfAAAAAAAAEHNrXuNvrb3L\nGHOXMcZs37499AIB+G/UP6BxqH9AY1EHgcah/gEIm7W2pW7XbRZrXsnnnLvbOTfqnBvVnmcHIHjU\nP6BxqH9AY1EHgcah/gFAPHG7LgAAAAAAABBzfq/kAgAAAAAAADxxu27wNjTJV61WzfT0dN2su7vb\nqwBnzpwRs8HBwcAzTWdnp9dyYdBekb57924x014BX6vVxEx71XkzedWrXhX4OkdGRsTMOSdm2qvc\nU6ng588rlYqZnJysm/X09IjLaa+V1z7DV77yFTG77rrrxKyrq0vMNM30annt+A0MDHitUzuXmqlz\n6+vrE7MHH3xQzLRzQqO1S/fff7+Y3X777V7b81Uqlcxzzz1XN9PaZF/a+XL8+HExa6Z+zJdv+6nV\no7j0f1p7rVlcXBQzbVyg7bNMJiNml19++foK1uTCaHvT6XTg2wtjTKH1ueVyWcy086IVzM/Pi5n2\n2bVxmK+xsTEx8/2usxlSv3Tu3DlxGW1MofE9z7Tlmmms5cu3v9Lapbg4ffq0mG3bti3Ckvj31UBU\nmmdkCwAAAAAAAMALk3wAAAAAAABAzPFMPgAAAAAAAESqFW6lbzZcyQcAAAAAAADEHJN8AAAAAAAA\nQMxxuy4AAAAAAAAixe26wdvQJN/8/Lz57ne/Wzd7/etf71WA3t5eMUul/OYgFxcXxSyfz3utM2on\nTpwQs507d3qt0/e1681kcHAw0u1pjY7v+ekrlUqZ7u7uutny8rK4XFtbm5jNzs6K2Rve8AYxq1Qq\nYob6WqEDu+6668SsXC6LWSaTEbNXvvKVmypTVLT6FwbtfNm3b5+YOee81tlMfMu5sLAgZoVCwbc4\nkfI9fnEZ22xGtVoV+yytn9PaH02tVhMzbTwV9dggDL77TBsbRL1fqtWqmCWTSTErFothFMfL8PBw\no4vwY6Q2KIz2VTuXtExrQ3O53KbKFGdR1z/tOGi0fm7r1q1iFnXbk06nA18nEKT4z/oAAAAAAAAA\nFzkm+QAAAAAAAICYi/89BQAAAAAAAIiVuDxOJk64kg8AAAAAAACIOSb5AAAAAAAAgJjjdl0AAAAA\nAABExlrL7boh2NAkX2dnp7n55psDLcDZs2fFTHtVtiafz4tZrVYTs0RCvrBxZWVFzMJ4jfbOnTsD\nX2fUJicnxayjo0PMtH2dy+U2VaY4q1QqZmJiom7W39/vtc7u7m6v5bTX0S8vL4tZW1ub1/bGxsbE\nbHh42GudF7OlpSUx861jmUzGtzixkEwmvetL0LQ+p1qtilmlUhGzbDa7qTJFRfsMhUIhwpLo5ubm\nxKy9vV3MtOOntbsXg2QyKe473y8I2njDd3/7jjN9OefELIwvTtrna6ZzVNvX5XJZzFq9LwtDMpkM\nfJ3auRSXuhmGMPZ1GLR9rfXjWh+ofb9vprYHaAbxaNEAAAAAAAAAiJj2BgAAAAAAQKS4XTd4XMkH\nAAAAAAAAxByTfAAAAAAAAEDMMckHAAAAAAAAxBzP5AMAAAAAAECkeCZf8DY8yRf0Qdi6davXcseO\nHROzQqEgZj09PV7bS6fTXsuFYXJyUsza2trETHv1eBh89zWvQa8vlUqZ3t7eQNe5vLwsZomEfKHv\nmTNnxGxkZETMSqWSmGWzWTEbHBwUs2Zy6tQpMRsaGoqwJLpcLtfoIsROpVIxExMTdbO+vr5Iy7Kw\nsCBmWv/n23875wJfpy/f/qFarYpZMpn0LY6ovb3dazn6P5lzzpTL5bqZ1n9ofMd2lUpFzLS+M4y6\nFHX9rNVqYqZ99qjroPbZM5lM4Nu7mPnuT20Mqn2f8T3ntfOzFYyPj4uZNjYI4/uhVqfDqO8Aflxr\nt3b/P3v3HiTHWd///nl27nu/X7SrXa3M6mZJlu2VbINtgQx27EO4Q5xTBopKlWM4PtQPKhT8AVSq\nUkXC4XdI8isuLqewC0M4VMAxoRJSxlyOCDHGlq8Iy0K2JVmSJe2u9n7fnXnOH16SPWa+3919tqdn\nevb9qlLZmo+6+zsz/XQ/3dNPNwAAAAAAALAB8JMxAAAAAAAAQsVw3eBxJR8AAAAAAAAQcZzkAwAA\nAAAAACKOk3wAAAAAAABAxHFPPgAAAAAAAISKe/IFb00n+ebn583Zs2fzZl1dXYEUtFrd3d2hLq+U\naI+OL8Rj0JHf1NSUmGmPql+Pior8F9+eOHFCnKavr0/M0um0mM3Pz4vZ5s2bxUyTSqW8pkskEl7T\n+RoYGBAz7T20tLSI2dzcnNc8URri8bhpbm7Om42Pj4vT1dbWitni4qKYae0vHvf7fU7afqykHDpf\nsVis2CVEzszMjJhp2yzf9Wwl1lqTTCbzZrlczqserT+lZdryfNunr0J93hLt/S0sLIhZ2PvxcqCt\ng6W0Xdb2V1KbNcZ/ndD6U7Ozs2JWX1/vtbyoaGhoEDNtXQJQfhiuCwAAAAAAAEQcw3UBAAAAAAAQ\nGmttSV2ZXC5WvJLPWnuntfaItfbI8PBwGDUBWLK8/Q0ODha7HGBDof0BxUUbBIqH9gcA0bTiST7n\n3L3OuX7nXH9jY2MYNQFYsrz9afd7AxA82h9QXLRBoHhofwAQTQzXBQAAAAAAQKgYrhs8HrwBAAAA\nAAAARNyaruRLJpOmq6urULX8gdHRUTHTHoOezWbFLBaLidkLL7wgZjt27BCzsDU1NYnZ9PS0mMXj\n8tetPeI+bNp9P8IeLjAwMCBmra2tIVZiTC6XM5OTk3mzvr4+r3kODQ2py5NUVlaKWXV1tVctpcT3\nuz169KiY7d6927eckuG7TdbMzs6K2dTUlJhp28FCyOVy4va1trbWa57aNlnLNBcuXBCz9vZ2r3mW\ng5mZGTHLZDIhVqK3I21dcs6Jmda30Uj7FGOMSafTYlZRUVq/EfvWo109oG2bfNeZhYUFMdO+31Lq\no83NzYnZ+Pi4mDU0NIiZ7/auEMbGxsRMa5/asYf2/rTvXVs/S2mbpq3X2rrru91KpVJipm23yt3I\nyIiY+fbRwqbtk8rh+AIIS2n10gAAAAAAAACsWen8dAYAAAAAAIANgXvyBY8r+QAAAAAAAICI4yQf\nAAAAAAAAEHEM1wUAAAAAAECoGK4bPK7kAwAAAAAAACJuTVfyLS4umoGBgbxZU1OTOJ3vI9J9H/c9\nOzsrZolEQsy0x7yXkieeeELM9u/fH2Il/qanp8WspaUlxEqMuE4bY0xra2uIlegqKirEx8ePjY2J\n09XV1YnZxMSEmHV0dIhZOp0Ws4sXL4pZW1ubmJ07d07MOjs7xayUhL3u+jp27JiY7dy5U8y0bfLM\nzIyYZTIZMdPWpaGhITELWzabFduL9h4qKsL9La29vV3MxsfHxay2trYQ5YRqeHhYzBobG0OsRKe1\nI9/9kdbv0dZPaZ+ykqmpKTGrqqrymudKnHMmm83mzaTXjTEmlUqJWS6XEzOt7Wr7XO3z1mrR+NZZ\nCFo70/oNzrlClBM4rc80NzcnZr7f7cLCgphpxyXafjVsYR8/aevSpUuXxEzbD4TdjnxNTk6KmbZd\nbm5uLkQ5XrTvT9t+hq2UtrvAWjFcFwAAAAAAAKFiuG7wOA0NAAAAAAAARBwn+QAAAAAAAICI4yQf\nAAAAAAAAEHHckw8AAAAAAAChsdZyT74C4Eo+AAAAAAAAIOLWfCWf9MjoWCy27mKCsri4KGZVVVVi\ntnXrVjHTHnGfSCRWV9gaXLhwQcz2798f+PLCVllZ6TXdCy+8IGY7duzwmmdra6vXdJqZmZm8r2uP\nY1+Puro6r+kaGxvFzPdXlba2Nq/pjh8/LmadnZ1e89RcunRJzJqamrzmqW17SsnOnTvF7KWXXhKz\nyy67TMwymcy6asqnq6tLzMbHx8WstrY28FoSiYT3ui1xzolZNpsVs3jc7yJ838/l0UcfFbM3vvGN\nXvPUDAwMiJm2vda2Z6VE+2619/fkk0+K2dVXX+1Vi7YOav0erS/17LPPetWyGtI2NplMrnkaY/T3\nqPVr5+bmxEzqJxuj9xd9a5mdnRUz376W9pn59plK6UqN6elpMdM+61QqJWbaOqFNp7XBqCjEcZBG\na2Naf1ibrpRo62d1dbVXVkq0bYFv/6YQorK+APmUTksCAAAAAADAhlBKPwKVC05RAwAAAAAAABHH\nST4AAAAAAAAg4jjJBwAAAAAAAEQc9+QDAAAAAABAqLgnX/C4kg8AAAAAAACIuDVdyRePx01zc3Og\nBczOzopZOp0Ws1/+8pditnXrVjHLZDJiNjw8LGbt7e1i5mtwcFDMksmkmB0+fFjMDh48uK6aSt2O\nHTuKXcKq5HK5UJc3NDQkZlqbvXDhgpgNDAyIWVdXl5j19vaKmfa5XHnllWL205/+VMxuuukmMdM0\nNTWJ2eOPPy5mBw4cELPOzk6vWsL2i1/8QsxuvPFGMXvuuefEbO/evV61LC4uilk8Lu+ixsfHxSyb\nzXrVoslms2ZkZCRv1tDQ4DXPU6dOiZnWjgphYWFBzPbt2xf48rTvvbW1NfDllZJYLOY13dVXXy1m\nWnuora0VM+3Xc60forniiiu8pluJtVbtF/rQ+oQa33XUOSdm2nqhbQu1TKPtj7V5+vY3Som2HlVU\n+F3/kEqlQp0ubM45cT+RSCTE6cbGxsSsrq5OzF599VUxa2lpETOtFo20fzdG38f7bnunp6fFrLKy\nUsw0vsfU5cD3e5ifnxczbRupfX+NjY1iBoSF4boAAAAAAAAIFcN1g8dwXQAAAAAAACDiOMkHAAAA\nAAAARBzDdQEAAAAAABAqhusGjyv5AAAAAAAAgIjjJB8AAAAAAAAQcWsarjs/P29Onz6dN2traxOn\n0x5BrT0m/P777xezEydOiNl1110nZn/8x3/sVcvRo0fFbPfu3WKmmZqaErPHH39czLZt2+a1vFLy\ni1/8QsxuvPFGMSvE4+G1Wnbt2iVmAwMDYiY9Pj2bza6+sDVYXFwUM+3x8Nu3b/fKfFVUyL8raI+4\nv+mmmwKvxTknZgcOHAh8eaVEa2OaTCYjZjMzM17TxeN+d43Qlqet875isZhpaGgIdJ69vb2Bzm89\nEomEV+bL93ufm5sTs1Qq5VtOJGh9KV/T09Nipn1HyWQy8FrWQ9sft7a2itnCwoJXdunSJTHbvHmz\nmPn2YbT+YiwW85qntj/W6hwfHxez5uZmMSsl2nvX2pk2Xdi09bMQ22xrrdd8tf6pprq6Wsxefvll\nMdP6rhcvXvRansZ3v6N9f5rz58+LWUdHh9c8S4nWt9Pan+9wT999WSH6mUCQuCcfAAAAAAAAQmOt\n5Z58BVA6P0kBAAAAAAAA8LLiST5r7Z3W2iPW2iPDw8Nh1ARgyfL2Nzg4WOxygA2F9gcUF20QKB7a\nHwBE04on+Zxz9zrn+p1z/dJ9xgAUxvL219LSUuxygA2F9gcUF20QKB7aH4Aw/H7IbhT+RAXDdQEA\nAAAAAICI4yQfAAAAAAAAEHFrerpuMpk0PT09harlD3zkIx8Rs6GhITFrbm72Wl5tba2Y7d6922ue\nmi1btnhl5eDGG2/0mi6dTgdciTHXXHONmKVSKTHThq9Lj3lPJBKrL2wN2tvbCzLfMMVisVCXF6VL\nroM2OTkpZtXV1WLW19cXeC1/93d/J2a33nqrmG3btk3MtPdXDhYXF8UsHl/Tbj1ytG1yuZudnRUz\nrf+iuXjxopj19vaK2czMjJhlMhmvWtajtbXVazrffXJDQ4PXdL6fTVVVldd0mmw2K2ZaX2vr1q2B\n11JKtO1rMpkMsRJdLpcrdgmr0tTU5DWdtg5u375dzLTvT9tO+rZN331SXV2dmDnnxMz3GDcqfL8H\n6birULR1aWFhIe/r2vcKBK28jwYAAAAAAABQcjbyhReFwnBdAAAAAAAAIOI4yQcAAAAAAABEHMN1\nAQAAAAAAECqG6waPK/kAAAAAAACAiOMkHwAAAAAAABBxJT1c98KFC2IWj5d06SiQn/3sZ2J26NAh\nr3mmUimv6cJ+XHvYzp8/L2bJZFLMmpqaClEOAlRdXV3sEv7LBz7wATHbtGmT1zxramp8y4mEbDYr\nZuwby9fQ0JCYdXd3e82ztbXVa7pMJuM1XZTEYjExK4f3r72/jUzr3xTC7OysmCUSCTHz7btGRS6X\n85pO2wdGZf+oDV3U1omN7MyZM2K2detWr3nOzMyImbYPkL4jhqTK+GyCV95nKQAAAAAAAIANgJN8\nAAAAAAAAQMRxkg8AAAAAAACIuGjcnAAAAAAAAABlwVrLPfkKgCv5AAAAAAAAgIjjJB8AAAAAAAAQ\ncSU9XLe2tlbMJicnQ6wEpeLQoUPFLqFocrmcmZqaypstLCyI09XX13str6Ojw2s6YC02bdpU7BJW\nxTlnZmdn82bpdDrUWlKpVKjLQ2no7u4OfJ5VVVWBz7NcaMOHstmsmMVisUKUgzIV9v5jPaT1fnFx\nUZymEPsrbXnxeEkf2qJAtm7dGvg8M5lM4PNEfgzXDR5X8gEAAAAAAAARx0k+AAAAAAAAIOI4yQcA\nAAAAAABEHDcuAAAAAAAAQKi4J1/wuJIPAAAAAAAAiDhO8gEAAAAAAAARV9LDdSsrK8Vseno6xEqw\nUZ0/f17MOjo6QqzEmIqKClNVVZU3C7s9LC4uilk8XtKbFUTI0NCQmDU3N4dYyWtDCdLpdN4sl8uJ\n01VU8Fsays/U1JSYSfupqNGGDzG0CBuNc85ks1kxC5q0v10J+2OEQVvn2T+sHZ9Z8NjaAQAAAAAA\nABHHST4AAAAAAAAg4hhXBwAAAAAAgFAxXDd4XMkHAAAAAAAARBwn+QAAAAAAAICI4yQfAAAAAAAA\nEHGRvSdfc3NzsUvABtDR0SFm8/PzYpZMJgtRjqiysjLU5cXjkd10IEJqamrEbHZ2VszS6XQhyhFV\nVPB7GTaWqqqqYpdQVOwDEQatn6mtg4XYJ1lrQ+/b+lhYWBCzVCoVYiUoZ9p6FoV2UkqstdyTrwA4\nMgEAAAAAAAAijpN8AAAAAAAAQMStON7AWnunMeZOY4zp7u4ueEEA/hvtDyge2h9QXLRBoHhofwDC\nwHDd4K14JZ9z7l7nXL9zrr+lpSWMmgAsof0BxUP7A4qLNggUD+0PAKKJ4boAAAAAAACAJ2vtH1lr\nj1trX7TWfiZPvsNa+ytr7Zy19i9WM621ttFa+4i19sTSfxtWqoOTfAAAAAAAAIAHa23MGPNVY8yt\nxphdxpg/tdbuet0/GzbGfNwY8z/XMO1njDE/dc71GWN+uvR31Yr35CtV2WxWzGKxWIiVIEyjo6Ni\nVl9fH2IlPCIdKLRUKlXsEkrSzMyMmGUymRArATamhYUFMUskEiFWglKRy+XErKLC75oK+plrxzFg\n+SqlY3/aZrDK6J58B4wxLzrnXjbGGGvtd40x7zTGPP/7f+CcGzDGDFhr/7c1TPtOY8ybl/7dN40x\n/68x5tNaIVzJBwAAAAAAAMiarbVHlv25c1nWaYw5s+zvZ5deWw1t2jbn3Pml/79gjGlbaWaRvZIP\nAAAAAAAACMGQc66/WAt3zjlrrVvp33GSDwAAAAAAAKEqo+G654wxm5f9vWvptfVOe9Fa2+GcO2+t\n7TDGDKw0M4brAgAAAAAAAH6eMMb0WWt7rbVJY8ztxpgfBjDtD40xH176/w8bY/5lpZlxJR8AAAAA\nAADgwTm3aK292xjzsDEmZoy5zzn3W2vtXUv5PdbadmPMEWNMrTEmZ639H8aYXc658XzTLs36b4wx\n/2St/TNjzGljzAdWqoWTfAAAAAAAAAhVGQ3XNc65HxljfvS61+5Z9v8XzGtDcVc17dLrl4wxN62l\njqKf5Dt//ryYNTU1iVkikRCzgQF5mHJra+vqCouoiYkJMaupqQmxEmNmZ2fF7OLFi2LW09MjZvX1\n9euqaa2ck+9rqW2QpO8hl8t515LNZs3o6GjebGFhQZyupaVFzF599VUx0957Z6f8oKCxsTExq6ur\nE7Oo0NpYMpkUs1QqVYhyvDzxxBNitn//fjEr9+82bNr2oKJCvptGJpMpRDmIsJGRETFraGgIsZLi\nWFxcFLNYLCZmvgcWWh8U0ZbNZsVMW5e0bbavsNfrqJifnxcz2mZp0I5LfL8jbZ33bbdAueKefAAA\nAAAAAEDEcZIPAAAAAAAAiLiiD9cFAAAAAADAxmGtLftbDBQDV/IBAAAAAAAAEcdJPgAAAAAAACDi\nGK4LAAAAAACAUDFcN3hrPsnnnMv7+vj4uDhNXV2dmHV0dIjZ1NSUmCWTSTGbnJwUs9bWVjGLirGx\nMTErpceEDw8Pi1kmk/Ga56VLl8SsqanJa56aRx55RMxuvvlmMRsaGsr7uvZI+ZXEYjFTX1+fN9Me\nHa9paWkRM+0R99J2wBh9Q61tJ2pra8WslGjrdU9PT4iV+Lv66qu9pjt//ryYadv5cjcwMCBmDQ0N\nYqa1sXPnzolZZ2fn6grbYC5cuCBm7e3tIVaim56eFrPKykqveWrrWS6XE7OKCnlAxyuvvCJm3d3d\nYqb1UQplfn5ezLTPVNt3+u5Xtf5pudO+h7A/F62foh1fVFdXey3Pt51p4nH5ME1bP0vpWMC336vt\nHzXa9jWdTotZKX1mvmZmZsTM97grbL77x7C/v0K0dyBIrIUAAAAAAABAxHGSDwAAAAAAAIg47skH\nAAAAAACAUHFPvuBxJR8AAAAAAAAQcZzkAwAAAAAAACKO4boAAAAAAAAIFcN1g7emk3wzMzPmueee\ny5tdccUVgRS03Pz8vJhVVVWJ2datW8Xs9OnTXvNsbm4WM83LL78sZh0dHWI2OzsrZg0NDV61FOLR\n6s45Mdu0aZPXPDVNTU1iNjc35zVP7bHrN998s9c829vb876eSCS85meMMaOjo+ahhx7Km7373e8W\np9O+I62e48ePi9n27dvFrLa2Vsw0U1NTYqa1TV/Dw8NiVlNTI2Y9PT1ils1mxUxbz3xNT0+LWWVl\npZhVVPhdxL1jxw6v6TTa+qntA1KpVOC1+GptbQ18np2dnV7TlcPn6Uva7hoTftvUaG2zEHzbe3d3\nt5hduHBBzLTt53rlcrm8rxfiM00mk4HPs9yV0memHTRWV1eLmbYN1ea5sLAgZtr21bdvvri4KGaF\nOGB2zon7EO171/qZ2nZZoy1P+1x8P2vffYRWSzwuH4JrxzNaLWHvx7X3p70HbZ3w3ZZrx81aX7m+\nvl7MtH2n1t6l6bRtCxA0husCAAAAAAAAEcdwXQAAAAAAAISK4brB40o+AAAAAAAAIOI4yQcAAAAA\nAABEHCf5AAAAAAAAgIjjnnwAAAAAAAAIjbWWe/IVwJpO8iUSCbNp06a8mfao7OHhYTHL5XJiVohH\ngff09IjZ5ORk4Murra0VM+39aY9y91WIeQ4MDIhZW1tb4MvTaJ/nxYsXxawQdUqftfY49pXE43Gv\nWn03nJ2dnV7TaSYmJsSspqYm8OVpGhsbxUyrM5FIiFksFltXTWulbT99P2ttuqqqKjHT1m1t23ry\n5Ekx27Nnj5iVA+ecmPm2W206bRs5NDQkZs3NzV61lJKw2+bi4qKYxePR/321qalJzLRt5Ho458Rt\nnu++VWsvs7OzYpZOp72Wp5mfnxezZDJZMstbWFgQs0J99z5826Dvttf3mEVbd7V9RCGOkTTOOXGd\n8a1T2+/U1dWJmdb+KisrxUxr0+vpn0t8t/VaO9LWz7BPlGjvz3f91Pq12vvT1gkt09Zd30z6/jiR\nhTAxXBcAAAAAAACIuOj/nAwAAAAAAIBI4SrH4K14JZ+19k5r7RFr7ZFLly6FUROAJcvb3+joaLHL\nATaU5e1vcHCw2OUAG87yNqgN7QMQPNofAETTiif5nHP3Ouf6nXP92j1YAARvefurr68vdjnAhrK8\n/bW0tBS7HGDDWd4Gy+HekECU0P4AIJq4Jx8AAAAAAAAQcdyTDwAAAAAAAKHinnzBW9NJvmefbYNI\nEgAAIABJREFUfXaotbX19NJfm40xpXKDBmrJj1ryK2YtPb4THj9+fOhNb3oT7U9HLflRy3/zaoNP\nPvnkkLX29LKXiv0+lqOW/KjlDxW7Du994FNPPTWUSCTYB+qoJT9qeY13+3v66aeHampqaH86asmP\nWl7j3f6AtVrTST7n3H/dlMhae8Q51x98SWtHLflRS36lVMta0P5WRi35Ucv6LW9/xpTW+6CW/Kil\ndOvwwT5wZdSSH7WsH+1vZdSSH7UA4WO4LgAAAAAAAELFcN3g8eANAAAAAAAAIOLWc5Lv3sCqWD9q\nyY9a8iulWnyV0nuglvyoJb9SqmU9Sul9UEt+1PKHSqWO9Sql90Et+VFLfqVUi69Seg/Ukh+15FdK\ntQAFY51zxa4BAAAAAAAAG8SmTZvcn//5nxe7jFX7y7/8yyejcF9HhusCAAAAAAAAEcdJPgAAAAAA\nACDiOMkHAAAAAAAARFy82AUAAAAAAABg47DWGmttscsoO2s6ydfc3Oy2bNlSoFKK7+TJk2LW29sb\n+PJ++9vfitnll18uZiMjI2LW0NCwrpqCND09LWaVlZUhVlI6Tp06ZYaGhry2ZPX19a69vT1vVl1d\nLU535swZMaupqREzrT1ceeWVYhYVJ06cELO+vr7Alzc8PCxmjY2NgS+vlCwuLopZPC7vhn7zm9+I\n2Z49e7xqefLJJ4eccy1rna7c93++BgcHxaylZc0fc8GMjo6KWX19fYiVbGy+7c8YY6y14pPiYrGY\nON0VV1whZtp6kUwmxUzbr+7YsUPMJiYmxEzbFmYyGTGbmpoSs6qqKjHL5XJiph1wvfzyy2J22WWX\nidnCwoKYJRIJMSuEs2fPillXV5eYDQ0NiVlzc/O6ason6H3gevqgpbQPnJ+fFzOt3Wqy2ayYaduX\nqBgbGxOzurq6wJen9Xm17WBPT4+YHT16VMx27969usJeR9uWb968Wcy07e4LL7wgZs45zmYhFGs6\nybdlyxZz5MiRQtVSdB/60IfE7IEHHgh8ebt27RIz7XP+p3/6JzH7wAc+sK6agvTMM8+I2b59+0Ks\npHT09/s/jKe9vd3cd999ebNrrrlGnO5Tn/qUmB08eFDMPvjBD4pZOWwHbrnlFjF7+OGHA1/ed7/7\nXTG7/fbbA19eKRkYGBCz1tZWMdN+XPFdB621p32mK/f9n6+vfe1rYvaxj30sxEp0//Iv/yJm73zn\nO0OsZGPzbX8r0Q5SH3vsMTF76KGHxEzb/nz84x8Xs1/96ldidvjwYTHTfqTdu3evmGnv79prrxUz\n7YdY7UTJn/zJn4jZgw8+KGbnz58Xs46ODjErBK1f9KUvfUnMvvGNb4jZn/3Zn62rpnyC3geupw9a\nSvtA35O0mqhcQOHrRz/6kZjddtttgS/vO9/5jpj9/Oc/F7N/+Id/ELPt27eLme+6+YlPfELM/vZv\n/1bMHn/8cTHTjsmAsDBcFwAAAAAAAKFiuG7wePAGAAAAAAAAEHGc5AMAAAAAAAAijpN8AAAAAAAA\nQMRxTz4AAAAAAACEinvyBc8651b9j/v7+12pPFlJoz3WuqqqKsRK/OVyOTFbXFwUM99Hx5eDmZkZ\nMctkMiFWIuvv7zdHjhzx2pJFpf1p6+7k5KSY1dbWFqIcL9pTB8fHx8VMe+/a0wPD3rmNjY15Tac9\nwVJ77xUVpXPRuLX2Sefcmh8xWIj2d/LkSTH71re+JWbXX3+9mB06dGhdNZWrUnqyp/aUw5tvvlnM\n4vHo/y7r2/6MKUwbnJubE7NsNitmWt9Z+55SqdTqCisybXuu7QO1/Xgp7Qe07z2RSIiZ9h6isA8s\nlz5oORzn+ZqdnRWzdDodYiWFsbCwIGZa24yC9bS/ctbZ2ek++tGPFruMVfvc5z7n3Y8JU2nsdQAA\nAAAAAAB4i/7PwgAAAAAAAIgUhusGjyv5AAAAAAAAgIjjJB8AAAAAAAAQcQzXBQAAAAAAQKgYrhs8\nruQDAAAAAAAAIq4sr+Qrh8enV1TI51+1TDMxMSFmNTU1XvMsJZlMptglwOjrZ21tbYiV+KusrBSz\neFzebM7OzopZKf1KVVdXF/g8fbdLG1lvb6+Yff7znw+xkvIwNjYmZo2NjSFWorvtttuKXQKWpFKp\nYpdQkrTtudZfjMp+oBDfe1Teezkoh+M8X7FYTMxyuZyYRWX9TCQSxS4BKAvRaPEAAAAAAAAARGV5\nJR8AAAAAAABKk7W2pEY7lQuu5AMAAAAAAAAijpN8AAAAAAAAQMQxXBcAAAAAAAChYrhu8LiSDwAA\nAAAAAIg4ruSLoHjc72urqakJuBJg40kmk2J29uxZMUskEmKWyWTWVRMAY+rq6opdAlD2YrGYmM3M\nzIgZ+zlg/bS+JAD8HlfyAQAAAAAAABHHlXwAAAAAAAAIFffkCx5X8gEAAAAAAAARx0k+AAAAAAAA\nIOIYrgsAAAAAAIBQMVw3eFzJBwAAAAAAAEQcV/IBZWB4eFjMGhsbQ6xkY9u6dWuxS0CJOXv2rJh1\ndXWFWAlQvpxzYjY/Py9mqVSqEOVsWJlMptgloAjGxsbErK6uLsRKAADGcJIPAAAAAAAAIWO4bvAY\nrgsAAAAAAABEHCf5AAAAAAAAgIhb8SSftfZOa+0Ra+2RwcHBMGoCsIT2BxQP7Q8oLtogUDy0PwCI\nphVP8jnn7nXO9Tvn+ltaWsKoCcAS2h9QPLQ/oLhog0Dx0P4AFJq1NlJ/ooLhugAAAAAAAEDEBfZ0\n3cXFRb8C4sE/4Hd2dlbMjhw5ImbXX3+9mGnvrxDv4dSpU2JWWVkpZqOjo2LmnBOz7du3r6quYstm\ns2J2++23i9n3vvc9r+VdeeWVYnbvvfeK2f79+72W56uhoUHMZmZmxCyTyYjZiRMnxKyurk7Mjh49\nKmaHDh0Ss1LywgsviNmOHTvE7PHHHxezAwcOrKumIM3Pz3tl9913n5i9/e1vF7OtW7eK2aOPPipm\nb3rTm8RM256Vkq6uLjHTttf19fVey7t48aKYtbW1ec3zN7/5jZjt2bPHa55hu3Tpkpg1NTWFWEn5\n0/bT6+GcE7dPFRXyb9apVEqdpyRKv9gHbW5uTsy0fURNTU0hygmcb7/o17/+tZhdc80166pprcbH\nx8WsqqoqxEr0PqGvs2fPillzc7OYpdPpwGspBO1YdXJyUsy09x4V2vurrq4WsyeffFLMrr766nXV\nBJSb4M9OAQAAAAAAAIqN/KNaoTBcFwAAAAAAAIg4TvIBAAAAAAAAEcdJPgAAAAAAACDiuCcfAAAA\nAAAAQsU9+YLHlXwAAAAAAABAxAV2JV887jcr38donzt3Tsw6OzvF7PLLLxcz7XHmhXgk+8DAgJht\n2bJFzP71X/9VzN7+9revp6TQLCwsiNnx48fFbPfu3WL2ve99z6uWhx9+WMyefvppr3kWgnNOXEe1\n9TOTyYhZNpsVs76+vtUXt8yhQ4fEbHx8XMxqa2vFbHFxUcx8tz2aHTt2eE134MCBgCspjGQy6ZV9\n/OMfD7yWN77xjWLmnAt8eb7m5ubMyZMn82a9vb3idBMTE2JWX18vZpcuXRKzpqYmMWtraxMzX3v2\n7Al8nhptm3zLLbeEWElhPPbYY2J27bXXitmDDz4oZu9973u9arnqqqvE7KmnnvKaZywW85puJdZa\ncd6+y/S9emBubk7MUqmUmGn73EJ9bpJcLidmWh9N2zZVVVWJ2fz8vJgVoo+t0fpFU1NTYnbNNdcU\nohwvFRXydRphr0sa7XvX+hvafm5sbMyrFm090/ob2nvQ2rtvLYlEQsy0915XVydmQ0NDYtbc3Cxm\nhaBtezSF6N+88MILYqYdC2jnL6RjFm37DwSN4boAAAAAAAAIFcN1g8dwXQAAAAAAACDiOMkHAAAA\nAAAARBzDdQEAAAAAABAqhusGjyv5AAAAAAAAgIjjJB8AAAAAAAAQcWsarjs6Omr++Z//OW/23ve+\nV5xOeyz5yZMnxayzs9MrGx8fF7Mf/OAHYtbR0SFml112mZidOHFCzG677TYxa21tFTPNG97wBjG7\ncOGCmLW3t3strxC0x4jv2bNHzM6cOSNm9fX1YlZdXS1mt9xyi5hpj5z/xS9+IWbvec97xMzX/Py8\n+P77+vq85hmLxdZT0prV1tZ6TRePy5uqp556Ssyuuuoqr+UhPDMzM2KWyWRCrESXSqVMb2/vmqer\nqanxWl5TU5PXdJpPf/rTYvbFL37Ra54PPPCAmH3oQx/ymqe2TfZVSkNBrr32Wq/ptH6WL237WWqc\nc2J/8vDhw+J0LS0tYtbT0yNmjz76qJj19/eL2Te+8Q0x0/qEW7ZsEbPFxUUxe+SRR8Ts1ltvFbOK\nCvl3fm27rPXftHmm02kxC9vU1JSYHTlyRMwOHjwoZiMjI2LW0NCwusLWQDv22LVrV97XteOxlSwu\nLprBwcG8mdbG7rvvPjG76667xEzb//v2DXz3V6lUSsw+8pGPiNn999+/usJeR+uba8cldXV1YlZK\n/SntWOBrX/uamH3sYx8Ts1deeUXMuru7xWzHjh1iNj09LWbacaUk7GMubGzckw8AAAAAAAChsdaW\n1A+x5YLhugAAAAAAAEDEcZIPAAAAAAAAiDiG6wIAAAAAACBUDNcNHlfyAQAAAAAAABHHST4AAAAA\nAAAg4tY0XLe+vt685z3vyZtpj2X/1re+JWYf/OAHxUx7HHZjY6OYffaznxWzL33pS2KmPSJd09fX\n5zWdL+1x35qpqSkxq6qq8i3HSzqdFrP//M//FLOurq5ClCNqbm4WM6ktGGPMyy+/nPf1ubk571pS\nqZS4rv3kJz8Rp9u9e7eYtbe3e9cjeeCBB8Ssp6dHzA4ePChm+/fvF7O/+Iu/ELOrrrpKzDRve9vb\nxOzf/u3fxOzSpUti1traKmaxWGx1hQXkK1/5ipjdfffdYnbs2DExu3jxopi9+c1vFrNEIiFmAwMD\nYqZ9ntdff72Y+ZqZmTFHjx7Nm2ltTPPGN75RzB599FExy+VyYlZRIf9298UvfnF1hb3Orl27xOz5\n55/3mqfmU5/6lJhp+3CN1mcI20033SRmP/3pT8VscHBQzFpaWrxq0dalO+64Q8y+853viNn3vvc9\nr1pWMjU1ZR577LG82b59+8TptL7d2bNnxUzajxtjzKlTp8SsqalJzOrr68VM+9yy2ayY3XjjjWKm\n+dnPfiZm8bh8eKD13zZv3ixmyWRydYUFZHJyUsy070/7jrT9XGVl5arqer3R0VEx0/bV2vdeiD7o\n3Nyceemll/Jm2vbnTW96k5j9zd/8jZg9++yzYvbv//7vYvbXf/3XYvbRj35UzN7//veL2ec//3kx\nu//++8VMo7X3yy+/XMy0fZm2zmtZIY4BT548KWbatvVjH/uYmGnrhO8x/OnTp8XsE5/4hJjdeeed\nYib1T6enp1dfGLBO3JMPAAAAAAAAoeKefMFjuC4AAAAAAAAQcZzkAwAAAAAAACKO4boAAAAAAAAI\nFcN1g8eVfAAAAAAAAEDEcZIPAAAAAAAAiDjrnFv1P+7v73dHjhwpYDn/f9rjvuNxeaRxOp0Ws4WF\nBTFLJBKBT+drampKzA4fPixmt912m5hpn2d1dfXqCgvBj3/8YzG7+eabA1/e3XffLWYf+tCHxKy7\nu1vMpPXzrW99q3nmmWe8rknW2t/o6Kg4XX19vZidP39ezDo6OlZf3CrlcjkxGxkZEbOmpqbAazl5\n8qSY9fb2itn09LSYDQ0NiVlFhfybSldXl5gVgvZZV1ZWilkqlQq8Fm17pm133/rWt4qZtv2srq5+\n0jnXv7rq/pvW/p5++mlxuj179ojZ888/L2adnZ1i9vWvf13MPvvZz4qZ5vjx42K2fft2r3kWgtZn\nKffhHtdff72Y/fKXv/Sa5z333CNmd911l5iNjY2J2auvvipmu3bt8mp/xuhtcH5+XpxO2/Zq69PE\nxITXdNr+am5uTsxisZiYaX3eQtA+T00ymRSzUuqDavtqrc+k9WG0914q+vv7zZEjRwLvg5aS2dlZ\nMVtcXBQzbR3U+hRVVVWrK6zITpw4IWZ9fX0hVuJP27cMDw+L2e7du8XMt+9z+vRpMdu8eXPe1w8c\nOODd/spZd3e3+/SnP13sMlbt7rvv9u7HhIkr+QAAAAAAAICI4yQfAAAAAAAAEHGc5AMAAAAAAAAi\nbsWbfFhr7zTG3GmMfg8yAMGj/QHFQ/sDios2CBQP7Q9AoVlry/6eysWw4pV8zrl7nXP9zrn+lpaW\nMGoCsIT2BxQP7Q8oLtogUDy0PwCIJobrAgAAAAAAABG34nDdQjt27JiYaY+urqiQz0+eOnVKzLZs\n2bKasv5AIpHwms5XPC5/NbfddpvXPLPZrG85obr22mvF7PHHHxczbX2pq6sTs6985Sti9tRTT4mZ\n9nm2t7fnfV37XtfD9zLnjo6OgCvRae22qakpxEqM6e3tFbOBgQEx037Nrq6uFrNcLre6wkLQ0NDg\nNd3w8LCYNTY2es1T+97b2tq85llVVeU1na8rr7zSa7q9e/d6TffZz37WazqNtv0sJRt5SEd/f7+Y\nzc7Oilk6nRazX//612Im7ceMMebQoUNitnPnTjFbj4WFBXPhwoW8mVbrSvOUaNvzZDLptbxUKuU1\nXdi09zc4OChm2n6glN57c3OzmGl9O9/vXXPixAkx6+vrC3x5vqanp83TTz+dN/PdBxbC2bNnxewN\nb3iD1zzD7lM8//zzYrZr1y6veW7evNm3nFBp25dNmzZ5ZRrfvk9NTY2Yacc6yG8j9+0KhbUQAAAA\nAAAA8GSt/SNr7XFr7YvW2s/kya219n8t5c9Za69aen27tfaZZX/GrbX/Yyn7S2vtuWXZild8Ff1K\nPgAAAAAAACCKrLUxY8xXjTFvM8acNcY8Ya39oXNu+eW5txpj+pb+XGOM+box5hrn3HFjzL5l8zln\njHlo2XR/65z7n6uthSv5AAAAAAAAAD8HjDEvOudeds7NG2O+a4x55+v+zTuNMQ+41zxmjKm31r7+\n/lk3GWNecs6d9i2Ek3wAAAAAAAAIlbU2Mn9W0GmMObPs72eXXlvrv7ndGPP/vO61/3NpeO991toV\nb67OST4AAAAAAABA1mytPbLsz51BztxamzTGvMMY871lL3/dGLPVvDac97wx5v9eaT7ckw8AAAAA\nAACQDTnn+oXsnDFm+aOsu5ZeW8u/udUY85Rz7uLvX1j+/9bafzDG/OtKRa7pJJ9zziwuLuafUdzv\nfOG2bdvEzPcR1LW1tV7TlZJUKiVmQ0NDYtbc3CxmdXV166opSJcuXRIz7VLYAwcOFKIc0VVXXRXq\n8jTOObOwsJA3O3nypDjdvn37xGx6elrMKisrxWxgYMBruurqajErJdlsVsxmZ2fFLBaLiVljY+O6\naloraVttjDEzMzNiVlNTI2bae9DmmclkxGz37t1ihvxOn5Zv0dHT0xNiJYVx6tQpMXPOiVlvb28B\nqikdH//4x8VM6zNo7r//ft9yQpfNZs3w8HDeTOvfaNsfre86Pz8vZr77znKQTqfFTGufiUSiEOWI\ntP24Vqe2Tkh9MGP8319fX5/XdGHLZDJm165doS1Pa3/JZFLM2traClFOqHw/55deeknMLrvsMt9y\nvPh+fy0tLYUoJ3Bh9+nL3SqGwUbFE8aYPmttr3ntxN3txpj//XX/5ofGmLuttd81rz14Y8w5d35Z\n/qfmdUN1rbUdy/7Nu40xR1cqhCv5AAAAAAAAAA/OuUVr7d3GmIeNMTFjzH3Oud9aa+9ayu8xxvzI\nGHObMeZFY8y0MeYjv5/eWltlXnsy75+/btb/l7V2nzHGGWNO5cn/ACf5AAAAAAAAAE/OuR+Z107k\nLX/tnmX/74wx/4cw7ZQxpinP6x9cax2c5AMAAAAAAECoymi4bsng6boAAAAAAABAxHGSDwAAAAAA\nAIg4TvIBAAAAAAAAEbeme/JZa8VHy4+MjIjTNTQ0iFksFhOzbDbrNZ32WOuJiQkxq6mpETPN8PCw\nVy2+MpmMmI2Pj4uZNt7d971rzp07J2adnZ1iNjs7G3gt5WB+ft6cOnUqb7Zp0yaveeZyOTHT1qXW\n1lYxGx0d9ZpnbW2tmA0NDYmZtu6mUikx03R0dHhNl0gkvKYrBGlbbYz+mS0sLIiZ9v607RKC1dPT\nE+ryZmZmxCyZTIqZtp/WbNmyxWu6crd169Zil1BU8XjctLW15c18tz9av0jb3mn7lsnJSTGrrq5e\nXWGv89p9uvObm5sTs3Q67bU8jTZPrc6wVVTI1zFo37v2HkppHx82a613n8qHtm/RFOJ4ppRMTU2J\n2WWXXRZiJTrt+9OOE+rr6wtRDkqYtZZ78hUAV/IBAAAAAAAAEcdJPgAAAAAAACDi1jRcFwAAAAAA\nAFgvhusGjyv5AAAAAAAAgIjjJB8AAAAAAAAQcZzkAwAAAAAAACJuTffkc86Z+fn5vJnvI8u1R4FX\nVVV5zVOq0ZjCPFq9trY28HlqfD+X6enpgCvRdXZ2ek2XTqcDrqQ8JJNJ09vbmzfL5XJe86yurl5P\nSXlptfiuu83NzV7LC9vg4KCYdXR0hFiJv0QiUewSYIyZnZ0VM20befjwYTG75pprvOZ56dIlMevq\n6hKzsD311FNidtVVV4VYCQohHo+bpqam0Jan7VsqKuTfyMPer4bdZ9LeeywWC7ESne89nrg31Npd\nvHhRzNra2rzmOTo6Kmb19fVi9sorr4hZd3e3Vy3asWplZaWYFWJdmpmZETPfPnbYtO8PGxPb3eBx\nJR8AAAAAAAAQcZzkAwAAAAAAACJuTcN1AQAAAAAAgPViuG7wuJIPAAAAAAAAiDhO8gEAAAAAAAAR\nx3BdAAAAAAAAhIrhusFb00k+a61JJpN5M+2R3vG4vBjtcd9zc3NiNjs767U8qf710JZXCBcuXBCz\n9vZ2MZuenhYz7RHwyE9b5zOZTODLs9aaior8F98WYh3MZrNitrCwIGZam04kEuuqKR/pM1mPsbEx\nMZufnxezjo6OwGvZyLTPWlOI7XwulzMTExN5s1QqFXgt6XRazB5++GExu+WWW7yWp+nq6gp8noVw\n1VVXiVkulxOzQmxDysHk5KSYVVdXh1jJa5xzYr9Q2wfGYjGv5Wnz1Pqnzjkx09q1xvc9+FpcXBQz\n3/6G9rlwgJeftt3SPrOwP8+2trbA56n1MzWF2J5r/dqwNTc3F7sEmNLbPwKvR88WAAAAAAAAiDhO\n8gEAAAAAAAARt+I199baO40xdxpjTHd3d8ELAvDfaH9A8Sxvf5s3by5yNcDGQxsEioc+KIBCs9Zy\ny4YCWPFKPufcvc65fudcf0tLSxg1AVhC+wOKZ3n74z44QPjYBwLFQ/sDgGhiuC4AAAAAAAAQceE+\nFhYAAAAAAAAbHsN1gxfYST7tUeeZTEbMJiYmxCybzYrZiy++KGb9/f1ipjlz5oyYNTU1iVllZaXX\n8ny1t7d7TVdKj4DXDA0NiVkpDZnT1l1tnV+Pior8F9+OjY2J09TV1YnZ1NSUmA0MDIhZb2+vmPnS\nvndt3S3EZ51Op8VM+zwRrPn5eTGrrq4OsRJdMpn0mk5rf88++6yY3XLLLV7L860l7H3H5OSkmGnf\n+9zcnJjNzs6KGW06P+2znpmZEbNC7f+cc2ZxcTFvlkqlAl+etj4VYnka55yYFeLgKB6XDw+mp6fF\nTOsPl9JBnHZ8EYvFvOYprZvG6J+nRmtn2jrouzxNNpsV+5q+29Df/e53YrZt2zaveTY2NoqZb19Z\nO8ZNJBKrK2wNtO9d2xZo7W9wcFDMwh6KffToUTGrqakRs56enkKUIzp37pyYdXZ2hlgJsHYM1wUA\nAAAAAAAijpN8AAAAAAAAQMRxTz4AAAAAAACEqpRu51AuuJIPAAAAAAAAiDhO8gEAAAAAAAARx3Bd\nAAAAAAAAhIrhusEL7CRfbW2t13Tao7I1/f39YvaTn/xEzA4dOiRmmzdvFrMLFy6ImfbI8kJ4+eWX\nxWxxcVHMqqurxSyTyayrprU6cuSImKXTaTFrbm4uRDlestlsqMtzzpm5ubm8mfbdaqqqqsTM91H1\nx44dE7Pu7m4xc86JWdjrZyqV8ppudnZWzCoq5Aunk8mk1/J8HT16VMy2bdsmZuPj42Lm2zanp6fF\nTFuvJycnvabzVVFRIe6vtO9d2559//vfF7MPf/jDqy9umS9/+cti9slPflLMtG1B2Hy/P63dllIH\n8r3vfa+YPfjggyFWYsypU6fEbGBgQMwOHDhQgGpWJu0nfNtg2NuRXC4nZlr/Lex9hGZiYkLMwu4P\n+4rFYmKm9UUWFhYCr0X73rX1Rdt3+h6TaWKxmKmrqwt0nlp/Q6MdB23dutVrntpnnUgkvObpy7fP\nqx2XtLS0+JYTuN27d4vZmTNnvOY5OjoqZvX19V7z7OzsFLOzZ8+KWVdXl9fygCAxXBcAAAAAAACI\nOIbrAgAAAAAAIDTW2pIabVEuuJIPAAAAAAAAiDhO8gEAAAAAAAARx0k+AAAAAAAAIOK4Jx8AAAAA\nAABCxT35ghfKSb7Tp0+LWU9Pj5jNzMx4Le/yyy8Xs4oK+eLFX/3qV2J23XXXiZn2uO/NmzeL2dTU\nlJhVVVWJme/j4UtJf3+/mP3sZz/zmufExISY1dTUeM3zueeeEzPte1hYWMj7unPOq47fi8Via3p9\nJXNzc2KWSqXE7OTJk2JWV1cnZvG4vMlpaWkRM62taG06k8mIWSGk0+lQl+dr586dYqatS83NzWI2\nOTkpZtXV1WKWTCbFTKPNM2y+3/uHP/zhgCsx5pOf/GTg8ywHvutZITz44IPFLuG/bNmyxSsrhoqK\nCrFvJO1zjdH3c4XYjmj7eW1/pa2juVxOzLLZrJglEgkx0z4zbV/d1tYmZr792rBp712jfbdan0mj\nfdba96cdW9XW1nrVosnlcuJx2eLiojid9plpdfoeWw0ODopZY2OjmPn2o337PoWgHQfnnqCnAAAg\nAElEQVTV19eHWIk/7bvV+LY/jbY96+rqCnx5QJAYrgsAAAAAAABEHMN1AQAAAAAAECqG6waPK/kA\nAAAAAACAiOMkHwAAAAAAABBxnOQDAAAAAAAAIo578gEAAAAAACBU3JMveIGd5JufnxezF198Ucx6\nenrELJPJiNn4+LiYfepTnxKzT3ziE2LW3NwsZprDhw+L2R133CFmVVVVYqa9v4sXL4pZMpkUM+2z\nLiVbtmwRswsXLojZyZMnxey6664Ts5GRETHbu3evmPlYz0bMWmvi8WDPy//4xz8WsxtuuEHMent7\nxez8+fNiNjc3J2apVErMfNuKtg3RPPTQQ2L27ne/22uepeT5558Xsz179ojZ0aNHxayxsVHMqqur\nxSzoddoYY1555ZXA5zk7O2uOHz+eN3vuuefE6d7//veL2WOPPSZm11577eqLK7Cf//znYvaWt7wl\n8OXNzs6KWTqdDnx5Ybv++uvF7Je//GWIlRhzzz33iNldd93lNc+/+qu/8i1nRdI+dHh4WJymqalJ\nzLS+65NPPilml19+uZjV1taKmWZsbEzMtO2ktn/UJBIJMdM+F63OlpYWr1rCNjg4KGatra1ipr33\nyspKMdP2gWfOnBGz6elpMdu+fbuYPfvss3lfn5mZEadZSTabNaOjo3kz7XvP5XLqPCXaZ71582Yx\n02p59dVXxUzru+7evVvMtO9WMzExIWY1NTVi9sMf/lDM3vGOd3jVEjZtvdbakca3vy+1FWOM6erq\nEjPtWHzr1q1etQBBYrguAAAAAAAAEHEM1wUAAAAAAECoGK4bPK7kAwAAAAAAACKOk3wAAAAAAABA\nxDFcFwAAAAAAAKGx1jJctwC4kg8AAAAAAACIuMCu5Esmk2J20003idnw8LCYaY8Qr62tFbNvf/vb\nYvYf//EfYpZIJMRMc8cdd3hNd+LECTHr6+sTM+3x6b61lJJ0Oi1m7e3tYlZVVeW1vIqK6Jzrzmaz\neV8/c+aMOM38/LyY9fT0iFl9fb2YPfLII2L25je/Wcx825hG2xb4eve73+013blz58Sss7PTt5zA\n7dy5U8ycc2LW1dUlZtr6ohkcHBSzkZERMdu2bZuYdXd3e9WiuXTpkvnmN7+ZN/vCF77gNc9rr712\nPSWt2fe//30xe9/73idmb3nLWwpRjugHP/iBmN1+++0hVlIYX/3qV72m++QnPylmX/7yl73meezY\nMTGbnp4Ws8rKSjH73Oc+J2af//znV1dYHouLi+bSpUt5M63fsLCwIGaZTEbMdu3aJWYXL14UM22f\npNUyNTUlZm1tbWLma25uTsxSqZSYadvslpaWddUUFq1O7XvQ1nvfvuTY2JiY7d69W8wmJyfF7Ior\nrsj7ura+rySRSJiOjo41T6e9v7q6OjHT3rsvrR01NjaKmdYefGnHuFpf8h3veIeYRaVtau1I2+9o\n66/vlWC+69nZs2e9pgPCEp2zGwAAAAAAAADy4p58AAAAAAAACBX35AveilfyWWvvtNYesdYe0S4D\nBhA82h9QPMvbnzaEBEBhLG+D0lBdAIVBHxQAomnFk3zOuXudc/3Ouf5SGs8PbAS0P6B4lrc/7R4y\nAApjeRtsamoqdjnAhkIfFACiieG6AAAAAAAACBXDdYPHgzcAAAAAAACAiCv6lXzaI8tHRkbErKGh\nQcx+97vfidkNN9ywusJC0NfXJ2a/+tWvxOyOO+4oRDklY2FhwWu6M2fOiNmuXbvErK6uTszOnz/v\nNV2hhvbFYrG8r2/ZsiXwZQ0NDYnZ2972NjE7efKkmPX29q6rprA888wzYrZv3z4x6+zsLEQ5gRsb\nGxOzXC4nZoUYrjM3Nydmmzdv9ppnIe4d1NnZab7whS8EPl/J2bNnxay6ulrMtPb3vve9b101hUXb\nXpeDK664wmu6L3/5ywFXYszf//3fBz7PQonH4ybMIbvaPl7LZmZmxEy7WmHTpk2rKywgqVRKzJxz\nYlYO7TORSIiZ9t0ODAyIWWtrq1ct2nGQRtsPSPtV7XstFO3z1BTis9burVtTU+M1T1+zs7NipvUl\ntenKYUj1+Pi4mGntVss00nHVSt7whjd4TQeEhSv5AAAAAAAAgIgr+pV8AAAAAAAA2Fi4J1/wuJIP\nAAAAAAAAiDhO8gEAAAAAAAARx3BdAAAAAAAAhIrhusHjSj4AAAAAAAAg4kr6Sr7a2lqv6bZt2xZw\nJeG77rrril1C0fT09HhNt2vXLq/pRkdHxayjo8NrnuWgpqbGa7re3t6AKwnfvn37il1CQTU1NQU+\nz8OHD4vZwYMHxayrq0vMxsbGxCyTyYhZS0uLmEXF+fPnxWz//v1iduWVVxainFDt3bu32CUA3rRt\nU1RwVUV+iURCzAYHB8VM2ydVVlaKWTabFbNYLCZmqVQq7+tR+l5bW1sDn6dvv7YQ0ul0qNNFRXt7\nu5jNzc2J2cWLF8Wsra1NzJ577jmv6bQMKAUlfZIPAAAAAAAA5cVaG6kfIKKC4boAAAAAAABAxHGS\nDwAAAAAAAIg4TvIBAAAAAAAAEcc9+QAAAAAAABAq7skXPK7kAwAAAAAAACIusCv5xsfHxay2ttZr\nntrj4YGg1NfXF7uEVclms2I7S6VS4nRaptGmm5ycFLPq6mqv5SHaDh48GPg86+rqAp9nIYyMjIhZ\nQ0OD1zz379/vWw6w4eRyOTGrqOD3bATDd3uuiUofVDM9PS1mlZWVXvPU9qvaPH37vCh92nfb1tbm\nNc+9e/f6lgOUNIbrAgAAAAAAIFQM1w0eP28CAAAAAAAAEcdJPgAAAAAAACDiGK4LAAAAAACAUDFc\nN3hcyQcAAAAAAABEHCf5AAAAAAAAgIgLbLhubW1tULNat8OHD4vZwYMHQ6wEUTc1NSVmmUxGzCoq\ngj9/7pwzc3Nza16e9sh5X9XV1YHPE4iqmpqaYpcAlL1sNmvGx8fzZmG3wVwuJ2aF2P8DpayysjLw\neTY0NIjZsWPHxGznzp2B14KNaXp6Wsyy2ayY0SdEKeCefAAAAAAAAAgV9+QLHj83AgAAAAAAABHH\nST4AAAAAAAAg4hiuCwAAAAAAgNBYaxmuWwBcyQcAAAAAAABEHCf5AAAAAAAAgIhjuC6gqKqqErPz\n58+LWUdHR+C1xONx09LSEvh8gSjK5XJiVlER7u9X8Ti7UpSf+fl5Mbt48aKYbd68uRDlmFgsZmpr\nawsy77Wam5sTs0wmE2IlwMbT1NRU7BKwAaTTaTHLZrMhVgKsHUcmAAAAAAAACBX35Asew3UBAAAA\nAACAiFvxJJ+19k5r7RFr7ZHBwcEwagKwhPYHFA/tDygu2iBQPLQ/AIimFU/yOefudc71O+f6uR8Y\nEC7aH1A8tD+guGiDQPHQ/gCEwVobmT9RwXBdAAAAAAAAIOI4yQcAAAAAAABEXFk+XffgwYPFLgEb\nQEdHR7FLKJrJyUmv6aqrqwOuBBtVRQW/UQGFlEwmxWzz5s0hVlJ6tM8G5SubzYpZLBYLsZKNrbW1\ntdgloMTMzs6KWTqd9pqn1s+kDxqsKA2DjQrWUAAAAAAAACDiOMkHAAAAAAAARBwn+QAAAAAAAICI\nK8t78gEAAAAAAKB0cU++4HElHwAAAAAAABBxnOQDAAAAAAAAIi6w4bqFeHS19qj6yclJMaurq/Na\nHkrDI488ImY33HCDmC0sLIhZTU2NVy3aej0zMyNm0vo5Pz/vVcd6DAwMiFlra6uYae2vurp6XTWh\nuMbHx72mS6VSYjY6OipmbW1tXsvT2ksymRSzc+fOeS3Pl2+dmh/84Adi9q53vUvMXnjhBTHbsWOH\nVy1RoW2zYrFYiJUUxre//W0xu+OOO0KspDicc2Jb821nuVxOXZ5EW5+06cphSNLExISY+fa1wqbt\nIzo7O8UsKtsRqX+qre/FMDIyImYNDQ0hVhIdvt9hRUW41/UsLi6KWTzud/phampKzKqqqrzmqSmH\nbV0UWGvLYt9YariSDwAAAAAAAIg4TvIBAAAAAAAAEcdJPgAAAAAAACDiArsnHwAAAAAAALAa3JMv\neFzJBwAAAAAAAEQcJ/kAAAAAAACAiFvzcF3p0d3pdNqrgOeee07M9u7dK2a+j8p+5ZVXxKy7u9tr\nnmHTHp8e9iPSNYODg2LW0tIiZm9729vEbHJyUsz+8R//Ucze9a53iVl7e7uYaeu1ljU0NOR9PZlM\nitOsJJfLmZmZmbxZJpMRp2ttbfVaXiwW85oOpa+2tlbMXnrpJTGrr68XM20d9OXbXjo7OwOuxJhs\nNmtGRkbyZlJ7N8aYiYkJMaupqRGz2267bfXFLbNjxw4xe+KJJ8Rs//79XssrJdo2S1uvL7vsskKU\nIzp27JiY7dy5U8zuuOMOMbtw4YKYNTU1iVkikRCzUmOtXdc+NB+tfdbV1YnZ2NiY13Rzc3Nilkql\nxKyUTE1NiZk25Kq6uroQ5Yi0z1rbR2jrhPYdBb1uGmPM/Py81/Kk/fF6jhGcc+Jnqn0u2nvQ9p0a\n7ThIWwe1dcL3ODZsvt+h7zbLVzzud0ewgYEBMdOO4fv7+8XM971Lx1zGGPPMM8+I2Q033CBmyI/h\nusErnTNCAAAAAAAAQMRYa//IWnvcWvuitfYzeXJrrf1fS/lz1tqrlmWnrLW/sdY+Y609suz1Rmvt\nI9baE0v/XfEXEk7yAQAAAAAAAB6stTFjzFeNMbcaY3YZY/7UWrvrdf/sVmNM39KfO40xX39d/hbn\n3D7n3PLLUz9jjPmpc67PGPPTpb+rOMkHAAAAAACAUFlrI/NnBQeMMS865152zs0bY75rjHnn6/7N\nO40xD7jXPGaMqbfWdqww33caY7659P/fNMbI9yFbwkk+AAAAAAAAQNZsrT2y7M+dy7JOY8yZZX8/\nu/SaWeW/ccaYn1hrn3zdfNucc+eX/v+CMaZtpSL97ooJAAAAAAAAbAxDrxtKG6TrnXPnrLWtxphH\nrLUvOOd+sfwfOOectdatNCOu5AMAAAAAAAD8nDPGbF72966l11b1b5xzv//vgDHmIfPa8F9jjLn4\n+yG9S/+VH0O9ZE1X8mWzWfHR8toY5cXFRTHr6elZSwn/RXs099TUlJjFYjExGxkZETPfx7z7WlhY\nELNEIiFmk5OTYqZ9R1X/X3v3HiTXWd55/H27p3u6Z7rnounRbWSNJEuWJWRj7JFtso4LB7O+FCkv\nCeWwLpuYpMoYhw0UhBSh8seGUIEkazYJiQFtkYAr60pctUtsUgZsKELK5XhjyZFByBfZksbWXSPN\naG49fX33Dw1hIvp5Zuadc073mfl+qlyW5qdzztPd5730mXPp7FxYYYvQ39/vtdwLL7wgZrt37xaz\nBx980Gt7mq9//etidv/994uZ9Pk5N++Bd1G1WjWnT59umG3atMl7vUHT2nsiIf9eQds/o360+szM\njJhlMhkxO3NG7nN7enrELJ1OL6ywCGSzWTHbv3+/mN1yyy1iVq/XxUzbJ3yNjY0Fvs5kMimOA759\nltZWtEzbX06dOuVVy8GDB8Vs585L7xncPMPDw2KmvS+XX355GOV42bFjh5hpdR4+fFjMljK2SNrb\n28WsVCqJmbbvhqVWq4mZNu/r7u722p62nNbfae+p9r5pc94waJ9voVAQM63OMMYBbc6by+W81qn1\nI+Vy2Wu5kZERMdPeT217Wibt89pnMB9rrbj/St8NjTEmn8+L2fT0tJh1dHSIme/+os3fwvgOqM1F\ntDmh5o033hAzbV/y7euitnr1aq9M4/vate1p+wsWL+rveSF6wRizzVq72Vw8cPcBY8w9l/ybJ40x\nH7XW/p0x5gZjzAXn3ElrbacxJuGcm5j98382xnx2zjK/boz5wuz/n5ivEC7XBQAAAAAAADw456rW\n2o8aY75rjEkaY/7aOfcTa+2Ds/lXjDFPGWPuNMa8boyZNsZ8aHbxNcaYb84e8GwzxjzmnPvObPYF\nY8zj1trfNMYMG2Punq8WDvIBAAAAAAAAnpxzT5mLB/Lm/uwrc/7sjDG/1WC5w8aYtwvrPGeMefdi\n6uAgHwAAAAAAACJjrV1Ol+u2DB68AQAAAAAAAMQcB/kAAAAAAACAmOMgHwAAAAAAABBzi7onXzKZ\nDPwR3MPDw2Lmu63Ozk4xq1argW9Pc/LkSTFbt26dmKVSKa/t5XI5r+V8FYtFMctms17r3L17t285\nIt8677//fjGr1WpiJn1+S7nngLXWZDKZhtnIyIi4XKFQ8N6mj7a2eNzqc2pqSsy0PmRmZkbMVq9e\nvaSaFkvrz3w/h/Xr13tlGq3OREL+XdP09LSYJZNJMevp6VlYYQHR+qyjR4+K2aZNm8TM9/Nbu3at\n13I7d+70Wi5qg4ODzS5hQbR+QurHjTHmz//8z8Xs+PHjS6qpke9///tiViqVvNYZ1hjgnDOVSqVh\npvUH2litjQNdXV0LL24OrU/T3tP29nav7Wku3t+7MW0+EkYt2vviS3sNvuNjvV4XM985tjbP1Oan\n2n6tvQZpDhrGZ2CM/l5rtM9PG/87Ojq8tqfp7e0NfJ3aXMR3jNDWGcb32FYSxj7h2/62bt3qtT00\nxj35gseZfAAAAAAAAEDMcZAPAAAAAAAAiLl5r6mw1j5gjHnAGGM2btwYekEAfmZu+xsYGGhyNcDK\nwvgHNBdtEGge2h+AKHC5bvDmPZPPObfHOTfknBvq7++PoiYAs+a2v76+vmaXA6wojH9Ac81tg1Hf\nXxZY6RgDASCeuFwXAAAAAAAAiLl4PAYTAAAAAAAAywaX6wbPOucW/o+tPWuMGZ79a8EYMxJGUR6o\npTFqaayZtQw657yueaD9LQi1NEYtP+PVBi9pf8Y0/3XMRS2NUcvPa3YdjIHhopbGqOUi2l+4qKUx\narnIu/0tZ9u3b3df/epXm13Ggt1yyy37nHNDza5jPos6k2/ujmmt3dsqL5BaGqOWxlqplsWg/c2P\nWhqjlqW7dGLWSq+DWhqjltatwwdj4PyopTFqWTra3/yopTFqAaLHPfkAAAAAAACAmOOefAAAAAAA\nAIgU9+QL3lLO5NsTWBVLRy2NUUtjrVSLr1Z6DdTSGLU01kq1LEUrvQ5qaYxafl6r1LFUrfQ6qKUx\nammslWrx1UqvgVoao5bGWqkWIDSLevAGAAAAAAAAsBTbt293e/bE59jru971ruX34A0AAAAAAABg\nKay1XK4bAh68AQAAAAAAAMQcB/kAAAAAAACAmOMgHwAAAAAAABBzi7onX6FQcJs2bVr0Rkqlkpi1\nt7cven1LUa1WxaxSqYhZNpsVs3K5LGbpdFrMisWi1/ZefvllMduxY4eYHTx4UMx27twpZr4mJibE\nLJ/Pi1mtVhOzZDIpZpOTkwsr7BK5XM5rOZ86jx49akZGRrxuPJDNZp30vm3cuNFnld4OHz4sZlu2\nbPFa5/T0tJh1dHR4rVOzb98+MbvuuuvETNvPfPelMFy4cEHMuru7I6wkHK+99pqYXXHFFWK2b9++\nEedc/2K3p41/WnvQ2mZbmzwEv/rqq2KmjTldXV1ipo23q1evFjOtbWp9sjaOaf1nvV4Xs1QqJWba\ng8SmpqbErJXa7djYmJhpn+2//du/idnb3/52MdP2wTfffFPMtM+hv19uXi+99JJX+zPGmJ6eHrdu\n3bqGWWdnp7icNgfV9u3e3l4xe+utt8TszJkzYqaNLVGPgTMzM2L2xhtviJk2zzx27JiYRT1P0Rw6\ndEjMtL5Q+2y3bdvmVYvvXERz9uzZhj8/d+6cmZyc9JqDZjIZJ7WzzZs3+6zSHD9+XMwGBgbEzHce\n5ru9MJw6dUrM1q5dK2Zh7C9h0MbxREI+x2h8fFzMtDmM9p26p6dHzLR9QhvLtO/3kqV8B1zuuCdf\n8BZ1kG/Tpk1m7969i97IkSNHxMx3YPClDdBah3v11VeL2fDwsJgNDg6K2Y9//GMxu+qqq8Rs9+7d\nYvbCCy+I2Tve8Q4x8/lc5/NP//RPYvaud71LzEZHR8VMm3T/8z//s5hpX2R+4Rd+Qcw0PnUODfk/\njCefz5v3v//9DbNHHnnEe70+7r77bjF7/PHHvdap7YNLed8k2oCi1aLtZzfffPOSagrSt7/9bTG7\n4447vNapHUSJeoB+z3veI2bf+c53xKytrU3usBXa+PeBD3xAXO5LX/qSmGkTyFtuuUXMtIOKt912\nm5ht3bpVzB566CEx279/v5hpk+ddu3aJmdZ/agcfpIM8xui/qNPGRt8xIAz/8A//IGa33nqrmGm/\nOPve974nZoVCQcw+8pGPiJn2OXz0ox8Vs76+Pq/299NtPvroow0zbV6kHdB58cUXxezXfu3XxOy3\nf/u3xewv//IvxUwbW6IeA1955RUxe9/73idmzz77rJj9zu/8jphFPU/RaP2ktv9qr0EbczW+cxHN\nV7/61YY//6M/+iOv9Rlz8UC6NHf427/9W691/t7v/Z6Yff7znxez5557Tsy0/vz3f//3xexzn/uc\nmIXhC1/4gph9+tOfFrMw9pcw+B6I1eZv2hzmRz/6kZj9yq/8iph95jOfEbMPf/jDYqZ9v5eE0Y8D\nEi7XBQAAAAAAAGJuUWfyAQAAAAAAAEvF5brB40w+AAAAAAAAIOY4yAcAAAAAAADEHJfrAgAAAAAA\nIFJcrhs8qz0t8VJDQ0OuVZ7c8+qrr4rZqlWrxGxiYkLMtmzZsqSagqQ9Qlx7LLn21EXtqURdXV0L\nK6yFaa+9VT7boaEhs3fvXq+erJXaXys9ZTUMtVpNzJLJZISVIGjW2n3OuUU/4izq9qf189pT6zo7\nO8WsVCqJWUdHx8IKazLtCbqpVErMisWimGWz2SXVtFjValXMtP5zampKzLTXHvXr0/i2P2Oib4O+\nT4dE61upY3yrzUG1/lzrsxMJ+UI0LYvLOKeN/+fOnROz/v5+MWulfX5mZkbM2trk84+0LA6W0v6W\nsyuvvNJ97Wtfa3YZC3bTTTd5z2OixOW6AAAAAAAAQMxxkA8AAAAAAACIuXif9woAAAAAAIDYWQ63\nemo1nMkHAAAAAAAAxBwH+QAAAAAAAICY43JdAAAAAAAARMZay+W6IYjtQb7t27d7Lac9XryVdHV1\neS23Y8cOMctkMr7lxMKWLVuaXcKKsdw742QyKWYTExNils/nxaxSqYhZKpVaWGFYMRIJ+UR73/Gh\no6PDt5yWob0vWhvT2nTU2tr8pl6+nzv85HK5ZpfQksrlsphVq1UxS6fTYubbJny1Un+wkmlzn5U8\nL9LGOd/vsa20zy/376NAK+ByXQAAAAAAACDmOMgHAAAAAAAAxFxsL9cFAAAAAABAPC3320A1A2fy\nAQAAAAAAADHHQT4AAAAAAAAg5rhcFwAAAAAAAJHict3gcZBvBTlx4oSYDQwMRFgJEF/5fF7MJicn\nxSyXy4VRDrCiJBLyBQi1Wk3MpqenxSydTi+pJmAl0doLbQkIlzbOFYtFMWMOCqwsXK4LAAAAAAAA\nxBxn8gEAAAAAACBSXK4bPM7kAwAAAAAAAGKOg3wAAAAAAABAzHGQDwAAAAAAAIg57skHAAAAAACA\nSHFPvuAFdpDvwoULYlYqlcRs9erVQZUAY0w2mxWzgYGBCCtBlMrlspil0+kIK1nZcrlcs0tAE2hj\nXHt7e4SVLH/aRFDr6+gHV66pqSkx6+zsjLASYHmq1WpeGf3y4iWTSTFjDgrgp7hcFwAAAAAAAIg5\nLtcFAAAAAABAZKy1XK4bAs7kAwAAAAAAAGJu3oN81toHrLV7rbV7z549G0VNAGbR/oDmof0BzUUb\nBJqH9gcA8TTvQT7n3B7n3JBzbqi/vz+KmgDMov0BzUP7A5qLNgg0D+0PAOKJe/IBAAAAAAAgUtyT\nL3iBHeTr7u4WszfeeEPMCoWCmJ0/f95rOV+VSkXMUqlU4NsrlUpidvjwYTHbsWOHmJ05c0bM+vr6\nxEx7JHsYnnrqKTG78847xeyTn/ykmD388MNetUxOTorZyMiImG3atGnR66zX6wuu61LOOXEfTafT\n4nLValXMisWimOXz+YUXt0C1Wk3MtH1Q+4xyudySampkZmZGzDKZTODbi4sjR46I2ebNmyOspLW0\nt7c3u4Rlxbe9a/1rItE6tyD27QfL5bKYaWOAby2jo6Nips3BxsfHvWoJS2dnZ6Tb09636elpMRsY\nGAijHC9Hjx4VM23u89prr4nZhg0bxKyjo2MhZTWddsnq6dOnxWzXrl1e2/vOd74jZrfffrvXOn3V\najUzNjbWMNP6166uLjHTvgdp46rvHE2b82azWTFrJcePHxczrQ8JY/zwpdWifRfX+nLf8f/AgQNi\nprVbbZ4ivZ/OOXEZIGitM+sFAAAAAAAA4IXLdQEAAAAAABApLtcNHmfyAQAAAAAAADHHQT4AAAAA\nAAAg5rhcFwAAAAAAAJHict3gcSYfAAAAAAAAEHORnMl3+eWXey1XKBQCrsSYEydOiNn69esD356v\ntWvXei23evXqgCsJx5133um13MMPPxxwJcbkcjmvTNPe3t7w50v9TYXP49fb2uRmnkqlxEx7PPzR\no0fFbMuWLWKWTCbFrF6vi1lHR4eY+ZqYmBCzfD4vZi+//LKYaX1Wf3//wgprsueee07M3vnOd4rZ\n9PS0mGmf37/+67+K2dve9jYx6+zsFLMwOOdMtVptmNVqNXE5rY3NzMyIWaVSEbOzZ8+KmdbGNm/e\nLGba55dIyL8PzGQyYuZL6j+NMWZsbEzMtM+hr69vSTUFSfuMtM/9hz/8oZjdeuutYqaNO08//bSY\nXX/99WKmCaO/XgptbNH2bV/amLtu3TqvdWr7hdbH+K7Td+6jvb5yuSxmrbbPSLRxPIwx/vbbb/da\nTprfaG1hPslk0vT09AS6Xq2v1/iOO9lsVsy016D1ob7zem0+r61zYGDAa3vpdNpruTBor08bHzW+\nffmuXbu8lvPpIzlbDVHiTD4AAAAAAAAg5rgnHwAAAAAAACLFWY7B40w+AAAAAAhtbcEAACAASURB\nVAAAIOY4yAcAAAAAAADEHJfrAgAAAAAAIDLWWi7XDQFn8gEAAAAAAAAxF9iZfCdPnhSzJ554Qswe\nfPBBMbvnnnvETHsM+qc+9Skx27Jli5hpvve974nZD3/4QzH7wz/8QzHTHh2vZZ///OfF7MYbbxSz\nW265RcxaiXY0X3vk/D/+4z+K2Xvf+94l1dTIuXPnxGxsbKzhz8vlsvf2rLUmnU43zEqlkricti9l\nMhkxO3jwoJj9y7/8i5g9/fTTYvaJT3xCzLQ+5I033hCzm266Scw0hw4dErP9+/eL2W/8xm+I2Vtv\nveVVSxi0feKZZ54RM62taJ/D5ZdfvrDCLnH11VeLmbZ/vvbaa2L28MMPe9WiKZVK4uvfvn27uFy1\nWhUzrR319PSI2X333Sdmt912m5hp4+2TTz4pZh/60IfETKN9fp/73OfEbGJiQszuuusuMRscHBSz\nYrEoZtp8wtepU6fE7O///u/F7CMf+YiYrVu3TsxGRkbErL+/X8yuvfZaMfuTP/kTMavX62L2i7/4\ni2LWDC+++KKYDQ0Nea1TGz+0sWzXrl1itmrVKjFLpVJidv78ea91an1TLpcTM20e47tcKzlw4ICY\n7dixQ8wmJyfFrLu726uWM2fOiFlbm/wVTvrcE4lwzu3Q5ovaPq/R5th9fX1i9uyzz4rZ5s2bxWxg\nYEDMjh07JmbaXEubF2nfdbTxQ8u077hdXV1iFjVtjNcybQyUvh81w/DwcMOfx6UPxPLAmXwAAAAA\nAABAzHFPPgAAAAAAAESKe/IFjzP5AAAAAAAAgJjjIB8AAAAAAAAQc1yuCwAAAAAAgEhxuW7wOJMP\nAAAAAAAAiLnAzuTTHmu9bds2r3U+9thjvuUE7tZbbxWz6667LvDtPfTQQ2L2yCOPBL69MMzMzIhZ\nJpMRM+ec1/ZOnjzptZxG2wc/+9nPitnTTz/d8Odh/aaivb1dzA4fPixmW7ZsEbOdO3d6Zb60PkTL\nfF177bVemeayyy4TM9/24KtYLIrZe9/7Xq91Xn755b7liHxf+xVXXCFmX/7yl8Vsz549XtvLZDJm\n+/bti16uXq+L2bvf/W4xO3XqlJgdPHhQzI4ePSpmmzZtErNPfepTYhaG97///WI2MjIiZlpfMD09\nLWYDAwMLKywgq1evFrOPfexjXuvctWuXmA0PD3utc82aNWL2x3/8x17rPHTokNdy8zl9+rT54he/\n2DBbu3atuNw999wjZh/+8IfF7Fd/9VfFTGufN998s5idO3dOzL7xjW+I2W233SZmExMTYnbDDTeI\n2be+9S0xu/vuu8XslVdeEbMrr7xSzLR5ShgqlYqYfelLXxKz++67T8x+8IMfiJn2PUHz0ksvidnf\n/M3fiNnv/u7vem0vDP39/WKmzUG1PnvHjh1ipu3zp0+fFrObbrpJzDTa94vdu3d7rfPIkSNi9sQT\nT4jZxz/+cTE7cOCAmGnjR9S0OYzvZ+RrampKzLLZrJglEvJ5UtL+ovVJQNC4XBcAAAAAAACR4nLd\n4HG5LgAAAAAAABBzHOQDAAAAAAAAYo6DfAAAAAAAAEDMcU8+AAAAAAAARIp78gWPM/kAAAAAAACA\nmLPOuQX/46GhIbd3794Qy/mPtMeLb968ObI6wvLKK6+I2YYNG8Qsl8uFUU6ktP2ulY7ma4+xv/XW\nW8Wss7Oz4c+HhobM3r17vV6g1v6q1aq4XFub3wm7p06dEjPt0fHpdFrM2tvbxUx7VP3MzIyYZTIZ\nMYtavV73Wk57P9HYxMSEmOXzeTGz1u5zzg0tdnta+6vVauJy09PTYqbVOTk5KWbaGKC1Fa39af1u\nGP2LL62WY8eOidmmTZtCqCZ42us7fvy4mBUKBTGTxqP5fPvb3xaz97znPWKm7RO+7c8Y/zmo7/ih\n9ee+fXa5XBazZDLplYVB69N8a6lUKmKWSqW81hk1rT/v6OiIsBI/Yc1Bp6amxOW0z1abL2q0duS7\nTu17ifa5+/avvorFophpfa/2+nzfM19jY2Nipr2fUfcTJ0+eFLN169Yten1LaX/L2dve9jb3+OOP\nN7uMBdu1a5f3PCZKXK4LAAAAAACAyFhrW+oEn+WC00cAAAAAAACAmOMgHwAAAAAAABBz8x7ks9Y+\nYK3da63de/bs2ShqAjCL9gc0D+0PaC7aINA8tD8AiKd5D/I55/Y454acc0P9/f1R1ARgFu0PaB7a\nH9BctEGgeWh/AKLw0/vyxeG/uOByXQAAAAAAACDmWvrpuqtWrWp2CaG68sorvZbTTpnXftM2OTkp\nZrlczqsWX75Hwh955BExe+ihh7zWOTU1JWZr164VM+0x72Gp1+sNf55MJr3WNzo6Kmbaa49aJpOJ\ndHu1Wk3MtPc6kYj/7018+xff98xXPp8PfJ2+tNfnW6fWR0r9gDHGlEolMfNtR21trTNV0GrZtGmT\nmEW9f/rSXt+GDRvELIzXcMcdd4iZtp+10v5ijP9+PzMz47VObRxIp9NetUTNd386c+aMmBUKBd9y\nWob2voyNjYlZT0+P1/a0fVAbBzo6Ory2Nx9pm1otYezzYaxTG3ObMd+XZLNZMYvLOOfbHrQ2pn1+\n3d3dYlapVMRMm/MWi0Ux0z4jICqtNRMDAAAAAADAsheny2DjIv6nnQAAAAAAAAArHAf5AAAAAAAA\ngJjjcl0AAAAAAABEist1g8eZfAAAAAAAAEDMcZAPAAAAAAAAiLlFXa47MzNjXn311YbZ5OSkuNx1\n1123uKpmZTIZMXv22WfF7NprrxWzsB4rHyXtkd6aXC4XcCX+3nzzTTHbuHGjmD300EOB19LZ2Slm\nN9xwQ+Db81Uul82xY8caZtp+XSgUxEx7jL32WPlEQv79QDKZFLO48H0N1WpVzNra4nF3BN/+ZTl8\n7r6cc2KmXYJQKpXETNtftPa33C95uHDhgphpfXkrtb96vS5mcfls29vbm11CILTPwne+qI2dqVTK\na51RK5fLYpZOp8Vs9erVYZQTuGKxKGZaO9O+l4TRJrTtNYPUP+Xzea/1aZ9DNpv1Wudy4DuX1Pqz\nqOdovuOcRtsnfNfp2ye30pwCaIQ9FAAAAAAAAJFqpV9iLhdcrgsAAAAAAADEHAf5AAAAAAAAgJjj\ncl0AAAAAAABExlrL5boh4Ew+AAAAAAAAIOY4yAcAAAAAAADE3KIu181kMmb79u1h1fJztMd933TT\nTWJWqVTCKAeLVCwWxWzjxo0RVrI8JBIJ09nZ2TDr6+vzWqd2enSpVBKzXC4nZtVqVczCeOR81NvT\nRL09zcTEhJhpn59mJZ9O75wT9zXfz10b43zX2dXV5bWcZnJyUsza29vFLJVKBV6L9vrisn/W63Ux\nSyTk371q2UpQq9XM6Ohow6y3t9d7nRJtbEmn02Km7ffa9rT+IGra69NMTU2JmXNOzHzHJF/ZbDbS\n7S0H9XpdHAt8P78wPofp6Wkx08YI31q075y+Y6A2/mvtSKMtF8bYGcZ4pc03APxHrfONFAAAAAAA\nACtCXH5JGycr+9fCAAAAAAAAwDLAQT4AAAAAAAAg5jjIBwAAAAAAgEhZa2Pz3wJey+3W2letta9b\naz/dILfW2r+YzX9krb129ueXWWt/YK09aK39ibX2Y3OW+e/W2uPW2v2z/905Xx3ckw8AAAAAAADw\nYK1NGmP+yhjzHmPMMWPMC9baJ51zB+f8szuMMdtm/7vBGPPl2f9XjTGfdM69aK3NG2P2WWufmbPs\n/3TO/Y+F1sKZfAAAAAAAAICf640xrzvnDjvnysaYvzPG3HXJv7nLGPOou+h5Y0yPtXadc+6kc+5F\nY4xxzk0YY142xgz4FhLYmXzHjx8Xs4EBv/q0R4hrpEe8G2NMb2+v1zqXg1qtJmbJZDLw7fk+jh6N\ntbW1mb6+vkDXOTY2JmY9PT1e69TabbVa9VrOd3thKJVKYtbe3i5mMzMzYpbJZJZUUyP5fD7wda5k\n9XrdTE1NNcy0/Vprs1qfXK/XxUzb5xOJ4H93l8vlAl+nr+XwBLao+6zlIplMmu7u7kDXqX0W2r5W\nLBbFTJv7+M61tHltK7VP7X0pFAoRVoKgJRKJwPc155yYae1PGx/T6bSY+fa95XLZa3th0N4XbZ7J\nnBCtLGZzu4K1du+cv+9xzu2Z/fOAMeatOdkxc/Esvbka/ZsBY8zJn/7AWrvJGPMOY8z/m/Pv/pu1\n9oPGmL3m4hl/o1qRnMkHAAAAAAAAyEacc0Nz/tsz/yILZ63NGWP+jzHm48658dkff9kYs8UYc425\neDDw4fnWw0E+AAAAAAAAwM9xY8xlc/6+YfZnC/o31tqUuXiA73875/7vT/+Bc+60c67mnKsbY/6X\nuXhZsIqDfAAAAAAAAICfF4wx26y1m621aWPMB4wxT17yb540xnxw9im7NxpjLjjnTtqL1yx/zRjz\nsnPui3MXsNaum/PX9xljDsxXCDeGAQAAAAAAQKRidk8+kXOuaq39qDHmu8aYpDHmr51zP7HWPjib\nf8UY85Qx5k5jzOvGmGljzIdmF/9Pxpj7jDE/ttbun/3ZZ5xzTxlj/sRae40xxhljjhpjPjxfLRzk\nAwAAAAAAADzNHpR76pKffWXOn50x5rcaLPesMabh0U7n3H2LrYPLdQEAAAAAAICYW9SZfPV63UxP\nTzfMBgYGvArwfXz6N7/5TTF73/ve51VLKymVSmLW3t7utU7tvUZj2uPoM5lMhJWEo6enJ9LttbXF\n/+Rhrf1pbSyZTIZRDiKSTCZNd3d3w6xSqXitM4y+vFaridly2Ae1PlkbN3O5nJgth/clDNVqVcy0\n9yysy27q9bopFosNs87OTq91+taaSMi/I5+YmBCzfD7vtT1t/41auVwWs0KhEGEliFq9Xm/4c23c\nSaVSgdcRxnckTTqdDnydmqmpKTHTatH6F60/Xw5z86j5Hr/Az7PW8p6FgDP5AAAAAAAAgJjjIB8A\nAAAAAAAQcxzkAwAAAAAAAGJu3ovwrbUPGGMeMMaYyy67LPSCAPzM3Pa3cePGJlcDrCy0P6C5mIMC\nzcMYCCAK3JMvePOeyeec2+OcG3LODXFDXSBac9tff39/s8sBVhTaH9BczEGB5mEMBIB44nJdAAAA\nAAAAIOYW9czsRCJhOjo6Ai3A9/TMm2++Wcy0R7knk0mv7R06dEjMtm3b5rVOje8j4L/+9a+L2f33\n3+9XTMQmJibETHs8fLFYFLNsNutVSyaTEbPx8XEx6+rq8tqexjlnqtVqw6ytbVFNuWl8P9uoSe+z\nMfp7rfVnqVRqSTVFZXR0VMy01661Fd/XXi6XxSydTnutMwzOucCXe/PNN8Wss7NTzPr6+ry2p42b\npVLJqxZfMzMzYqbtZ6dPnxYzbezP5XILKywg2uvT+h5t/pVI+P3OdnJy0quW7u5ur+0tRSKRCHx/\n8+1jtDlapVJZUk2tTntfhoeHxWxwcDCMcryMjIyIme8Zo1r/qs0N6vW6mGntWtvPwphvhDEH9f0O\nqM3ptbHMd2wJ4/uFJoxxVRvHW+k7hO93eN925IvLS4PF+xk8zuQDAAAAAAAAYo6DfAAAAAAAAEDM\ntc75uQAAAAAAAFgRuFw3eJzJBwAAAAAAAMQcB/kAAAAAAACAmOMgHwAAAAAAABBzi7onn3NOfPy4\n9uhxX1NTU2LW19cnZt/61rfE7Jd/+Ze9atm2bZvXcmHQHgGvPXpce3x6e3v7kmparKefflrMtm/f\nLma5XE7MfB9jPzo6KmZ/9md/JmZ/8Ad/4LU9X9balnrMvaRSqYhZPp/3WmexWBQz389do73PWr9U\nrVbFrLu7e0k1RaW3t1fMtP4lmUwGXks6nQ58nb6cc+Ln65zzWqd2D5LBwUGvdWp8xwDtcw+D73wi\njPcsDGHMl3w/W21M1UxOTga+zmbQ9u2xsTEx6+npEbM4vX4fWn8XlzZYKBTETJvDpFIpMdPmKR0d\nHWKmtV1tfqPVEpZEovG5IdLP5zM9Pe21nPZ+anORer3utb1Wul/YhQsXxEybZ7bS9wdtrqy91+Vy\nWcx856Ba+9PadFdXl5j5toeVrJXa2HLBXggAAAAAAADEHAf5AAAAAAAAgJhrnXN3AQAAAAAAsOxZ\na7lcNwScyQcAAAAAAADEHAf5AAAAAAAAgJjjIB8AAAAAAAAQc4u6J59zzuvx4845MTt69KiYbd68\nWcw+85nPiNknPvEJMdMeld3e3i5mzz33nJh1dnaK2dvf/nYxm5qaEjPtUeCZTEbMbrnlFjHTXl/U\nrrvuOjHTXvszzzwjZtp7vWbNGjHr7e0Vs23btonZuXPnxKyvr0/MWsmJEyfEbP369WKmtenx8XEx\n094XbTlNNpv1Wk6j1dLV1RX49lrJyZMnxSyRkH8vpH22bW3yUFOpVMQslUqJmbYPTk5Oipkva634\nOrTXp9H6kJdfflnMrrjiCjFbvXq1mGljwJEjR8RM+9w3bNggZlpfrn3u2jzj0KFDYpbP58VscHBQ\nzKKmjf3T09Nipt2zplAoeNWijQFaprW/3bt3e9XSDNq+rWVa2121apWY1Wo1MdPeU43WzrTX4Lu9\n48ePi9natWvFzLefDIP2OWjjjsZ3ju07hzlz5oyYaeOAL+ecKRaLDTOtb9JeXzqdFjNtf3nllVfE\nTGt/WlYul8VMe33nz5/32p5GGwe090UbO1vpO6D2GrTPQcu0dWp9pPa+aP2EdjxBqlNb30rHPfmC\nx5l8AAAAAAAAQMxxkA8AAAAAAACIudY5dx4AAAAAAAArApfrBo8z+QAAAAAAAICY4yAfAAAAAAAA\nEHNcrgsAAAAAAIBIcblu8BZ9kM851/DnFy5cEJfp7u4WsyNHjojZn/7pn4rZ1VdfLWaFQkHMfOVy\nOa9aNJ2dnWL24x//WMyuuuoqMduyZYtXLVHr6+vzWk57fWvWrPEtR3Tvvfd6LVepVBr+XGo/C1Gv\n183ExETDLJ/Pi8uNjo6K2fr1671q0Tpj38+2q6vLazntkfTJZDLSWpaDdevWRbq9VCrltZy2D2rt\noZVobeXaa68Vs7feekvMxsfHxWzr1q1itnnzZjGT+jNj/Cdm2ueuzQt27dolZidPnvSqJWra2J/J\nZMRM68+mpqa8tqeNAVpWrVbFrBlOnz4tZtr7pu2H2vvW1ub3O3Lf5Uqlkpj59qFau06n02K2YcMG\nr+21khdffFHMdu/e7bVO3/mGNt/X1rlz506v7flKJBKBj63aPnjw4EEx074LaH2oplgsitnY2JiY\n+c6ZtD60o6NDzIaHh8VscHDQq5ZWor0vWr+kZZo333xTzBIJ+YLH3t5eMZOOGfj2EYAPLtcFAAAA\nAAAAYo6DfAAAAAAAAEDMcU8+AAAAAAAARIp78gWPM/kAAAAAAACAmOMgHwAAAAAAABBzXK4LAAAA\nAACAyFhruVw3BIs6yFcqlcwbb7zRMLv66qvF5WZmZsTsl37pl7yyqO3YsSPS7V111VViVi6Xxcz3\nEeJxsXXrVjErFotils1mxUx7fPrGjRsXVtglUqlUw58vpRNLJBImn883zA4fPiwut2XLFjE7f/68\nmB08eFDMbrrpJjHTnDhxQsymp6fFTPvcfR9J//rrr3tt78CBA2K2a9cur1payblz58Ssr68vwkp0\n2v7S0dER+Pacc2LfWyqVxOW0Nq+9hkKhIGbbt28Xs/3794vZyMiI1/a0NhbGxGzdunVi9vzzz4vZ\nNddcE3gtUdPea+3z6+7u9tqeNp+YmJgQM60v0NYZFm3uo703iYTfBS3j4+NipvWhGzZsEDNtDpPL\n5RZW2CLU63Ux09rZjTfeKGbafD+TySyssAjs3r1bzKrVqpi9/PLLYrZq1SoxGxgYEDNtvn/27Fkx\n0/YXaWzRXtt8qtWqWE9/f7/XOmu1mpjt3LnTa52+tPdGG5OiNjg42OwSQuU7f/OdE2ptU/uO1NnZ\nubDCgCbhcl0AAAAAAAAg5jjIBwAAAAAAAMTcvJfrWmsfMMY8YExrna4MrARz25/vpcMA/ND+gOai\nDQLNM7f9aZeaA8BScE++4M17Jp9zbo9zbsg5N9Tb2xtFTQBmzW1/vvc8AeBnbvvT7lkHIByMgUDz\nzG1/rXRPXgCAjst1AQAAAAAAgJhb1NN1AQAAAAAAgKXict3gLeogXzabNVdfffWiN5LJZBa9zHwq\nlYqYHThwQMyuvPJKMctms2KWSqUWVlhAHnvsMTG76667xCydTodRTiy0t7d7LeecE7NHH31UzD74\nwQ+K2VtvvdXw5+VyeeGFLcKWLVu8llu1apWYvfOd7xSzarUqZrVaTczWr1+/sMIisHXrVq/ldu3a\nFXAlraVer0e6vbNnz4qZdnme1idr6/RlrRX7V99+N5fLiZnWjrT2p43R2nKaRCL4k/61fld7P6+/\n/noxC6POMGifg5Zpl4xr8x6tz9Lea9/9Our5kjHGhHE7mZmZGTHr6uryynzXGQZtbn7jjTeKWalU\n8lpnXLS1yV+NrrrqKjE7efJk4LX4XqIufZ/RXtt82travOuRRL2/aN8d8/l8hJX4H9TQXkMz+l4f\n2jinvT7te3oymfSq5fjx42Lmex/Yqamphj+Pen6NlS0eM2IAAAAAAAAAIi7XBQAAAAAAQKS4XDd4\nnMkHAAAAAAAAxBwH+QAAAAAAAICY4yAfAAAAAAAAEHPckw8AAAAAAACR4p58wYvtQT7tMeHveMc7\nIqwkHPfcc0+zS4idxx57TMzuvfdeMevs7BSzrVu3etVy2WWXNfx5Op32Wl8z+D6Ovq0ttt0KjDH9\n/f2Rbq9Wq3ktp40BUb+GMGjtT3vPEgn5BP1W6n+0Cd1yn+xpfaSW1et1MatWq161TE9Pi5k2NmqW\ny+fnOwZqMplM4OuMWnt7e7NLaJrx8XExW7dundc6K5WKmGnj3HLnnBMz3z6mld5P3/6llV6DL98x\nUOPbL4XRJ0tjpzY/A4LG3gYAAAAAAADEHKfcAAAAAAAAIDLW2mVzBUAr4Uw+AAAAAAAAIOY4yAcA\nAAAAAADEHAf5AAAAAAAAgJjjnnwAAAAAAACIFPfkC96iDvLV63UzMTHRMMvn84EUNFcYj0/H8nXv\nvfd6LVcoFLyyVlKtVsXM93H0o6OjYtbb2+u1TuBSa9eubXYJC1Kv18309HTDTGtj6XQ68FoY/1am\nREK++OKaa67xWmdHR4dvOZGLeg6aSqXUWiTa54R46+rqCnyd2n62kjHOIQqrV69udglAKJiJAAAA\nAAAAADHH5boAAAAAAACIFGfuBo8z+QAAAAAAAICY4yAfAAAAAAAAEHNcrgsAAAAAAIBIcblu8DiT\nDwAAAAAAAIi5RZ/Jl0wmG/68Wq3KG2nzO2GQo7poZc8//7yY3XjjjYFvr16vm4mJiYZZPp8PfHu9\nvb1iNjw8LGba4+iz2eySasLKUqlUxCyVSkVYiTGJRMJ0dHQ0zKR2aYwx6XQ68FrK5bKYZTKZwLeH\nlUmb183MzIhZLpcLoxyTSCRCGet8jI2NiVlXV5eY+c6HgUuF8b1rPrVareHPpe+GwHLVjPYHLAZn\n8gEAAAAAAAAxx6FmAAAAAAAARMZay9WbIeBMPgAAAAAAACDmOMgHAAAAAAAAxByX6wIAAAAAACBS\nXK4bPM7kAwAAAAAAAGJuUWfyJRIJ09HREVYti1KpVMTsxIkTYjY4OBhGOViBrrvuuki3l0gkTD6f\nj3SbEtoRopBKpcSsXC6LWTqdDqMcUdTtslgsitnhw4fFbOfOnWGUg2UqmUyKWdRtrNV0d3eLmfa+\nAUFpa4v+Yiz2beCier3e7BIAFWfyAQAAAAAAADHHPfkAAAAAAAAQKe7JF7x5z+Sz1j5grd1rrd17\n9uzZKGoCMIv2BzQP7Q9oLtog0Dy0PwCIp3kP8jnn9jjnhpxzQ/39/VHUBGAW7Q9oHtof0Fy0QaB5\naH8AEE9crgsAAAAAAIBIcblu8HjwBgAAAAAAABBzsT2TL5VKiVmhUIiwEqxU2j4IIFzpdLrZJTRN\nR0eHmA0ODkZYCaJUrVbFrK0t+Omc9pv1ldz+jDEmmUw2uwQ0QalUEjNtnwijfa5kzjkx44yg5Svq\nMVCz0sdAtD5GHQAAAAAAAESKg/PB43JdAAAAAAAAIOY4yAcAAAAAAADEHAf5AAAAAAAAgJjjnnwA\nAAAAAACIjLWWe/KFgDP5AAAAAAAAgJgL7Ey+0dFReSPKY62z2azXcpp6ve613HJw4cIFMevu7o6w\nEt3+/fvF7JprrhGz119/Xcw2bdokZr770vDwsJgNDg6KWblcbvhz55xXHT9dtlKpNMy034DUajUx\nk+o0xphisShmq1evFrPp6Wkx6+joELO40N5P7bXn8/kwyvEyMTEhZq1UZ6lUErP29nYxm5qaCqOc\nSGnjmPbaffu65aBarYrZcnhfon4Nvu/nzMxMGOWotH45mUxGWMnKpn32mUwmwkr8jY+Pi1lXV5eY\nhfHdY3JyUsxyuZyYnT9/vuHPtTY9n1qtZsbGxhpm2pikZdKcdj7actr7shxoc3PtO3XUtPlbOp0W\nM+31acuF0fcsh/4MK1f8Z70AAAAAAACIFS7XDR6X6wIAAAAAAAAxx0E+AAAAAAAAIOY4yAcAAAAA\nAADEHPfkAwAAAAAAQKS4J1/wOJMPAAAAAAAAiLlFnclXLpfNsWPHGmYbNmwIpKAg5PP5ZpfQNN3d\n3c0u4d+dPHlSzK655hqvdW7dulXMjhw5ImabN2/22t7g4KDXctJj3pfymwprrUmlUoterq1NbuZn\nz54Vs1wuJ2YnTpwQs/Xr14tZtVoVM63OVjI1NSVmFy5cELOo+6UzZ86IWaFQELPJyUkx0/aJkZER\nr+1p2tvbvZbr7Oz0Wk5TqVTEPm3VqlXiclqb1d7rUqkkZtr2yuWymGWzWTGLi7GxMTHT+ldtX8pk\nMkuqabHGx8fFbHp6Wszq9bqYSXMzY4y5/vrrF1bYJbQ+uVgsipnPOLVUJcnGlwAAB0tJREFUyWRS\nzLT3LZGQf9c9MTEhZto+c/78eTFbs2aNmC0HlUrFKwtjfNTmG5quri4x0+ZM/f39YuY7rmr9ltYG\na7WamPlKJpOmp6enYebbxrQ+W5pHG6OPc8tdM/pXH1qfrH3uHR0dgW/PV9RzAyBI8fhWDQAAAAAA\ngGWDy3WDx+W6AAAAAAAAQMxxkA8AAAAAAACIOS7XBQAAAAAAQKS4XDd4nMkHAAAAAAAAxBwH+QAA\nAAAAAICYW9Tluul02mzYsGHRG7lw4YKYdXd3i5n2iHTt0eq+j6qP2ujoqJhpdfo+Pv38+fNitmrV\nKq91zszMiNnatWu91lmpVMRs//79YrZ7926v7Wnuu+8+MfviF78oZs65hj+vVqtLrqmRsbExMdPa\nmE97NsaYnp4er+USCfn3ChMTE2KWz+e9tqfRPou2Nrlr7Orq8sp8+zNNsVj0Wqf2Ofj2kYVCQczG\nx8fF7PTp02K2bds2MavX62KmvT5fyWRS3A/b29u91um7vySTSTHLZrNetWh9eSaT8VqnRtt3tdeg\ntc2Ojg4xC2Of0Gj7p28folm/fr3XcufOnROzvr4+MZPGOGP0zygs2vih0cYW33FnzZo1YhZ1O9No\nn6F26ZS2b4cxVvvSXoPWh/rORXy/62hzEW2+r2VSHxpW2/S91M537uO7n2nfL3y/W0XN9zOcnp4W\nM23s1Gh9gdbGwqDtg7VaTcx869TWGfV8A2iEe/IBAAAAAAAgMtZa7skXAg41AwAAAAAAADHHQT4A\nAAAAAAAg5rhcFwAAAAAAAJHict3gcSYfAAAAAAAAEHMc5AMAAAAAAABiblGX69ZqNTM+Pt4w6+rq\nEpfTHh1/7tw5MctkMmKmPXY9l8uJWdS0x4v39vZGWIkxq1atCnydExMTYqZ9fhrtMfa7d+/2WufZ\ns2fFrL+/X8wefvhhMSsWi2K2cePGhj9vawvnCvmenh4xm5ycFLOZmRkxKxQKS6qpkenpaTELo92e\nP39ezLT2UC6XxUzrezS+y2m0tpLNZgPf3unTp8VszZo1YtbR0SFm27Zt86olkYj2d1T1et2USqWG\nmXaZgTYG5PN5MUsmkwsvboG0/VrrC3z7co22fzrnxEzrQ6PeJyqVipjVajUx095PbX/RaK9dq7Ov\nr89re1qbDotzzlSrVTGTaPPTsbExMdPGVV/t7e1ipo3VvuOjtj9p+4VWZ9TtzJe2T2i0vldru779\n5NGjR8Xs8ssvF7NWurzNtxatnwxjDJyamhKzMNq7L63Ozs5Or3WG0Wdrn582P9Vo80ytL9fmFFo/\nqO27Wl8Xxv4JBIl78gEAAAAAACBSrfRLi+UiHr+OAwAAAAAAACCa9yCftfYBa+1ea+1e7dJaAMGb\n2/60S44BBI/xD2iuuW1wZGSk2eUAKwpzUABYHGvt7dbaV621r1trP90gt9bav5jNf2StvXa+Za21\nq6y1z1hrD83+f957vs17kM85t8c5N+ScG/K9dwsAP3Pbn3bvQADBY/wDmmtuGwzjPrEAZMxBAUTB\nWhub/+Z5HUljzF8ZY+4wxuw0xvxXa+3OS/7ZHcaYbbP/PWCM+fIClv20Meb7zrltxpjvz/5dxeW6\nAAAAAAAAgJ/rjTGvO+cOO+fKxpi/M8bcdcm/ucsY86i76HljTI+1dt08y95ljPnG7J+/YYz5L/MV\nwkE+AAAAAAAAwM+AMeatOX8/Nvuzhfwbbdk1zrmTs38+ZYxZM18hi3q67v79+0e6u7uHZ/9aMMa0\nyg1SqKUxammsmbUM+i64b9++EWst7U9HLY1Ry894tcGXXnpppFAoDM/5UbNfx1zU0hi1/Lxm1+E9\nBr744osjqVSKMVBHLY1Ry0XMQcNFLY1Ry0Xe7W8527dv33ettXG6H0fGWrt3zt/3OOf2RLVx55yz\n1rr5/t2iDvI55/79hgzW2r3OuSGf4oJGLY1RS2OtVMti0P7mRy2NUcvSzW1/xrTW66CWxqildevw\nwRg4P2ppjFqWjvY3P2ppjFqgcc7d3uwaAnTcGHPZnL9vmP3ZQv5NSln2tLV2nXPu5OylvWfmK4TL\ndQEAAAAAAAA/LxhjtllrN1tr08aYDxhjnrzk3zxpjPng7FN2bzTGXJi9FFdb9kljzK/P/vnXjTFP\nzFfIos7kAwAAAAAAAHCRc65qrf2oMea7xpikMeavnXM/sdY+OJt/xRjzlDHmTmPM68aYaWPMh7Rl\nZ1f9BWPM49ba3zTGDBtj7p6vlqUc5Ivs2uMFoJbGqKWxVqrFVyu9BmppjFoaa6ValqKVXge1NEYt\nP69V6liqVnod1NIYtTTWSrX4aqXXQC2NUUtjrVQLliHn3FPm4oG8uT/7ypw/O2PMby102dmfnzPG\nvHsxddiL2wEAAAAAAAAQV9yTDwAAAAAAAIg5DvIBAAAAAAAAMcdBPgAAAAAAACDmOMgHAAAAAAAA\nxBwH+QAAAAAAAICY4yAfAAAAAAAAEHMc5AMAAAAAAABi7v8DscQ2rTHWHr8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the first layer of convolutions on an input image\n", + "i = 35\n", + "X = x_train[i][0]\n", + "print(X)\n", + "print(y_train_true[i])\n", + "pl.figure(figsize=(15, 15))\n", + "pl.title('input')\n", + "nice_imshow(pl.gca(), np.squeeze(X), vmin=0, vmax=1, cmap=cm.binary)\n", + "pl.savefig(MODEL_NAME + \"_input\", bbox_inches='tight', pad_inches=1)\n", + "pl.show()\n", + "\n", + "# Visualize convolution result (after activation)\n", + "def get_layer_output(layer, input_img, layer_name):\n", + " convout_f = K.function(model.inputs, [layer.output])\n", + " C = convout_f([input_img])\n", + " C = np.squeeze(C)\n", + " print(layer_name + \" output shape : \", C.shape)\n", + " C = np.transpose(C)\n", + " C = np.swapaxes(C,0,1)\n", + " print(layer_name + \" output shape : \", C.shape)\n", + " return C\n", + " \n", + "\n", + "C1 = get_layer_output(convout1, x_train[i:i+1], layer_name=\"convout1_before\")\n", + "mosaic_imshow(C1, 2, 5, cmap=cm.binary, border=2, layer_name=\"convout1_before\")\n", + "plotNNFilter(C1, 2, 5, cmap=cm.binary, layer_name=\"convout1_before\")\n", + "plotNNFilter2(C1, 2, 5, cmap=cm.binary, layer_name=\"convout1_before\")\n", + "\n", + "C2 = get_layer_output(convout2, x_train[i:i+1], layer_name=\"convout2_before\")\n", + "mosaic_imshow(C2, 4, 5, cmap=cm.binary, border=2, layer_name=\"convout2_before\")\n", + "plotNNFilter(C2, 4, 5, cmap=cm.binary, layer_name=\"convout2_before\")\n", + "plotNNFilter2(C2, 4, 5, cmap=cm.binary, layer_name=\"convout2_before\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "W1 shape : (10, 10, 10)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAFXCAYAAADZINFGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8lXP6//H3ZSuJKNK5lCZDGjn0TQ7Tt4ZMNZFjygwN\nZhrEyDTfmWQIwzBfJiNSsxEhk4zQmEiiaRw6MaGjtkbTYSvxpRKlXL8/9mp+W+3d3l33nb1W6/V8\nPNZjr/vwXte9d3drr2t/7vVZ5u4CAAAAACBqj6o+AAAAAABAbqOxBAAAAAAkQmMJAAAAAEiExhIA\nAAAAkAiNJQAAAAAgERpLAAAAAEAiNJYAAAAAgERoLAEAAAAAidBYAgAAAAAS2bOqD6As1atX95o1\na4ayGzduDOX23nvvUE6SzCyc3bJlSyhXUFAQrrlp06Zw9rPPPgtn99gj9neM/fbbL1zzkEMOCWff\nfvvtUO6www4L13znnXfC2TZt2oSzX3zxRSi3evXqcM0k/2+izw8HHXRQuGb0fJCkY489NpRbvnx5\nuOaee8af3qtVqxbORp8jqlevHq6Z5Plw8+bNoVz0HJSkZcuWhbN77bVXKNeqVatwzTfffDOcTXIu\nNW3aNJT7/PPPwzXXr18fztapUyeU++qrr8I1kzxHJDmHN2zYEModc8wx4Zoff/xxOBt9/bF27dpw\nzST/rtHnw3Xr1oVrfvvb3w5n//3vf4ez7h7KRc/fjz76SOvXr//PCxAzix3AN2eSu3et6oOoLIv+\ng+5KtWvX9u9+97uh7HvvvRfKtW3bNpSTkr1Ajj45V9WLmpkzZ4az0WPu0qVLuOa4cePC2UaNGoVy\nr7/+erhm8+bNw9mioqJwdtGiRaHcXXfdFa6Z5AVn9MVJ//79wzUbNGgQzkafZwcOHBiuWa9evXA2\nyfc6Y8aMUC7JuV+rVq1wds2aNaFc9I8FkvSLX/winI3+sWzixInhmjVq1Ahn69evH87efffdodzc\nuXPDNV955ZVw9qyzzgrlkvzB9n/+53/C2SRNXvSPDUn+sD127NhwNvr64/nnnw/XjP7BVpIOPvjg\nUO6ll14K10ySHTBgQDj75ZdfhnLR1+233Xabli5dmkuN5Rvu3q6qD6KysnLEEgAAAAB2tSQDRLta\nNg4A7giNJQAAAIC8RGOZngovOjezpmb2spnNN7N5ZnZVZv0BZjbZzBZnvpb55gIz62pmi8ysyMwG\npf0NAAAAAECEmWXtLddU5t3MmyUNdPfWkjpI6m9mrSUNkjTF3VtJmpJZ/hozK5A0XFI3Sa0l9clk\nAQAAAKBKVXXzmFeNpbsXu/ubmfvrJC2Q1FhST0mjM7uNlnRGGfH2korcfYm7b5I0NpMDAAAAAOwm\nduo9lmbWXNLRkmZIqu/uxZlNH0gqa+q3xpJKT0G6XNJx5Tx2P0n9pGQf/QEAAAAAFcnVkcFsVenG\n0sz2lfSkpAHuvrb0P4K7e9Lpet29UFKhVPJxI0keCwAAAAAqQmOZnko1lmZWTSVN5Rh3H59ZvcrM\nGrp7sZk1lFTWJ6WvkFT6E46bZNYBAAAAQJWisUxPZWaFNUkPSFrg7kNLbZogqW/mfl9Jz5QRnyWp\nlZm1MLPqknpncgAAAABQpap6gp7dafKeyoxYnijpAknvmNmczLrBkm6TNM7MLpG0VFIvSTKzRpLu\nd/fu7r7ZzK6QNElSgaRR7j4v7W8CAAAAAHZWLjZw2arCxtLdX5FU3k/85DL2Xympe6nliZImRg8Q\nAAAAAJDddmpWWAAAAADYHeTqJafZisYSAAAAQF6isUxPVjaW1apVU8OGDUPZ6667LpR74oknQjlJ\nevTRR8PZUaNGhXLnnXdeuGajRo3C2d/+9rfh7O233x7KLVq0KFwziREjRoRyF110UbhmYWFhOLtp\n06ZwtkePHqFc48aNwzXbtm0bzg4bNiyUe+SRR8I158375t8ePnz48HA2yf/zW2+9NZxdtmxZxTuV\n4eGHHw7XvPbaa8PZOnXqhHI/+tGPwjWjPyNJmjt3bjgbleTn27dv34p3KsfZZ58dyl166aXhmkk+\nR3vw4MGhXFFRUbjm4sWLw9n33nsvnO3QoUM4G5Xk32bgwIGh3GOPPRaueffdd4ez5557bii3cePG\ncM3DDjssnK1Zs2Y4e/HFF4dyq1atCuW+/PLL7dbRWKYnKxtLAAAAANjVaCzTU+HHjQAAAAAAsCOM\nWAIAAADIS4xYpofGEgAAAEDeYVbYdNFYAgAAAMhLNJbpobEEAAAAkJdoLNNDYwkAAAAgL9FYpodZ\nYQEAAAAAiTBiCQAAACAvMWKZHhpLAAAAAHmHWWHTxaWwAAAAAPLS1uYyG2+VOPauZrbIzIrMbFAZ\n283MhmW2v21mx5TaVtvM/mJmC81sgZkdn/RnyYglAAAAgLyUqyOWZlYgabikLpKWS5plZhPcfX6p\n3bpJapW5HSdpROarJN0l6Xl3P8fMqkuqmfSYaCwBAAAA5KVcbSwltZdU5O5LJMnMxkrqKal0Y9lT\n0sPu7pKmZ0YpG0raIKmjpB9LkrtvkrQp6QFlZWPZrFkzDR8+PJQ96aSTQrk//OEPoZwkXXbZZeFs\ngwYNQrm5c+eGa55//vnh7JIlS8LZzZs3h3Jr164N10ziggsuCOUOO+ywcM2GDRuGs5dffnk4u//+\n+4dy69atC9esXbt2ONujR49Q7vTTTw/XfO+998LZ1q1bh3IdO3YM15w6dWo4Gz1eSapRo0Yo9/Of\n/zxc88svvwxnkzz3R61fvz6crV+/fopHUjlDhw4NZ6+77rpwtir+bcaOHRvOPvHEE6Hcq6++Gq55\nxRVXhLPNmzcPZ7t27RrORn388cfh7EsvvRTK3X333eGaP/zhD8PZatWqhXJPPvlkuGatWrXC2f/7\nv/8LZ4899thvNDdhwoRQrgrVNbPZpZYL3b0wc7+xpGWlti3X/x+N1A72aSxps6QPJT1oZm0lvSHp\nKnf/LMnBZmVjCQAAAAC7WpaPWK5x93a74HH3lHSMpCvdfYaZ3SVpkKT4XwNFYwkAAAAgD+X4rLAr\nJDUttdwks64y+7ik5e4+I7P+LyppLBNhVlgAAAAAeamqZ35NMCvsLEmtzKxFZvKd3pK2vdZ3gqQL\nM7PDdpD0qbsXu/sHkpaZ2bcz+52sr783M4QRSwAAAAB5KVdHLN19s5ldIWmSpAJJo9x9npldmtk+\nUtJESd0lFalkwp6LSj3ElZLGZJrSJdtsC6GxBAAAAJCXcrWxlCR3n6iS5rH0upGl7ruk/uVk50hK\n9f2bXAoLAAAAAEiEEUsAAAAAeSmXRyyzDY0lAAAAgLyT47PCZh0aSwAAAAB5icYyPTSWAAAAAPIS\njWV6aCwBAAAA5CUay/RU2Fia2ShJPSStdvc2mXWPS9r6gZq1JX3i7keVkX1f0jpJWyRtdvdUp7QF\nAAAAAFS9yoxYPiTpHkkPb13h7udtvW9mf5D06Q7ynd19TfQAAQAAAGBXYMQyPRU2lu4+zcyal7XN\nSv4lekn6XrqHBQAAAAC7DrPCpivpeyy/K2mVuy8uZ7tLetHMtkj6k7sXlvdAZtZPUj9JatiwoRYu\nXBg6oBtuuCGU++KLL0I5Sdprr73C2aVLl4ZytWvXDtdcuXJlOLtly5ZwdtGiRaHcq6++Gq6ZxD/+\n8Y9Qbt26deGaK1asCGd/+MMfhrNvvvlmKDd9+vRwzRtvvDGcvfrqq0O5xx9/PFxz2bJl4expp50W\nynXp0iVcM3r+StLs2bPD2VWrVoVyjzzySLjmueeeG85+61vfCuVatGgRrnnhhReGs3//+99DuSS/\n4371q1+Fs/fcc084e/7554dyn3zySbhmu3bxd+wMGzYslLvjjjvCNa+99tpwdv78+eHs22+/Hc5G\nvfLKK+HsCy+8EMrdcsst4ZotW7YMZ6O/Wz/88MNwzX322Sec/dOf/hTOHn300aHc888/H8qtXbt2\nu3U0lulJ2lj2kfTnHWw/yd1XmFk9SZPNbKG7Tytrx0zTWShJRxxxhCc8LgAAAADYIRrL9IQbSzPb\nU9JZko4tbx93X5H5utrMnpLUXlKZjSUAAAAAfJNoLNOzR4LsKZIWuvvysjaa2T5mVmvrfUmnSpqb\noB4AAAAAIAtV2Fia2Z8lvS7p22a23MwuyWzqrW0ugzWzRmY2MbNYX9IrZvaWpJmS/ubusQuiAQAA\nACBlWyfwycZbrqnMrLB9yln/4zLWrZTUPXN/iaS2CY8PAAAAAFKXqw1ctko6eQ8AAAAA5CQay/TQ\nWAIAAADISzSW6aGxBAAAAJCXaCzTk2RWWAAAAAAAGLEEAAAAkJ8YsUwPjSUAAACAvMOssOmisQQA\nAACQl2gs00NjCQAAACAv0Vimh8l7AAAAAACJZOWI5R577KEaNWqEsk2bNg3ljj322FBOkho1ahTO\nLl++PJR74IEHwjWnTp0azn722Wfh7BtvvBHKfe973wvXTGLvvfcO5X7961+Ha/bt2zecPfroo8PZ\n4447LpTr379/uOYdd9wRzp5wwgmhXOfOncM1v/jii3A2qk2bNuHsgAEDwtkzzzwznL388stDuX//\n+9/hmv/85z/D2e7du4dy8+fPD9f8wQ9+EM7+9a9/DWejkvxf/fvf/x7OHnDAAaFc7969wzWTfK+f\nfvppKNekSZNwzYYNG4azp59+eji7//77h7NRSV67/PznPw/lfvKTn4RrjhkzJpxt27ZtKDd69Ohw\nzUceeSSc7dSpUzi7ZMmSUK5r166h3G9/+9vt1jFimZ6sbCwBAAAAYFejsUwPjSUAAACAvMOssOmi\nsQQAAACQl2gs00NjCQAAACAv0Vimh1lhAQAAAACJMGIJAAAAIC8xYpkeGksAAAAAeYnGMj00lgAA\nAADyDrPCpov3WAIAAADIS1uby2y8VeLYu5rZIjMrMrNBZWw3MxuW2f62mR2zzfYCM/unmT2bxs+S\nEUsAAAAAeSlXRyzNrEDScEldJC2XNMvMJrj7/FK7dZPUKnM7TtKIzNetrpK0QNJ+aRwTI5YAAAAA\nkFvaSypy9yXuvknSWEk9t9mnp6SHvcR0SbXNrKEkmVkTST+QdH9aB8SIJQAAAIC8lOUjlnXNbHap\n5UJ3L8zcbyxpWalty/X10cjy9mksqVjSHyX9SlKttA6WxhIAAABAXsryxnKNu7dL+0HNrIek1e7+\nhpl1SutxaSwBAAAA5J0cnxV2haSmpZabZNZVZp+zJZ1uZt0l1ZC0n5k96u4/SnJAWdlYLl68WN27\ndw9l99wz9i3dcMMNoZwk3XTTTeHsgw8+GMrtu+++4ZqnnnpqOPv++++HszNnzgzlnnjiiXDNn/zk\nJ+FsnTp1Qrkkx7t8+fJwdt26deHsa6+9FspNnjw5XHPq1Knh7M033xzKnXPOOeGa48ePD2ejvvji\ni3D2+OOPD2cPOOCAcPbaa68NZ6OSPB9Gsx9//HG45rx588LZIUOGhHK33npruOZTTz0Vzi5ZsiSc\nrV27dih32223hWvecsst4Wznzp1DuRtvvDFcs0GDBuHs559/Hs4uWrQonI168cUXw9lNmzaFci1b\ntgzX/Na3vhXONmrUKJQ78cQTwzU/+eSTcHbSpEnhbPQ5rWnTphXvVIaynpNyuLGcJamVmbVQSbPY\nW9L52+wzQdIVZjZWJZfJfuruxZKuydyUGbH8ZdKmUsrSxhIAAAAAdrVcbSzdfbOZXSFpkqQCSaPc\nfZ6ZXZrZPlLSREndJRVJ2iDpol15TDSWAAAAAJBj3H2iSprH0utGlrrvkvpX8BhTJU1N43hoLAEA\nAADkpVwdscxGFX6OpZmNMrPVZja31LobzGyFmc3J3Mp8Q6SZdTWzRWZWZGaD0jxwAAAAAEhi6wQ+\n2XjLNZUZsXxI0j2SHt5m/Z3ufkd5ITMrkDRcUheVfGbKLDOb4O7zg8cKAAAAAKnI1QYuW1XYWLr7\nNDNrHnjs9pKK3H2JJGVmI+opicYSAAAAQJWjsUxPhZfC7sCVZvZ25lLZsj6XobGkZaWWl2fWlcnM\n+pnZbDObvWXLlgSHBQAAAAAVq+rLXXenS2GjjeUISYdIOkpSsaQ/JD0Qdy9093bu3q6goCDpwwEA\nAAAAviGhWWHdfdXW+2Z2n6Rny9hthaTSn17aJLMOAAAAAKpcLo4MZqtQY2lmDd29OLN4pqS5Zew2\nS1IrM2uhkoayt6TzQ0cJAAAAACmjsUxPhY2lmf1ZUidJdc1suaQhkjqZ2VGSXNL7kn6W2beRpPvd\nvbu7bzazKyRNklQgaZS7z9sl3wUAAAAA7IRcfS9jtqrMrLB9ylj9QDn7rpTUvdTyREkTw0cHAAAA\nALsIjWV6QpfCAgAAAECuo7FMj7l7VR/DdurWres9e/YMZY888shQ7uKLLw7lJKl+/frh7IcffhjK\nDR06NFxzv/32C2e7du0azh5++OGhXIsWLcI133vvvXD2q6++CuWmT58ervmXv/wlnL3zzjvD2ei/\nTd++fcM133///XC2Tp2yPuGoYmeffXa45jnnnBPO/utf/wrliouLK96pHIWFheFs586dw9kXXngh\nlJs3L/5OiV69eoWz7du3D+VmzZoVrnnRRReFs1OmTAnlTjjhhHDNRx99NJx94IEyL3CqlCVLloRy\nSc7f6GsISTr++ONDuei/qSR95zvfCWeHDBkSzrZt2zaUGz16dLjmtGnTwtnf/OY3oVz0dYAkzZgx\nI5zt0KFDKHfQQQeFa7788svh7LvvvhvORp/7ox9NePnll2vRokX/6ST3339/T/L8uKs9//zzb7h7\nu6o+jspixBIAAABAXmLEMj00lgAAAADyEo1lemgsAQAAAOQdZoVNF40lAAAAgLxEY5keGksAAAAA\neYnGMj17VPUBAAAAAAByGyOWAAAAAPISI5bpobEEAAAAkJdoLNNDYwkAAAAg7zArbLpoLAEAAADk\nJRrL9DB5DwAAAAAgEUYsAQAAAOQlRizTQ2MJAAAAIC/RWKaHxhIAAABA3mHynnRlZWP5xRdfaN68\neaHswIEDQ7kBAwaEcpI0YcKEcPbKK68M5b744otwzfbt24ezJ598cjh78MEHh3JNmzYN10zizjvv\nDOU2b94crvnVV1+Fsx9//HE4u2TJklCuUaNG4Zq1a9cOZwsKCkK5Bg0ahGv+8pe/DGejhg4dGs4m\nOZdefPHFcPbtt98O5dq2bRuuOWTIkHD20ksvDeXOO++8cM01a9aEs9HfNyeccEK4ZpcuXcLZ6O84\nSWrTpk0od8opp4Rrrl+/PpytV69eKJfkd/IxxxwTzp5//vnhbNeuXcPZqOeffz6c3bhxYyhXXFwc\nrnniiSeGszVr1gzl9tprr3DNzp07h7PNmjULZw8//PBQ7qijjgrlPvroo+3W0VimJysbSwAAAADY\n1Wgs08OssAAAAACARBixBAAAAJCXGLFMD40lAAAAgLxEY5keGksAAAAAeYdZYdPFeywBAAAA5KWt\nzWU23ipx7F3NbJGZFZnZoDK2m5kNy2x/28yOyaxvamYvm9l8M5tnZlel8bNkxBIAAABAXsrVEUsz\nK5A0XFIXScslzTKzCe4+v9Ru3SS1ytyOkzQi83WzpIHu/qaZ1ZL0hplN3ia70xixBAAAAIDc0l5S\nkbsvcfdNksZK6rnNPj0lPewlpkuqbWYN3b3Y3d+UJHdfJ2mBpMZJD4gRSwAAAAB5KVdHLFXSCC4r\ntbxcJaORFe3TWFLx1hVm1lzS0ZJmJD0gGksAAAAAeSnLG8u6Zja71HKhuxem9eBmtq+kJyUNcPe1\nSR+vwsbSzEZJ6iFptbu3yay7XdJpkjZJek/SRe7+SRnZ9yWtk7RF0mZ3b5f0gAEAAAAgqRyYFXbN\nDvqnFZKallpukllXqX3MrJpKmsox7j4+jYOtzHssH5LUdZt1kyW1cfcjJb0r6Zod5Du7+1E0lQAA\nAACySVXP/JpgVthZklqZWQszqy6pt6QJ2+wzQdKFmdlhO0j61N2LreTBH5C0wN2HpvWzrHDE0t2n\nZa69Lb3uhVKL0yWdk9YBAQAAAMA3IctHLMvl7pvN7ApJkyQVSBrl7vPM7NLM9pGSJkrqLqlI0gZJ\nF2XiJ0q6QNI7ZjYns26wu09MckxpvMfyYkmPl7PNJb1oZlsk/SnNa4IBAAAAIF9lGsGJ26wbWeq+\nS+pfRu4VSal31IkaSzO7ViWfgzKmnF1OcvcVZlZP0mQzW+ju08p5rH6S+knSfvvtp44dO4aO6emn\nnw7lpk6dGspJ0mOPPRbOvvbaa6HcPvvsE675ox/9KJwtKioKZ4cMGRLK3XvvveGaSey9996hXN++\nfcM1DzrooHB27dr4e65vueWWUK5//+2eqyqtRYsW4eycOXMq3qkMZ5xxRrjm6NGjw9nBgweHcnvt\ntVe45rp168LZyy+/PJxt3759KPfXv/41XLNp06YV71SO++67L5QrLIz/nfR///d/w9no74w+ffqE\na1522WXh7EcffRTOjhlT3kuLHYv+rpGkuXPnhrM33nhjKHfooYeGay5dujSc/dvf/hbO1q5dO5Q7\n8sgjwzUXLFgQzm7cuDGUmz59erjmEUccEc7+9Kc/DeU2bNgQrjlz5sxwdtiwYeFs9P/r8uXLQ7lN\nmzZtty5XRyyzUbixNLMfq2RSn5Mz3fB23H1F5utqM3tKJZ+3UmZjmRnNLJSkBg0alPl4AAAAAJAW\nGsv0hBpLM+sq6VeS/tvdy/zziJntI2kPd1+XuX+qpJvCRwoAAAAAKcmBWWFzSmU+buTPkjqp5HNU\nlksaopJZYPdSyeWtkjTd3S81s0aS7nf37pLqS3oqs31PSY+5+/O75LsAAAAAgJ1EY5meyswKW9Yb\nMx4oZ9+VKpl5SO6+RFLbREcHAAAAALsIjWV6KvM5lgAAAAAAlCuNjxsBAAAAgJzDiGV6aCwBAAAA\n5CUay/TQWAIAAADIO8wKmy4aSwAAAAB5icYyPTSWAAAAAPISjWV6mBUWAAAAAJAII5YAAAAA8hIj\nlumhsQQAAACQl2gs05OVjeWBBx6oCy64IJTt379/KLfHHvGrgrt06RLOvvHGG6HcOeecE665efPm\ncPbRRx8NZydOnBjK3XfffeGaSRQVFYVyn3zySbhmw4YNw9nXX389nHX3UG7YsGHhmi1btgxnp02b\nFsr96U9/CtesUaNGOBt18MEHh7MjR44MZ7/73e+Gs9F/m5NOOilcs1+/fuHsWWedFco988wz4Zo3\n33xzOLvPPvuEs1G/+93vwtlu3bqFszNmzAjlqlevHq75ve99L5w9/fTTQ7nf/va34ZoNGjQIZ887\n77xwtk+fPuFsVNu2bcPZV199NZSbOXNmuGaS43322WdDuSSvP5I49NBDw9kOHTqEctH/qwsXLvza\nMrPCpisrG0sAAAAA2NVoLNNDYwkAAAAgL9FYpodZYQEAAAAAiTBiCQAAACAvMWKZHhpLAAAAAHmJ\nxjI9NJYAAAAA8g6zwqaLxhIAAABAXqKxTA+NJQAAAIC8RGOZHmaFBQAAAAAkwoglAAAAgLzEiGV6\naCwBAAAA5CUay/TQWAIAAADIO8wKmy4aSwAAAAB5icYyPUzeAwAAAABIxNy9qo9hO+3atfPZs2dX\n9WEAAAAA2E2Y2Rvu3m7rcsOGDf2iiy6qykPaoVtvvfVrx5vtuBQWAAAAQF7iUtj00FgCAAAAyEs0\nlumhsQQAAACQd5gVNl0VTt5jZqPMbLWZzS217gAzm2xmizNf65ST7Wpmi8ysyMwGpXngAAAAAJDE\n1uYyG2+VOPYd9lpWYlhm+9tmdkxlsxGVmRX2IUldt1k3SNIUd28laUpm+WvMrEDScEndJLWW1MfM\nWic6WgAAAADIc5XstbpJapW59ZM0YieyO63CxtLdp0n6eJvVPSWNztwfLemMMqLtJRW5+xJ33yRp\nbCYHAAAAAFWuqkclE4xYVqbX6inpYS8xXVJtM2tYyexOi77Hsr67F2fufyCpfhn7NJa0rNTycknH\nlfeAZtZPJZ20mjVrFjwsAAAAAKicHH6PZWV6rbL2aVzJ7E5LPHmPu7uZJf4wTHcvlFQolXyOZdLH\nAwAAAIAdyfLGsq6ZzS61XJjpmbJStLFcZWYN3b04M5y6uox9VkhqWmq5SWYdAAAAAFSpHJgVdo27\ntytnW2V6rfL2qVaJ7E6rzOQ9ZZkgqW/mfl9Jz5SxzyxJrcyshZlVl9Q7kwMAAACAKlfV76NM8B7L\nyvRaEyRdmJkdtoOkTzNvZ9wlfVqFI5Zm9mdJnVQyFLtc0hBJt0kaZ2aXSFoqqVdm30aS7nf37u6+\n2cyukDRJUoGkUe4+L+kBAwAAAEA+K6/XMrNLM9tHSpooqbukIkkbJF20o2zSY6qwsXT3PuVsOrmM\nfVeq5OC3Lk9UyTcEAAAAAFklyy+F3aGyeq1MQ7n1vkvqX9lsUokn7wEAAACAXJTLjWW2obEEAAAA\nkJdoLNOTlY3lunXr9NJLL4WyK1euDOUuvPDCUE6SOnXqFM6eccYZodyDDz4YrpnkeKdOnRrOnnnm\nmaFc27ZtwzV79ox/1utjjz0Wyt17773hmh07dgxnR4wYEc4edthhodyYMWPCNb///e+HsxdddFEo\n98QTT4RrLl68OJxdv359KHf99deHa86dOzec7dGjRzj78ccfh3JTpkwJ16xRo0Y4+8orr4Ryt912\nW7jmO++8E84WFsZmmd+wYUO4ZsuWLcPZJOfwpEmTQrkkvx+TPC+dc845odzw4cPDNZMc70033RTO\nXnnllaHc6NGjwzWfffbZcPbVV18N5e6+++5wzRNPPDGc7dOnvHeh7ViS13eXXHJJOJvkdVr05zR5\n8uRQrm7duseWXs6BWWFzSlY2lgAAAACwq9FYpif6cSMAAAAAAEhixBIAAABAnmLEMj00lgAAAADy\nEo1lemgsAQAAAOQlGsv00FgCAAAAyDvMCpsuGksAAAAAeYnGMj3MCgsAAAAASIQRSwAAAAB5iRHL\n9NBYAgAAAMhLNJbpobEEAAAAkJdoLNNDYwkAAAAg7zArbLpoLAEAAADkJRrL9DArLAAAAAAgkawc\nsdyyZYtBinTTAAAbi0lEQVQ++eSTUPZvf/tbKPfyyy+HcpJ0++23h7Pt2rUL5V5//fVwzVmzZoWz\nU6ZMCWfHjRsXyk2bNi1cs2fPnuFss2bNQrkk58ORRx4Zzr7//vvh7Nq1a0O5vn37hmtefvnl4exH\nH30Uyh166KHhmhdeeGE4G7XHHvG//SX5Xg8++OBwds2aNaHcBRdcEK559NFHh7PHHHNMKHfuueeG\na55xxhnh7DXXXBPORi1atCicfffdd8PZNm3ahHK//vWvwzUPOeSQcLZJkyahXJKfUbSmJK1fvz6c\nbdq0aTgbNX78+HD2kUceCeXq1q0brnnzzTeHs0OHDg3lkjwXNmrUKJx97rnnwtnf/OY3odxpp50W\nypX1GpgRy/RkZWMJAAAAALsajWV6aCwBAAAA5CUay/TQWAIAAADIO8wKmy4aSwAAAAB5icYyPcwK\nCwAAAABIhBFLAAAAAHmJEcv00FgCAAAAyEs0lumhsQQAAACQl2gs00NjCQAAACDvMCtsupi8BwAA\nAACQSLixNLNvm9mcUre1ZjZgm306mdmnpfa5PvkhAwAAAEByW0cts/GWa8KXwrr7IklHSZKZFUha\nIempMnb9h7v3iNYBAAAAgF0hFxu4bJXWeyxPlvSeuy9N6fEAAAAAYJeisUxPWo1lb0l/LmfbCWb2\ntkpGNH/p7vPK2snM+knqJ0kHHnigNmzYEDqQevXqhXIdO3YM5STpvvvuC2cvuOCCUK5t27bhml9+\n+WU4O2PGjHD2mmuuCeVef/31cM0kBg0aFMrddNNN4Zrr1q0LZ5977rlw9ve//30oV1xcHK45duzY\ncLZ27drhbNQee3zzb0l/5plnwtnOnTuHs0meD5988slQburUqeGaSbLjx48P5X74wx+Ga7777rvh\nbP369UO5adOmhWteffXV4WySF2yLFy8O5Xr37h2umeS5pUuXLqHcoYceGq75s5/9LJytU6dOOHvj\njTeGs1FjxowJZ9u1axfKXXvtteGaH3zwQTh7ww03hHKff/55uGaScymJ6Gum1157LZRbuHDhduto\nLNOTuLE0s+qSTpdUVtfwpqRm7r7ezLpLelpSq7Iex90LJRVK0iGHHOJJjwsAAAAAypOr72XMVmn8\nCb6bpDfdfdW2G9x9rbuvz9yfKKmamdVNoSYAAAAAoAxmdoCZTTazxZmvZV6mYGZdzWyRmRWZ2aBS\n6283s4Vm9raZPWVmFV7SkUZj2UflXAZrZg0s82cAM2ufqfdRCjUBAAAAIJGqnvl1F84KO0jSFHdv\nJWlKZnnb771A0nCVDBS2ltTHzFpnNk+W1Mbdj5T0rsq+OvVrEl0Ka2b7SOoi6Wel1l0qSe4+UtI5\nki4zs82SPpfU2925zBUAAABAlduNL4XtKalT5v5oSVMl/XqbfdpLKnL3JZJkZmMzufnu/kKp/aar\npK/boUSNpbt/JunAbdaNLHX/Hkn3JKkBAAAAALvCbtxY1nf3rbMsfiCprNnfGktaVmp5uaTjytjv\nYkmPV1QwrVlhAQAAACBn5MDkPXXNbHap5cLMhKeSJDN7UVKDMnJfm9LY3d3MQleNmtm1kjZLqnBq\nZhpLAAAAAHkpyxvLNe5e7ufluPsp5W0zs1Vm1tDdi82soaTVZey2QlLTUstNMuu2PsaPJfWQdHJl\n3s74zX8wGwAAAABgV5ogqW/mfl9JZX049ixJrcysReYjJHtncjKzrpJ+Jel0d99QmYKMWAIAAADI\nS1k+YpnEbZLGmdklkpZK6iVJZtZI0v3u3t3dN5vZFZImSSqQNMrd52Xy90jaS9LkzM9ourtfuqOC\nNJYAAAAA8tLu2li6+0eSTi5j/UpJ3UstT5Q0sYz9vrWzNWksAQAAAOSl3bWxrAo0lgAAAADyTg7M\nCptTaCwBAAAA5CUay/QwKywAAAAAIBGrxEeSfOMaNGjgffv2rXjHMhx44IGh3HvvvRfKSdLMmTPD\n2X/84x+h3KZNm8I1n3322XD2nHPOCWcXL14cyl122WXhmq+99lo4u9dee4Vy1atXD9dcunRpOPv8\n88+Hs8uXLw/lunfvXvFO5ahdu3Y4++6774ZyNWrUCNc86KCDwtlWrVqFcosWLQrXvP/++8PZ6Pkg\nSVdffXUo17x583DNjh07hrPjxo0L5R566KFwzejzviTNnj274p3KkOR3/fz588PZXr16hbPdunUL\n5U488cRwzSZNmoSzt99+eygX/T8jSS+99FI4+9RTT4WzZ555Zig3ePDgcM0kr3vat28fyiX5f5Pk\neIuLi0O5m266KVzztNNOC2cPPvjgcPbee+8N5c4+++xQrmvXrnrrrbf+M0TZsmVLv+2220KP9U3o\n1avXGzv6HMtsw6WwAAAAAPISl8Kmh8YSAAAAQF6isUwPjSUAAACAvMOssOmisQQAAACQl2gs08Os\nsAAAAACARBixBAAAAJCXGLFMD40lAAAAgLxEY5keGksAAAAAeYnGMj00lgAAAADyDrPCpovGEgAA\nAEBeorFMD7PCAgAAAAASYcQSAAAAQF5ixDI9NJYAAAAA8hKNZXpoLAEAAADkJRrL9GRlY/nhhx/q\n3nvvDWUbNWoUyiU5qf7617+GszVr1gzl1q1bF65Zq1atcHbMmDHh7DvvvBPKHXjggeGaSZx77rmh\n3Pz588M1Bw8eHM7ecsst4WzdunVDuZ/97Gfhmg8++GA4G7Vw4cJw9qc//WmKR1I5derUCWdPOumk\ncPawww4LZ8ePHx/Kff/73w/XrFevXji79957h3JJfr5Jzv2///3v4WzUnnvGXyr06NEjnL3mmmtC\nuXHjxoVrLl26NJy98sorQ7lDDjkkXLNfv37hbEFBQTg7cODAcDZqzpw54eySJUtCucceeyxcc+PG\njeHsxRdfHMo999xz4Zr77bdfODtx4sRwtn79+qHc9ddfH8qtXLnya8vMCpuurGwsAQAAAGBXo7FM\nD7PCAgAAAAASYcQSAAAAQF5ixDI9iRpLM3tf0jpJWyRtdvd222w3SXdJ6i5pg6Qfu/ubSWoCAAAA\nQBpoLNOTxohlZ3dfU862bpJaZW7HSRqR+QoAAAAAVYrGMj27+lLYnpIedneXNN3MaptZQ3cv3sV1\nAQAAAKBczAqbrqST97ikF83sDTMra87rxpKWlVpenlm3HTPrZ2azzWx2SR8KAAAAAMgFSUcsT3L3\nFWZWT9JkM1vo7tMiD+TuhZIKJamgoIDOEgAAAMAuxYhlehI1lu6+IvN1tZk9Jam9pNKN5QpJTUst\nN8msAwAAAIAqRWOZnvClsGa2j5nV2npf0qmS5m6z2wRJF1qJDpI+5f2VAAAAALLB1vdZZuMt1yQZ\nsawv6anMN72npMfc/Xkzu1SS3H2kpIkq+aiRIpV83MhFyQ4XAAAAANKRiw1ctgo3lu6+RFLbMtaP\nLHXfJfWP1gAAAACAXSFXRwazVdJZYQEAAAAAeW5Xf45lyN577602bdqEsiNHjqx4pzLceeedoZwk\nvfjii+FszZo1Q7mbbropXHPDhg3h7GeffRbOduvWLZT76quvwjWTaNt2uwH5Shk2bFi45hFHHBHO\nXn311eHsww8/HMoNGTIkXLN9+/bh7DHHHBPKzZ8/P1yzX7+yPlGpct54441Qrnfv3uGaK1euDGfv\nvvvucLZx4zI/UapCTZs2rXincjz++OPhbPQv1eedd1645ogRI8LZV199NZTr2LFjuObhhx8eznbq\n1Cmcjf5e3rRpU7jmf/3Xf4Wzxx13XCg3YcKEcM0GDRqEs/fee284265du1DunXfeCdc89NBDw9kb\nbrghlPv2t78drhl9LpSkDz/8MJRr1qxZuOYJJ5wQztauXTucPfDAA0O5AQMGhHKzZ8/ebt3uOmJp\nZgdIelxSc0nvS+rl7v9Xxn5dJd0lqUDS/e5+2zbbB0q6Q9JB7r5mRzUZsQQAAACQl6p6gp5dOHnP\nIElT3L2VpCmZ5W2/9wJJwyV1k9RaUh8za11qe1OVTND678oUpLEEAAAAkJequnnchY1lT0mjM/dH\nSzqjjH3aSypy9yXuvknS2Exuqzsl/UqSV6ZgVl4KCwAAAAC72u56Kayk+qU+5vEDlXyix7YaS1pW\nanm5pOMkycx6Slrh7m9V9mdEYwkAAAAg7+TArLB1zaz0G0ML3b1w64KZvSiprDdbX1t6wd3dzCo1\n6ph53JqSBqvkMthKo7EEAAAAgOyzxt3LnS3L3U8pb5uZrTKzhu5ebGYNJa0uY7cVkkrPntcks66l\npBaSto5WNpH0ppm1d/cPyqtJYwkAAAAgL2X5iGUSEyT1lXRb5uszZewzS1IrM2uhkoayt6Tz3X2e\npHpbdzKz9yW1q2hWWBpLAAAAAHlpN24sb5M0zswukbRUUi9JMrNGKvlYke7uvtnMrpA0SSUfNzIq\n01SG0FgCAAAAyEu7a2Pp7h9JOrmM9SsldS+1PFHSxAoeq3llatJYAgAAAMhLu2tjWRVoLAEAAADk\nnRyYFTan7FHVBwAAAAAAyG2MWAIAAADIS4xYpofGEgAAAEBeorFMD40lAAAAgLxEY5merGws99pr\nL7Vs2TKUPfPMM0O5mTNnhnKS1LRp03B2zpw5odz48ePDNd96661wduDAgeFsQUFBKHfIIYeEaybR\nokWLUO43v/lNuObgwYPD2W7duoWzRx99dCh34YUXhmvOnj07nN17771DualTp4ZrXnzxxeFs1IMP\nPhjOvvzyy+Hsp59+Gs5Gz+FTTz01XLOoqCicnTRpUih3zTXXhGs++eST4ewNN9wQzkadccYZ4ezQ\noUPD2bPOOiuUO/zww8M1f/e734WzH3zwQSi3zz77hGv+/Oc/D2eTPEc88sgj4WxUjRo1wtkFCxaE\nchMmTAjXrF69ejh77LHHhnKnn356uGaS86FZs2bh7P777x/Kvffee6Hcxo0bt1tHY5merGwsAQAA\nAGBXYlbYdDErLAAAAAAgEUYsAQAAAOQlRizTQ2MJAAAAIC/RWKaHxhIAAABAXqKxTA+NJQAAAIC8\nRGOZHhpLAAAAAHmHWWHTxaywAAAAAIBEGLEEAAAAkJcYsUwPjSUAAACAvERjmZ7wpbBm1tTMXjaz\n+WY2z8yuKmOfTmb2qZnNydyuT3a4AAAAAJCOre+zzMZbrkkyYrlZ0kB3f9PMakl6w8wmu/v8bfb7\nh7v3SFAHAAAAAFKXiw1ctgo3lu5eLKk4c3+dmS2Q1FjSto0lAAAAAGSVXB0ZzFapzAprZs0lHS1p\nRhmbTzCzt83sOTM7Io16AAAAAIDskXjyHjPbV9KTkga4+9ptNr8pqZm7rzez7pKeltSqnMfpJ6mf\nJDVq1EjXXXdd6HiefPLJUO6aa64J5SRp/vz4IO0nn3wSytWoUSNcc/LkyeFsx44dw9kRI0aEcnfd\ndVe4ZhI//elPQ7nmzZuHax533HHh7FtvvRXOjho1KpSbMGFCuOayZcvC2eOPPz6US/JXyd///vfh\n7KBBg0K5JD/fM844I5w95ZRTwtk2bdqEctH/b5I0adKkcLZ///6h3OzZs8M1n3766XB2+fLl4WxU\n9PyVkv0///LLL0O51atXh2s+88wz4Wz0e73nnnvCNS+99NJwNslzROvWrUO5DRs2hGsWFRWFs9Gf\n8aOPPhqu+fjjj4ezl112WShXu3btcM37778/nD3qqKPC2c6dO4dyq1atCuWqVau23TpGLNOTaMTS\nzKqppKkc4+7jt93u7mvdfX3m/kRJ1cysblmP5e6F7t7O3dvVqVMnyWEBAAAAQIWqeoIeJu+RZCXf\n7QOSFrj70HL2aSBplbu7mbVXSSP7UbQmAAAAAKQlFxu4bJXkUtgTJV0g6R0zm5NZN1hSM0ly95GS\nzpF0mZltlvS5pN7u7glqAgAAAEAqaCzTk2RW2Fck7fBfwt3vkRR/8wAAAAAAIOslnrwHAAAAAHJN\nrr6XMVvRWAIAAADISzSW6aGxBAAAAJCXaCzTQ2MJAAAAIC/RWKaHxhIAAABAXqKxTM8eVX0AAAAA\nAIDcxoglAAAAgLzDrLDpYsQSAAAAQF7a2lxm4y3h93WAmU02s8WZr3XK2a+rmS0ysyIzG7TNtivN\nbKGZzTOz/62oJo0lAAAAgLxU1c3jrmosJQ2SNMXdW0maklne9nsvkDRcUjdJrSX1MbPWmW2dJfWU\n1Nbdj5B0R0UFuRQWAAAAQF7ajS+F7SmpU+b+aElTJf16m33aSypy9yWSZGZjM7n5ki6TdJu7b5Qk\nd19dUcGsbCyLi4t18803h7K1atUK5QYN2q6Jr7QFCxaEs1Hdu3cPZ4cOHRrOjhw5Mpy9/vrrQ7mz\nzz47XLO4uDicfe6550K5o48+OlzzhRdeCGevuuqqcPa///u/Q7mrr746XPPUU08NZ++4o8I/mpXp\nwQcfDNe89dZbw9mo119/PZz9xS9+Ec7efffd4Wz0nKhRo0a45kknnRTOjh07NpSrWbNmuOasWbPC\n2SFDhoRyM2bMCNc8+eSTw9kvv/wynH3ooYdCuaZNm4ZrJnn+njJlSii3adOmcM1bbrklnO3Zs2c4\nO3jw4HA2qkOHDuFs9PfNv/71r3DNSy65JJxdu3ZtKLdly5ZwzfXr14ez1157bTh73333hXKPPfZY\nKLd69fa90W7cWNZ3960vhD+QVL+MfRpLWlZqebmk4zL3D5X0XTO7RdIXkn7p7jv8BZaVjSUAAAAA\n5Lm6Zja71HKhuxduXTCzFyU1KCP3tW7f3d3MfCdr7ynpAEkdJP2XpHFmdoi7l/s4NJYAAAAA8k4O\nzAq7xt3blbfR3U8pb5uZrTKzhu5ebGYNJZV1KesKSaUv82iSWSeVjF6OzzSSM83sK0l1JX1YXk0m\n7wEAAACQl6p6gp5dOHnPBEl9M/f7SnqmjH1mSWplZi3MrLqk3pmcJD0tqXPmZ3SopOqS1uyoICOW\nAAAAAPJSlo9YJnGbSi5fvUTSUkm9JMnMGkm63927u/tmM7tC0iRJBZJGufu8TH6UpFFmNlfSJkl9\nd3QZrERjCQAAACBP7a6Npbt/JGm72dfcfaWk7qWWJ0qaWMZ+myT9aGdq0lgCAAAAyEu7a2NZFXiP\nJQAAAAAgEUYsAQAAAOSdHJgVNqfQWAIAAADISzSW6aGxBAAAAJCXaCzTQ2MJAAAAIC/RWKaHxhIA\nAABA3uE9luliVlgAAAAAQCJZOWJZrVo1NWjQIJS9+eabQ7nrrrsulJOkdevWhbPDhg0L5SZMmBCu\nmeQvM/369QtnCwsLQ7kBAwaEaybxhz/8IZQbMWJEuOZRRx0Vznbt2jWc7dKlSyj36quvhmtWq1Yt\nnB09enQo1759+3DNmTNnhrNR7dq1C2eT/F+dPn16ODt16tRQrlOnTuGa/fv3D2dbtmwZyv3xj38M\n1xw0aFA4WxXn4dNPPx3Onn/++eFscXFxKDdmzJhwzYMPPjicjZ6H48aNC9esWbNmOPuTn/wknN13\n333D2ag5c+aEsz169AjlFixYEK5Zr169cPbss88O5ZI8jyZ5HZzk5/Sd73wnlOvVq1cot3Hjxu3W\nMWKZnqxsLAEAAABgV6OxTA+NJQAAAIC8RGOZHhpLAAAAAHmJxjI9iSbvMbOuZrbIzIrMbLs3jViJ\nYZntb5vZMUnqAQAAAEAats4Km623XBNuLM2sQNJwSd0ktZbUx8xab7NbN0mtMrd+kuKzmgAAAAAA\nslKSS2HbSypy9yWSZGZjJfWUNL/UPj0lPezuLmm6mdU2s4buHpvqDQAAAABSkosjg9kqSWPZWNKy\nUsvLJR1XiX0aS9qusTSzfioZ1VStWrUSHBYAAAAAVIzGMj1ZM3mPuxdKKpSkBg0aeBUfDgAAAIDd\nHI1lepI0liskNS213CSzbmf3AQAAAIBvHI1lepLMCjtLUisza2Fm1SX1ljRhm30mSLowMztsB0mf\n8v5KAAAAAFWtqmd93d1mhQ2PWLr7ZjO7QtIkSQWSRrn7PDO7NLN9pKSJkrpLKpK0QdJFyQ8ZAAAA\nAJBNEr3H0t0nqqR5LL1uZKn7Lql/khoAAAAAsCvk4shgtsqayXsAAAAA4JtEY5keGksAAAAAeYnG\nMj1WcrVqdjGzDyUtLWdzXUlrvsHDwe6Lcwlp4VxCWjiXkBbOJaRldzqXDnb3g7YumNnzKvn+stUa\nd+9a1QdRWVnZWO6Imc1293ZVfRzIfZxLSAvnEtLCuYS0cC4hLZxLqKwkHzcCAAAAAACNJQAAAAAg\nmVxsLAur+gCw2+BcQlo4l5AWziWkhXMJaeFcQqXk3HssAQAAAADZJRdHLAEAAAAAWSRnGksz62pm\ni8ysyMwGVfXxILeY2SgzW21mc0utO8DMJpvZ4szXOlV5jMh+ZtbUzF42s/lmNs/Mrsqs51zCTjGz\nGmY208zeypxLN2bWcy4hxMwKzOyfZvZsZplzCTvNzN43s3fMbI6Zzc6s41xCpeREY2lmBZKGS+om\nqbWkPmbWumqPCjnmIUnbfg7QIElT3L2VpCmZZWBHNksa6O6tJXWQ1D/zXMS5hJ21UdL33L2tpKMk\ndTWzDuJcQtxVkhaUWuZcQlRndz+q1EeMcC6hUnKisZTUXlKRuy9x902SxkrqWcXHhBzi7tMkfbzN\n6p6SRmfuj5Z0xjd6UMg57l7s7m9m7q9TyYu4xuJcwk7yEuszi9UyNxfnEgLMrImkH0i6v9RqziWk\nhXMJlZIrjWVjSctKLS/PrAOSqO/uxZn7H0iqX5UHg9xiZs0lHS1phjiXEJC5dHGOpNWSJrs75xKi\n/ijpV5K+KrWOcwkRLulFM3vDzPpl1nEuoVL2rOoDALKBu7uZMUUyKsXM9pX0pKQB7r7WzP6zjXMJ\nleXuWyQdZWa1JT1lZm222c65hAqZWQ9Jq939DTPrVNY+nEvYCSe5+wozqydpspktLL2Rcwk7kisj\nliskNS213CSzDkhilZk1lKTM19VVfDzIAWZWTSVN5Rh3H59ZzbmEMHf/RNLLKnkfOOcSdtaJkk43\ns/dV8lah75nZo+JcQoC7r8h8XS3pKZW8HY1zCZWSK43lLEmtzKyFmVWX1FvShCo+JuS+CZL6Zu73\nlfRMFR4LcoCVDE0+IGmBuw8ttYlzCTvFzA7KjFTKzPaW1EXSQnEuYSe5+zXu3sTdm6vk9dFL7v4j\ncS5hJ5nZPmZWa+t9SadKmivOJVSSuefGaLaZdVfJewgKJI1y91uq+JCQQ8zsz5I6SaoraZWkIZKe\nljROUjNJSyX1cvdtJ/gB/sPMTpL0D0nv6P+/l2mwSt5nybmESjOzI1UyCUaBSv7IO87dbzKzA8W5\nhKDMpbC/dPcenEvYWWZ2iEpGKaWSt8s95u63cC6hsnKmsQQAAAAAZKdcuRQWAAAAAJClaCwBAAAA\nAInQWAIAAAAAEqGxBAAAAAAkQmMJAAAAAEiExhIAAAAAkAiNJQAAAAAgERpLAAAAAEAi/w+nAl/p\nKxpsJwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAFbCAYAAAA9aqSfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WmU1uVh/vF7hmEbZFUQkaBYiBg1AXFPrMEaDea4RI2J\nW9TG1qCSNIrGRlRcSogWjRaLytGK+0rVuOBeDe5EYwhFUMSNsiiyMwzb83/RVzk9YYbf1R7zP+fz\neX1/vYHnN888F8M51tVqtQIAAEA19V/0LwAAAOD/Z0YVAABAwKgCAAAIGFUAAAABowoAACBgVAEA\nAASMKgAAgIBRBQAAEDCqAAAAAg1bcrhr16613r17V75s/fr1ldtSSpk3b17Ub7XVVlHfvXv3qP/s\ns8+ivnPnzlG/cuXKqO/WrVvUNzY2Vm4XL15cVqxYUbe5M126dKn17NkzuiORvj7p/R06dIj6nXba\nKernzJkT9dtss03Uf/7551Hf3Nxcud20aVOp1WqbfT4bGxtryddQU1NT5baU/Ot3w4YNUb9ixYqo\nr6/P/g5w1apVUd+3b9+oX7NmTdR/+umnldtardbi89mmTZtaQ8MWfST4E3369KncllLK8uXLo75/\n//5Rn75/pZ8P0vf/rl27Rn36+n300UeV29WrV5e1a9du9vks5b8/g/bq1avyPel7wKJFi6I+/Qy6\n9dZbR336GeWDDz6I+o4dO0Z9+ueXfA9auXJlq57RLXoH7d27d7nhhhsq/6Lmz59fuS2llJNPPjnq\n99xzz6j/7ne/G/W33HJL1H/zm9+M+hdeeCHqjzrqqKgfMmRI5facc85p8UzPnj3L2LFjK98xYcKE\nym0p+euT3j9o0KCov++++6L+oIMOivrTTz896u+9996oTz5UtWbwdOvWrZxxxhmV73j77bcrt6Xk\nX79LliyJ+qeffjrq0780+O1vfxv1Y8aMifr09Zs4cWLltjV/YdDQ0BB9sL7kkksqt6WU8uSTT0b9\n5MmTo/5v/uZvov64446L+vT9/9vf/nbUX3755VF/1llnVW4ff/zxVp3r1atXueaaayrfM23atMpt\nKaVce+21Ub/PPvtE/Yknnhj1w4YNi/rTTjst6gcPHhz1X//616P+qaeeqtxOmTKlVef88z8AAICA\nUQUAABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJG\nFQAAQMCoAgAACDRsyeGNGzeWpUuXVr7s0UcfrdyWUsoLL7wQ9ePGjYv6PffcM+pffvnlqH/ttdei\n/rnnnov6e++9N+qT12/VqlUtnmnXrl3ZYYcdKt9xzTXXVG5LKeWrX/1q1M+bNy/qV6xYEfUnnnhi\n1I8cOTLqlyxZEvU777xz1J922mmV26uuuqrFM3V1daWurq7yHYMGDarcllKir41SSvn000+j/pRT\nTon6oUOHRv3uu+8e9d///vej/uijj4760aNHV24POuigFs/stttu0feYOXPmVG5LyV+fUaNGRf2A\nAQOivm/fvlGf/vltv/32Ub969eqo/9KXvlS5bdeuXavOLV26tDz44IOV75k8eXLltpRSevXqFfVj\nx46N+vHjx0f9kCFDoj59xh577LGov/jii6P+yCOPrNxOnz69Vef8pAoAACBgVAEAAASMKgAAgIBR\nBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYV\nAABAwKgCAAAINGzJ4U2bNpU1a9ZUvqxXr16V21JK+eu//uuov+mmm6L+xBNPjPohQ4ZE/caNG6P+\n1Vdfjfqf//znUf/6669Xbp988skWz3zyySfl/PPPr3zHP/3TP1VuSyll1apVUf/YY49F/T//8z9H\n/YIFC6L+rrvuivru3btHfa1Wi/q6urqob8nSpUvLQw89VLkfNmxYdP+BBx4Y9Q888EDUP/vss1H/\n/PPPR/0jjzwS9ccdd1zUz549O+p79+5duZ07d26LZz7++OPyk5/8pPIdbdq0qdyWUsqcOXOi/vjj\nj4/6bt26Rf0hhxwS9QMHDoz6ESNGRH36/nv55ZdXbp966qlWnVuyZEm54447Kt+zzz77VG5LKeWi\niy6K+oULF0b9ZZddFvVNTU1Rnz5jqUsuuSTqX3755crtO++806pzflIFAAAQMKoAAAACRhUAAEDA\nqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGj\nCgAAIGBUAQAABOpqtVqrD/fu3bv2wx/+sPJl22yzTeW2lFLee++9qH/jjTeiftq0aVG/bt26qP/N\nb34T9d/73vei/t133436M844o3I7Y8aMsmrVqrrNnamvr6+1bdu28h3t2rWr3JZSyoIFC6L+8ccf\nj/qPP/446g8//PCo79atW9TPnj076tu3bx/1vXr1qtweccQR5Q9/+MNmn8/dd9+99vDDD1e+48Yb\nb6zclpI/H+edd17U77jjjlG/3377Rf2UKVOi/t/+7d+i/j/+4z+ifvr06VFfq9U2+3zutttutfvu\nu6/yf/+YY46p3JZSymGHHRb13/jGN6K+b9++UX/llVdG/bnnnhv1zzzzTNSnXx9HH3105XbixIll\n/vz5m30+Syll6NChtddee63yPUOHDq3cllLKpk2bon7Dhg1RP3/+/Ki/4oorov6II46I+vR7wIQJ\nE6L+2GOPrdweeuih5e23327xGfWTKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoA\nACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACDQsCWHFy9eXCZM\nmFD5sr59+1Zu/zc8/vjjUd/Y2Bj1K1eujPrOnTtH/R133BH1M2bMiPru3btXbtu0adOq//53vvOd\nynfMnDmzcltKKeeff37Ujxs3Luq7du0a9SNGjIj6W265JeprtVrUz5o1K+p//OMfV243btzY4pmG\nhoboa+CAAw6o3JZSyle+8pWof+CBB6J++PDhUd+rV6+oT9+/0z//SZMmRf1LL71Uuf3bv/3bVp1r\naNiijwR/4vDDD6/cllLK6NGjo/6ee+6J+g8//DDqf/rTn0b9TjvtFPXp778132M3J/n+9+///u+t\nOrdmzZry1ltvVb5n7ty5ldtSSrnvvvuivqmpKepPPfXUqE8/A3fp0iXqH3vssajv3bt31F944YWV\n2/nz57fqnJ9UAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAA\nBIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAIGGLTnc2NhYdtttt8qX3XTTTZXbUkoZ\nP3581D/99NNR39jYGPVjxoyJ+qampqhfvXp11A8fPjzqN2zYULmdPn16i2caGxvL4MGDK9/xr//6\nr5XbUkoZOHBg1I8aNSrq77rrrqgfPXp01O+7775RP3To0KifOXNm1P/oRz+q3H7wwQctnpk7d245\n9thjK98xf/78ym0ppUycODHq+/TpE/X9+vWL+ilTpkR9XV1d1B9zzDFRP2nSpKifNm1a5XbVqlUt\nnpk5c2bZeeedK98xbNiwym0p+ff35ubmqN97772jfp999on6Rx55JOp79eoV9enns+R777x581p1\nrkOHDtEzetlll1VuSynly1/+ctT37ds36j///PMv9P79998/6rt16xb1W2+9ddRfccUVlds333yz\nVef8pAoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEA\nAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAINGzJ4fbt25eddtqp8mVHHnlk5baUUqZPnx71\nffr0ifq33nor6h944IGonzlzZtT/7Gc/i/qGhi16XP6HAQMGVG7bt2/fqjPJ8/mP//iPldtSSrn4\n4ouj/uCDD476oUOHRv0pp5wS9enXZ8eOHaP++eefj/rTTz+9cnvttde2eKZ///7l9ttvr3zHs88+\nW7ktpZTly5dH/QUXXBD1w4cPj/p333036p944omoHz16dNTfd999UX/FFVdUbm+99dYWz3Tr1q0M\nGzas8h2//vWvK7el5J8Pdtlll6gfN25c1C9cuDDqGxsboz79/p6+f951112V2xNOOKFV5+rr61v1\nWeDPST9DPfzww1Gffobae++9oz79GkufkX79+kV9165do37u3LmV2+bm5lad85MqAACAgFEFAAAQ\nMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDA\nqAIAAAgYVQAAAAGjCgAAINCwJYf79OlTLr300sqX3X///ZXbUko5//zzo3727NlRv2zZsqjv2LFj\n1D/11FNRf+CBB0b9v/zLv0T99ddfX7mdNGlSi2c++OCDctppp1W+Y8cdd6zcllLKPvvsE/WzZs2K\n+tb8GW3OI488EvUfffRR1O+///5RX1dXF/Vjx46t3K5cubLFM8uWLSsPPfRQ5TuOPvroym0p+df/\n7rvvHvXJ12YppTzxxBNRP3LkyKifPn161D/66KNR/8knn1Ru6+tb/vvT3r17lwsuuKDyHenX//r1\n66N+0aJFUf/www9Hffr7v+6666L+zDPPjPrvfve7UT9o0KDK7bp161p1bu3ateXdd9+tfM/EiRMr\nt6WUcscdd0T93XffHfXpa9ytW7eoTz9jDBkyJOqHDRsW9cl7RNu2bVt1zk+qAAAAAkYVAABAwKgC\nAAAIGFUAAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoA\nACBgVAEAAASMKgAAgEBdrVZr9eGtt966Nnz48MqXdenSpXJbSimjRo2K+nfeeSfq6+rqor6+Ptuw\n48ePj/qbbrop6vfYY4+ob9euXeV2yZIlZf369Zt9Ab7yla/Ubr/99sp3pL+/qVOnRv2UKVOi/sAD\nD4z6vffeO+q/+c1vRv0uu+wS9ePGjYv6yy+/vHL74osvlmXLlm32+UzfP+++++7KbSml3HDDDVE/\ncuTIqO/YsWPUp1+fM2fOjPpOnTpF/Y033hj1o0ePrtz+8Y9/LKtWrdrs81lfX1/r0KFD5Ts2btxY\nuS2llNtuuy3qt99++6jfc889o/6ZZ56J+rPPPjvqly9fHvVvvvlm1N95552V24kTJ5b58+e3+AGr\nvr6+1r59+8r3JO+/pZTy/vvvR/3pp58e9en32M6dO0f95MmTo/6JJ56I+ptvvjnqk8+Ht956a1mw\nYEHLz2jlGwAAADCqAAAAEkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCq\nAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAAQatuRw27Zty7bbblv5snHjxlVuSynlF7/4\nRdSvXLky6q+//vqof/jhh6O+rq4u6n/0ox9F/S233BL1I0eOrNy25ve+cOHCcuWVV1a+Y9KkSZXb\nUkoZMmRI1A8fPjzqhw0bFvXTpk2L+rZt20b9nXfeGfXpn/9bb71VuT300ENbPNOpU6ey1157Vb7j\nxz/+ceW2lFJeeeWVqH/55Zejfv/994/65P2jlFIGDBgQ9ePHj4/6UaNGRX3yfLbmuRs4cGCZOHFi\n5Tu+//3vV25LKeW//uu/ov7222+P+h133DHqzz777Ki///77o75Tp05Rn34+SO5fvXp1q87tuuuu\n5aGHHqp8z2GHHVa5LaWU2bNnR32PHj2iftasWVF/wAEHRP2YMWOifubMmVG/6667Rv1xxx1XuW1u\nbm7VOT+pAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQMCoAgAACBhV\nAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJ1tVqt9Yfr6j4tpXz4f/fLgT9rh1qt1nNz\nBzyffIE8n/wl83zyl6zF57MUzyhfqNY9o1syqgAAAPhT/vkfAABAwKgCAAAIGFUAAAABowoAACBg\nVAEAAASMKgAAgEDDlhxu165drbGxsfJlzc3NldtSSknu/t+wcePGqG/Tpk3Ur1u3LupXrVoV9emv\nv0uXLpXb1atXl+bm5rrNnamvr681NGzRI/0nBg0aVLktpZQZM2ZE/W677Rb1a9eujfrFixdHfV3d\nZl+eFqVf37169Yr6t99+O+prtdpm/wA6duxY69q1a+X/ftu2bSu3/xt9+v7Rvn37qK+vz/4OcMOG\nDVHfqVOnqP/oo4+iPvnza2pqKuvWrdvs81lXV1dLvoaT995SSunXr1/UNzU1RX36fHfv3j3q088X\nn3zySdSn779r1qyJ+pbeP0sppUuXLrWePVv8XwX9Wel7yPLly6N+06ZNUZ++h65YsSLqd95556j/\n+OOPoz79X0B17NixcrtkyZKyatWqFp/RLXoXbGxsLAcccEDlX9R7771XuS2llCFDhkR9+gWVvumm\nb1rpA/nqq69G/VZbbRX13/rWtyq3Tz/9dItnGhoayjbbbFP5jscee6xyW0r+oeCRRx6J+nfeeSfq\nr7322qhPP7TvscceUT9y5MioT75Zt0bXrl3LD3/4w8p9Ohp79+4d9a+99lrU77jjjlHfuXPnqP/s\ns8+ifq+99or69PncaaedKrcvvfRSi2fq6uqiYbTttttWbkspZfz48VGf/qVWa/6MNufoo4+O+tWr\nV0f9ueeeG/W77rpr1P/ud7+r3LZ2bPTs2bOMGzeu8j3Jh+pSSpk6dWrUp8Ozf//+Uf/MM89E/Qsv\nvBD1P/3pT6M+/cHC4MGDK7djx45t1Tn//A8AACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABA\nwKgCAAAIGFUAAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAg1bcrht27alT58+lS+79NJL\nK7ellHLPPfdE/eTJk6P+9ttvj/qjjz466rfffvuo/+Uvf/mF9u+8807ldu3atS2e6devX7n66qsr\n33HqqadWbkspZdKkSVG/bt26qP/Od74T9X379o36r371q1F/7bXXRv1tt90W9bNmzarcHnvssS2e\nWbx4cfR7TN57SynlqquuivoPP/ww6m+++eaov+SSS6K+R48eUX/cccdF/eLFi6N+xowZlduTTjqp\nxTPbbbddOeOMMyrfkb5/HnXUUVF/5plnRn3Hjh2j/oILLoj6efPmRf2cOXOi/v3334/6/fbbr3L7\n+9//vlXn6uvro9fpZz/7WeW2lFLuvffeqE+/x6XvQc3NzVE/cODAqG9sbIz6008/PeoXLVpUud2w\nYUOrzvlJFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQMCo\nAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABBo2JLDO+ywQ7nxxhsrX7b33ntXbksp5dpr\nr436s88+O+q32267qJ8zZ07UH3vssVE/d+7cqN+4cWPUr1ix4v/07nnz5pWTTjqp8h277LJL5baU\nUvr06RP1I0aMiPquXbtGffL6lFJK9+7do/7www+P+iOPPDLq33vvvcptc3Nzi2c6d+5c9t1338p3\nPPfcc5XbUkrZbbfdor5Dhw5RP2rUqKhfv3591P/qV7+K+rq6uqhftWpV1Pfu3bty27Zt2xbPLFq0\nqFx99dWV77j44osrt6WUcs0110R9+vqccsopUX/vvfdG/bRp06L+Jz/5SdTvuOOOUX/ooYdWblv7\n2m3YsKEsWbKk8j0vvPBC5baU/DPoySefHPWt+TrenPvvvz/qO3fuHPVLly6N+r322ivqhw4dWrl9\n+OGHW3XOT6oAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAAC\nRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAQMOWHF67dm2ZNWtW5cuuuOKKym0ppTQ3\nN0d9+/bto/6DDz6I+u7du0f9ggULon7Tpk1RP2/evKj/7W9/W7k955xzWjwzaNCgcs8991S+Y+XK\nlZXbUkr55JNPov6kk06K+t/97ndR//rrr0f9JZdcEvXnnntu1N99991Rn7x+S5YsafFMly5dyqGH\nHlr5jhdeeKFyW0opb7zxRtQvXLgw6pOvzVJKOeqoo6J+4MCBUb/TTjtF/fHHHx/1zz//fOV2/fr1\nLZ7Zdttty1lnnVX5jgkTJlRuSynlhBNOiPply5ZF/R577BH16e//V7/6VdRfdNFFUb969eqo/8Mf\n/lC5bWpqatW5VatWlWnTplW+58knn6zcllLKuHHjon6HHXaI+vQ9fPHixVHfv3//qJ80aVLUDx48\nOOqfeOKJyu3y5ctbdc5PqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUA\nABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAIBAw5YcrqurKx06dKh8Wb9+\n/Sq3pZSy++67R32fPn2i/uOPP4762267LepfeumlqF+9enXUv/HGG1F/8MEHV267dOnS4pn6+vrS\nsWPHynecd955ldtSSjnttNOifsiQIVG/7777Rv2IESOi/uqrr4769Nd/0EEHRX1TU1Pldv369S2e\n6dixY/QeNmrUqMptKaUcc8wxUf93f/d3Uf/hhx9G/fTp06P+iCOOiPo//vGPX+j9U6dOrdzuueee\nLZ5ZtGhRueqqqyrf8eKLL1ZuSymlR48eUf+9730v6sePHx/1y5cvj/r089F2220X9YcffnjUt+Z7\n9J+zZs2aVp1bsWJFee655yrf8w//8A+V21JKOfXUU6P+7rvvjvrBgwdH/Z133hn1kydPjvr0e/Tc\nuXOj/tvf/nbl9tJLL23VOT+pAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJG\nFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAINW3J4zpw55eCDD658\nWbt27Sq3pZRyxRVXRP2YMWOi/s4774z6zp07R/2wYcOift68eVH/+9//Purvvffeyu3nn3/e4pk2\nbdqUHj16VL7jwQcfrNyWUsonn3wS9StXroz6l19+OeqfeeaZqH/++eejfuzYsVF/7LHHRn3y+r/3\n3nstnqnVamXt2rWV79h///0rt6WU0qlTp6i/5JJLor6uri7qu3TpEvXp778170GbM2PGjKgfPXp0\n5Xb+/Pktnvmrv/qrctNNN1W+4/3336/cllJK9+7do/6qq66K+vTzxUEHHRT1l112WdRvu+22UZ+8\nN5VSyuzZsyu3xx9/fKvO7bzzzuXRRx+tfM+6desqt6WUMmDAgKgfOHBg1Pfs2TPqv/GNb0T98uXL\no37q1KlRn7wHllJKv379Krdz585t1Tk/qQIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQ\nMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACDVtyuEuX\nLuWggw6qfNnXvva1ym0ppZx++ulRP2bMmKg/5phjov7KK6+M+rPPPjvqDzvssKgfMGBA1Pfv379y\nu2DBghbPNDQ0lB49elS+49VXX63cllLKfffdF/XXXHNN1O+yyy5R/+KLL0b9vHnzoj557UopZcmS\nJVF/3XXXVW4XL17c4plOnTqV/fbbr/IdEydOrNyWUspLL70U9VOnTo36c845J+ovv/zyqN93332j\nPnntSinl5JNPjvrk6/PBBx9s8cy6devKRx99VPmOm2++uXJbSilz586N+uSzSSmlfP3rX4/6oUOH\nRv2NN94Y9Q899FDU77XXXlGffL5buHBhq86lz+gvfvGLym0ppWzatCnqX3nllahPn9G2bdtG/YwZ\nM6I+fQ/99a9/HfXJ6zdr1qxWnfOTKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoA\nACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACDQsCWHm5qayowZ\nMypfdt5551VuSyll5MiRUf/EE09E/YgRI6K+qakp6vfdd9+oP+CAA6J+hx12iPp+/fpVbj/99NMW\nzyxatKhcffXVle/YuHFj5baUUmq1WtQvW7Ys6t9///2o79OnT9R379496tu0aRP1PXv2jPrk/en6\n669v8czChQvLVVddVfmO1FNPPRX1b7/9dtQPGTIk6i+88MKoP+uss6L+hBNOiPoVK1ZE/UMPPVS5\nXbduXYtnunTpUg455JDKd5x99tmV21JK2X333aP+W9/6VtSvXLky6nv16hX1e++9d9QPHTo06k88\n8cSoHz58eOX2zTffbNW55cuXl6lTp1a+p7m5uXJbSikLFiyI+vQzWGNjY9R36NAh6ocNGxb16WeM\nXXbZJeqT70FLlixp1Tk/qQIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUA\nAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACDVtyeKuttioHHnhg5cum\nTJlSuS2llGeffTbqb7/99qh/4403or5Tp05R/4Mf/CDqP/7446i/8MILo/66666r3K5du7bFM/X1\n9aWxsbHyHaeeemrltpRSevToEfXLly+P+l/+8pdRP2LEiKgfMGBA1L/11ltRf9RRR0X9rbfeWrn9\n7LPPWjxTX19f2rdvX/mOlStXVm5LKeXnP/951A8ePDjqH3nkkaj/0pe+FPU33HBD1E+cODHqr776\n6qifNm1ItTT6AAACzElEQVRa5XbVqlUtnvnoo4+i94ClS5dWbksp5Y477oj6iy++OOpnzpwZ9WPG\njIn6L3/5y1H/4YcfRv1jjz0W9d26davctub5LOW/Pwf853/+Z+V7mpubK7el5J8BBw0aFPV///d/\nH/Vr1qyJ+tdeey3qJ0yYEPUXXXRR1CefgdetW9eqc35SBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUA\nAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEA\nAAQatuTwNttsU0499dTKl51xxhmV21JKqauri/pDDjkk6qdPnx71xx13XNSvX78+6idPnhz1jz76\n6Bd2/wUXXNDimebm5vLuu+9WvmPp0qWV21JK2W677aL+1VdfjfparRb1EyZMiPr+/ftH/bRp06J+\n4sSJUd+xY8fKbX19y38/1a5du+jPKH199tlnn6h/5ZVXvtD7zzzzzKg/5phjon7KlClRP2bMmKjf\naqutKrdNTU0tntl+++3L2LFjK99x6KGHVm5LKeW1116L+rZt20b9sGHDov6II46I+ssvvzzqt912\n26j/wQ9+EPUnnHBC5fbGG29s1bnGxsYyePDgyvek32Nef/31qP/a174W9b/5zW+iftmyZVGf2nnn\nnaN+v/32i/qDDz64cjt79uxWnfOTKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoA\nACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBQV6vVWn+4ru7T\nUsqH/3e/HPizdqjVaj03d8DzyRfI88lfMs8nf8lafD5L8YzyhWrdM7olowoAAIA/5Z//AQAABIwq\nAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABP4fmsf9Q/dHzAkAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOgAAAHICAYAAAD0q9V4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xuc5vN98P/3Z9eyB/aExVrH2jqE1GGDJE0TIglyJxRN\nIye0KlE0bSKpJhISbtW4EW7uFX40TgmSKBpnolJJqU1EdOO0iMN2EYu157V8fn+Y6+7UTXYu3pdP\nxjyfj8c87Mx8r9f12TXfmWs+8/7OVWqtAQAAAAC0Maz1AgAAAABgKLNBBwAAAAAN2aADAAAAgIZs\n0AEAAABAQzboAAAAAKAhG3QAAAAA0JANOgAAAABoyAYdAAAAADRkgw4AAAAAGlqpm4PHjRtX1157\n7dQFPP/886m9joceeii9ueqqq6Y3J0yYkN586qmn0psREauttlp6c/78+enN8ePHpzcjIkaPHp3a\ne/LJJ+O5554rAz1+7Nixdc0110xfQy/04mOlF2sdOXJkenPjjTdOb0ZE3HfffenNNdZYI7359NNP\npzcjIpYuXZrae/HFF6PWOuDzb/To0TX7c8vixYtTex29+By4fPny9OZzzz2X3hw2rDc/d1ywYEF6\nc8qUKenNRYsWpTcjIn7zm9+k9mqtXZ1/ERHDhw+vK63U1cPWFZo8eXJqr2PevHnpzY022ii92Yuv\nK714XBvRm8cA48aNS2/26mPqkUceSe0tXLgwlixZMuBzcNy4cXXSpEmpa+jF59WIiCeeeCK92Yvv\nAVdfffX0Zi8ef0dE/PrXv05vjho1Kr3Zi/9PEfmPV+bPn9/V+TdUlFJqj9LX1lp37VE7XVePdNZe\ne+0444wzUhcwe/bs1F7HJz/5yfTmtGnT0pt//Md/nN4855xz0psREe95z3vSmzfffHN6c88990xv\nRkRss802qb3Pfe5zXR2/5pprxnHHHZe6htNOOy2119GLj5VerHWzzTZLb15yySXpzYiInXfeOb15\n4IEHpjcvvvji9GZE/jeS3W6OjR8/Pj796U+nruHOO+9M7XX04nPg3Llz05vXX399erMXm+4REf/6\nr/+a3jz66KPTm736mJo+fXpq77VsuK+00krpmx9HHXVUaq/j2muvTW+ee+656c33vve96c2PfOQj\n6c2I3jwG2HXX/O/XjjnmmPRmRMQhhxyS2rvqqqu6On7SpElx8sknp67hlltuSe11nHLKKenNHXbY\nIb358Y9/PL250047pTcjIg444ID05tZbb53efOc735nejIi47rrrUnuXXnppao8Vyp9I6CGXuAIA\nAABAQ7nXCgAAAABAF0rJv/K31l5dOdsbNugAAAAAaMYGnUtcAQAAAKApE3QAAAAANNOLCbrBxgQd\nAAAAADRkgg4AAACAZkzQ2aADAAAAoJFSig26cIkrAAAAADRlgg4AAACAZkzQmaADAAAAgKZM0AEA\nAADQjAk6E3QAAAAA0JQJOgAAAACaMUFngw4AAACAhmzQucQVAAAAAJoyQQcAAABAE6UUE3Rhgg4A\nAAAAmjJBBwAAAEAzJui63KB74YUX4plnnkldwA9/+MPUXsfNN9+c3jz++OPTm9OmTUtv/vSnP01v\nRkTcdttt6c0f/ehH6c2LL744vRmR/zG1YMGCro5feeWVY4MNNkhdw8knn5za63jrW9+a3nzooYfS\nm88991x68+Mf/3h6MyLisMMOS2/OnTs3vbnpppumNyMiDjjggNTeCSec0NXxvRi732yzzVJ7Hdmf\nJyIifvOb36Q399tvv/Tmdtttl96MiNhqq63Sm3/6p3+a3txrr73SmxERRx55ZGpv55137vo2W265\nZfrjkPvuuy+119GLj5fDDz88vbnJJpukN6dMmZLejOjN/6t11103vblw4cL0ZkTEeuutl9pbeeWV\nuzr+mWeeiR/84Aepazj33HNTex2TJk1Kbx533HHpzRNPPDG9uc0226Q3I3pzrlx55ZXpza9+9avp\nzYiIPfbYI7U3Y8aM1N6biQ06l7gCAAAAQFMucQUAAACgGRN0JugAAAAAoCkTdAAAAAA0Y4LOBh0A\nAAAAjfTiCdkGI5e4AgAAAEBDJugAAAAAaMYEnQk6AAAAAGjKBB0AAAAAzZigs0EHAAAAQEM26AZw\niWsp5aBSyoxSyox58+a9EWsC+vQ//5599tnWy4Ehpf/5t3DhwtbLgSGn/zn41FNPtV4ODCn9z78l\nS5a0Xg7AkLDCDbpa65m11mm11mnjxo17I9YE9Ol//o0fP771cmBI6X/+jRkzpvVyYMjpfw6uscYa\nrZcDQ0r/82/kyJGtlwMMAaWU9JfBxpNEAAAAAEBDfgcdAAAAAE0M1om3bCboAAAAAKAhG3QAAAAA\nNNPid9CVUnYtpdxbSplVSjniFd5fSimn9r3/l6WUbfu9b3wp5fullHtKKXeXUt7+ev8NXOIKAAAA\nQDNv9CWupZThEXF6RLwvIh6LiNtLKVfUWn/V77DdImJq38sOETG9778REadExDW11n1KKStHxOjX\nuyYTdAAAAAAMJdtHxKxa64O11mURcVFE7PGyY/aIiPPqS26NiPGllHVKKeMi4o8i4uyIiFrrslrr\ns693QSboAAAAAGimwZNErBsRj/Z7/bH4r+m433bMuhGxPCJ+ExH/WEr5g4j4WUR8tta68PUsyAQd\nAAAAAG82a5RSZvR7OSipu1JEbBsR02ut20TEwoj4f36H3WuJAgAAAEATPZqge6rWOu1V3jc7Itbr\n9/qUvrcN5JgaEY/VWm/re/v3443eoHvxxRdj0aJFr/c+/5tJkyal9jr+6I/+KL155plnpjc//vGP\npze32Wab9GZExAsvvJDevPXWW9Obf/u3f5vejIj493//99Tetdde29Xxjz32WHzxi19MXcP//J//\nM7XXsWDBgvTmlVdemd78X//rf6U358yZk96MiPjOd76T3pwwYUJ6s9aa3oxoMvL+3zzzzDNx2WWX\npTZ32mmn1F7Hu9/97vTm97///fTmjTfemN686aab0psREVdccUV68yMf+Uh68957701vRkSsvfba\nqb0HHnig69s8+uij8Vd/9Vep6xg+fHhqr+O+++5Lb+67777pzfHjx6c33//+96c3IyKmTp2a3jz4\n4IPTm734uhoRccwxx6T2rrvuuq6Onzt3blxwwQWpa9hhh5dfRZbjK1/5Snrz8ccfT29+/etfT28u\nXrw4vRnRm3OlF4466qiedH/605+m9u65557U3pvFQJ91NdntETG1lLJRvLTp9tGI+NjLjrkiIg4t\npVwUL13+Oq/WOiciopTyaCll01rrvRHx3oj4VbxOJugAAAAAGDJqrctLKYdGxLURMTwizqm1ziyl\nfKbv/WdExFURsXtEzIqIRRFxQL/EYRFxYd8zuD74sve9JjboAAAAAGimxRUztdar4qVNuP5vO6Pf\nn2tEHPIqt/1FRLza5bOviSeJAAAAAICGTNABAAAA0Ezr3zn9u8AGHQAAAADN2KBziSsAAAAANGWC\nDgAAAIBmTNCZoAMAAACApkzQAQAAANBEKcUEXZigAwAAAICmTNABAAAA0IwJOht0AAAAADRkg84l\nrgAAAADQlAk6AAAAAJoxQWeCDgAAAACaMkEHAAAAQDMm6GzQAQAAANBIKcUGXbjEFQAAAACaMkEH\nAAAAQDMm6EzQAQAAAEBTpdY64IPXXnvt+qlPfSp1AWussUZqr2PWrFnpzdtvvz29ecstt6Q3ly1b\nlt6MiPjnf/7n9Oaf/MmfpDfvv//+9GZExKc//enU3l133RULFiwY8I8Jhg0bVkeMGJG6hpVXXjm1\n1zFnzpz05lVXXZXefPTRR9ObH/rQh9KbERHjx49Pb957773pzVVWWSW9GRExadKk1N6HP/zh+OUv\nfzng82+rrbaql19+eeoavvWtb6X2Onrxcf2FL3whvbnhhhumN9/+9renNyMiLr300vTmP/7jP6Y3\n/+Vf/iW9GRExY8aM9Gattasfk2+55Zb1kksuSV3D3nvvndrr2H333dObf/iHf5jenDJlSnrzG9/4\nRnozIuLzn/98evOGG25Ib/bic0VExF577ZXamz59esyePXvA5+B2221Xb7vtttQ1bLfddqm9jhdf\nfDG9uXz58vTm7Nmz05vHHntsejPipcdM2XrxGOC0005Lb0ZE7LPPPqm9D3zgA3HnnXcaFXuZkSNH\n1vXXXz+9e//99/+s1jotPdwjLnEFAAAAoBmXuLrEFQAAAACaMkEHAAAAQDMm6EzQAQAAAEBTJugA\nAAAAaKKUYoIuTNABAAAAQFMm6AAAAABoxgSdDToAAAAAGrJB5xJXAAAAAGjKBB0AAAAAzZigG8AE\nXSnloFLKjFLKjMWLF78RawL69D//aq2tlwNDSv/z7+mnn269HBhynIPQTv/z76mnnmq9HIAhYYUb\ndLXWM2ut02qt00aNGvVGrAno0//88xMFeGP1P/8mTpzYejkw5DgHoZ3+598aa6zRejnAEFBKSX8Z\nbFziCgAAAEATg3VDLZsniQAAAACAhkzQAQAAANCMCToTdAAAAADQlAk6AAAAAJoxQWeDDgAAAICG\nbNC5xBUAAAAAmjJBBwAAAEAzJui63KB78skn47TTTktdwJQpU1J7vXTVVVelN0ePHp3enD9/fnoz\nImK11VZLb15wwQXpzbvuuiu9GRExYcKE1N7w4cO7vv8PfvCDqWuYOXNmaq/ji1/8Ynrz+OOPT2+O\nGzcuvXnwwQenNyMizjnnnPRmrTW9effdd6c3IyI+85nPpPZeeOGFro5faaWV0j8HvOtd70rtdWyx\nxRbpze9///vpzd122y29OWnSpPRmRG++Vvfi//9ZZ52V3oyI+MlPfpLa+7M/+7PXdLuVVsr9ufKH\nPvSh1F7HkUcemd686KKL0psPP/xwevOzn/1sejMiYuONN05v9uLftNvHdgOV/bjqn/7pn7o6ftGi\nRXHHHXekruGBBx5I7XVccskl6c3FixenN/fff//0Zi++V42IGDt2bHrzyiuvTG+uvfba6c2IiC9/\n+cupvdmzZ6f2eHMxQQcAAABAE6UUE3Thd9ABAAAAQFMm6AAAAABoxgSdDToAAAAAGrJB5xJXAAAA\nAGjKBB0AAAAAzZigM0EHAAAAAE2ZoAMAAACgGRN0NugAAAAAaKSUYoMuXOIKAAAAAE2ZoAMAAACg\nGRN0JugAAAAAGGJKKbuWUu4tpcwqpRzxCu8vpZRT+97/y1LKti97//BSyh2llB9mrMcEHQAAAADN\nvNETdKWU4RFxekS8LyIei4jbSylX1Fp/1e+w3SJiat/LDhExve+/HZ+NiLsjYmzGmkzQAQAAANBM\n54kiMl9WYPuImFVrfbDWuiwiLoqIPV52zB4RcV59ya0RMb6Usk7feqdExAcj4v/L+jewQQcAAADA\nULJuRDza7/XH+t420GO+GRFfjIgXsxbkElcAAAAAmunRJa5rlFJm9Hv9zFrrma83Wkr5HxHxZK31\nZ6WU97zeXocNOgAAAADebJ6qtU57lffNjoj1+r0+pe9tAzlm74j4cCll94gYGRFjSykX1Fo/8XoW\n6xJXAAAAAJroxe+fG8BE3u0RMbWUslEpZeWI+GhEXPGyY66IiE/1PZvrjhExr9Y6p9b6d7XWKbXW\nDftu96PXuzkXYYIOAAAAgCGk1rq8lHJoRFwbEcMj4pxa68xSymf63n9GRFwVEbtHxKyIWBQRB/Ry\nTTboAAAAAGimR7+D7reqtV4VL23C9X/bGf3+XCPikBU0/iUi/iVjPTboAAAAAGimxQbd75quNuhG\njx4dW265ZeoCzjzzdT+Bxis68cQT05vXX399enP06NHpzaOPPjq9GRGxePHi9ObChQvTm7vttlt6\nMyJi+fLlqb0ZM2as+KB+Ro8eHVtvvXXqGv7P//k/qb2OqVOnpjcPP/zw9OZ3vvOd9OaRRx6Z3oyI\n2HHHHdOb2223XXpz5syZ6c2IiD//8z9P7f3617/u6vgHHngg9tlnn9Q1zJ798t9Bm2P69OnpzcmT\nJ6c3119//fTmpZdemt6M6M0Dxr333ju9edZZZ6U3IyJuueWW1N6CBQu6vs3MmTNj0003TV3HTjvt\nlNrr6MVj0KVLl6Y3t99++/TmDjvskN6MiLjiipf/SqDXb9KkSenNXn1fk/3476GHHurq+JEjR6af\nf1//+tdTex2///u/n96cMmVKevPpp59Ob/ZinRER73jHO9Kb48ePT2+uvvrq6c2IiGOPPTa19/Of\n/zy1x5uLCToAAAAAmjFB51lcAQAAAKApE3QAAAAANGOCzgYdAAAAAI2UUmzQhUtcAQAAAKApE3QA\nAAAANGOCzgQdAAAAADRlgg4AAACAZkzQ2aADAAAAoCEbdAO4xLWUclApZUYpZcbzzz//RqwJ6NP/\n/Fu4cGHr5cCQ0v/8W7ZsWevlwJDT/xxsvRYYavqff3Pnzm29HIAhYYUbdLXWM2ut02qt00aMGPFG\nrAno0//8GzNmTOvlwJDS//xbeeWVWy8Hhpz+52DrtcBQ0//8W3311VsvBxgCSinpL4ONJ4kAAAAA\ngIb8DjoAAAAAmhisE2/ZTNABAAAAQEMm6AAAAABoxgSdDToAAAAAGrJB5xJXAAAAAGjKBB0AAAAA\nzZigM0EHAAAAAE2ZoAMAAACgGRN0XW7QrbLKKrHxxhunLmCPPfZI7XXMmDEjvTl58uT05h133JHe\n/P73v5/ejIiYOXNmevNv/uZv0psrrdSbfedNNtkktbfKKqt0fXz2+fd3f/d3qb2Or371q+nNXXbZ\nJb253XbbpTf322+/9GZEbz6njRo1Kr150003pTcjIg488MDU3imnnNLV8RtttFGcf/75qWu48cYb\nU3sd8+bNS28eccQR6c3ddtstvXn//fenNyMirr766vTmkUcemd685JJL0psREccee2xq79vf/nbX\ntxk/fnzstNNOqev45je/mdrr6MVj28033zy9efzxx6c3H3/88fRmRMTo0aPTm714DNqrr4Hf+c53\nUnsf+9jHujp+2LBhXT9uXZFefF8REXH55ZenN3vxvcX222+f3uzV99W9+Lhef/3105vjxo1Lb0ZE\nPPDAA6m9pUuXpvbeLEopNujCJa4AAAAA0JRLXAEAAABoxgSdCToAAAAAaMoEHQAAAADNmKCzQQcA\nAABAQzboXOIKAAAAAE2ZoAMAAACgGRN0JugAAAAAoCkTdAAAAAA0UUoxQRcm6AAAAACgKRN0AAAA\nADRjgs4GHQAAAAAN2aBziSsAAAAANGWCDgAAAIBmTNCZoAMAAACApkzQAQAAANBEKcUEXdigAwAA\nAKAhG3QucQUAAACApkzQAQAAANCMCToTdAAAAADQVFcTdJMnT46vfe1rqQv43ve+l9rr+OIXv5je\nvPfee9Obzz77bHpz1KhR6c2IiOuuuy69+e53vzu9+b//9/9Ob0ZEnH766am9s846q6vjf/3rX8cB\nBxyQuoYNN9wwtdexww47pDfvvvvu9Ga3/w8G4oorrkhvRkQ88sgj6c13vOMd6c1e/eTruOOOS+3N\nnz+/q+OfffbZuOyyy1LXsNdee6X2OnrxeXWrrbZKb2Z/PouIuPrqq9ObERGHHXZYenPGjBnpzR/+\n8IfpzYiIxx57LLU3bFj3Px9ee+2144gjjkhdRy8+r0ZEPP/88+nNJ554Ir15+eWXpzd79W966qmn\npjf/8i//Mr35x3/8x+nNiIjNNtsstbds2bKujl+yZEncf//9qWuYPn16aq/jggsuSG9+97vfTW/2\n4uNv/Pjx6c2I3jxe3mabbdKbO+20U3ozIv/z74gRI1J7byYm6FziCgAAAEBDNuhc4goAAAAATZmg\nAwAAAKCJUooJujBBBwAAAABNmaADAAAAoBkTdCboAAAAAKApE3QAAAAANGOCzgQdAAAAAA11nigi\n82UA97lrKeXeUsqsUsoRr/D+Uko5te/9vyylbNv39vVKKTeVUn5VSplZSvlsxr+BDToAAAAAhoxS\nyvCIOD0idouILSJi31LKFi87bLeImNr3clBETO97+/KI+HytdYuI2DEiDnmF23bNJa4AAAAANNPg\nEtftI2JWrfXBvvu/KCL2iIhf9Ttmj4g4r9ZaI+LWUsr4Uso6tdY5ETEnIqLWOr+UcndErPuy23Zt\nhRN0pZSDSikzSikznn766ddzX0CX+p9/L774YuvlwJDS//xbsGBB6+XAkNP/HHz22WdbLweGlP7n\n3zPPPNN6OQC9sG5EPNrv9cf63tbVMaWUDSNim4i47fUuaIUbdLXWM2ut02qt0yZOnPh67w/oQv/z\nb9gwV6TDG6n/+bfqqqu2Xg4MOf3PwfHjx7deDgwp/c+/CRMmtF4O8CbXi98/1zeRt0bnhw19Lwcl\nr3vViPhBRPx1rfW519tziSsAAAAAzfToEtenaq3TXuV9syNivX6vT+l724COKaWMiJc25y6stV6a\nsVgjOQAAAAAMJbdHxNRSykallJUj4qMRccXLjrkiIj7V92yuO0bEvFrrnPLSbuLZEXF3rfWkrAWZ\noAMAAACgmTf6SSJqrctLKYdGxLURMTwizqm1ziylfKbv/WdExFURsXtEzIqIRRFxQN/N3xkRn4yI\nu0opv+h725dqrVe9njXZoAMAAABgSOnbULvqZW87o9+fa0Qc8gq3uyUi0ncUbdABAAAA0MwbPUH3\nu8gGHQAAAADN2KDzJBEAAAAA0JQJOgAAAACaKKWYoIuI8tLvvBuY1Vdfve62226pCxg7dmxqr+Pw\nww9Pb95zzz3pzV58EA4b1pvByBNPPDG9eeaZZ6Y3t9122/RmRMTKK6+c2ps7d248//zzA/4A2GKL\nLer555+fuoZe/Vtdc8016c1LL700vfnud787vbn99tunNyMi3vOe96Q3N9988/Tm8ccfn96MiDjm\nmGNSez/+8Y/j2WefHfD514uvf9/97ndTex1nnHHGig/q0mGHHZbeHDVqVHqzV5/TZs6cmd4cM2ZM\nevNb3/pWejMi4sgjj0zt/cd//EcsWLCgqwdAw4YNqyNHjkxdxwsvvJDa6zjvvPPSm+uuu256c9q0\naenNG264Ib0ZEXHooYemN+fNm5fe/PnPf57ejIi48MILU3vTp0+P2bNnD/gcHDZsWF1llVVS15D9\nNbXjwQcfTG8eeOCB6c1ePK5bbbXV0psREeeee2568+qrr05vnn322enNiIjs77++/e1vx5w5c+xE\nvcyaa65Z99hjj/Tu2Wef/bNaa/4XvB4xQQcAAABAMybobNABAAAA0JANOk8SAQAAAABNmaADAAAA\noBkTdCboAAAAAKApE3QAAAAANGOCzgQdAAAAADRlgg4AAACAJkopJujCBh0AAAAADdmgc4krAAAA\nADRlgg4AAACAZkzQmaADAAAAgKZM0AEAAADQjAk6G3QAAAAANGSDziWuAAAAANCUCToAAAAAmiil\nmKALE3QAAAAA0JQJOgAAAACaMUFngw4AAACAhmzQucQVAAAAAJoyQQcAAABAMyboutygGzFiRKy1\n1lqpCzj++ONTex1f+tKX0pvz589Pb55++unpzcsvvzy9GdGbE+bP//zP05vnnHNOejMi4rDDDkvt\ndfvv+fjjj8c3vvGN1DWcddZZqb2ObbbZJr252267pTd32mmn9OYtt9yS3ox46fNvtgsvvDC92Yv/\n9xERd9xxR2rvAx/4QFfHjxkzJt72trelruEzn/lMaq/j3/7t39KbP/3pT9Ob73jHO9Kb2Z+nOzbZ\nZJP05oknnpjePPzww9ObEfnn32s5l6ZOnRrTp09PXcef/umfpvY6/vM//zO9ef7556c3N9xww/Tm\noYcemt6MiPje976X3hwzZkx6sxePayPy17pw4cKujn/LW94Sl112Weoadt9999Rex7333pvenDhx\nYnrz7rvvTm++613vSm9GRBx99NHpzZkzZ6Y33/KWt6Q3IyI+8pGPpPaWLl2a2uPNxQQdAAAAAM2Y\noPM76AAAAACgKRN0AAAAADRRSjFBFzboAAAAAGjIBp1LXAEAAACgKRN0AAAAADRjgs4EHQAAAAA0\nZYIOAAAAgGZM0NmgAwAAAKAhG3QDuMS1lHJQKWVGKWXGokWL3og1AX36n39Lly5tvRwYUvqffwsW\nLGi9HBhy+p+Dzz77bOvlwJDS//x7+umnWy8HYEhY4QZdrfXMWuu0Wuu00aNHvxFrAvr0P/9WWWWV\n1suBIaX/+bfqqqu2Xg4MOf3PwfHjx7deDgwp/c+/iRMntl4O8CZXSunJy2DjSSIAAAAAoCG/gw4A\nAACAZgbjxFs2G3QAAAAANGODziWuAAAAANCUCToAAAAAmjFBZ4IOAAAAAJoyQQcAAABAMyboTNAB\nAAAAQFMm6AAAAABoopRigi4iSq114AeX8puIeHgAh64REU+91kW9wQbLWgfLOiMGz1pbr3ODWuua\nAz24i/Mvov3fbaCsM99gWWvrdTr/Bs86IwbPWgfLOiParrWr8y/CY9DGrDNf67X26mtg679XNwbL\nWgfLOiMGz1pbr7Prr4FDweTJk+uBBx6Y3j3mmGN+Vmudlh7uka4m6Ab6gVRKmTFY/hEGy1oHyzoj\nBs9aB8s6O7p8IDUo/m7WmW+wrHWwrLPD+dfWYFnrYFlnxOBaa4THoC1ZZ77BtNYI519Lg2WdEYNn\nrYNlnQxNLnEFAAAAoBmXuHqSCAAAAABoqlcbdGf2qNsLg2Wtg2WdEYNnrYNlna/FYPm7WWe+wbLW\nwbLO12Kw/N0GyzojBs9aB8s6IwbXWrsxmP5eg2Wt1plvMK21G4Pp7zVY1jpY1hkxeNY6WNY55HSe\nKCLzZQD3uWsp5d5SyqxSyhGv8P5SSjm17/2/LKVsO9DbvqZ/g26eJAIAAAAAskyePLl++tOfTu8e\nffTRr/okEaWU4RFxX0S8LyIei4jbI2LfWuuv+h2ze0QcFhG7R8QOEXFKrXWHgdz2tXCJKwAAAABD\nyfYRMavW+mCtdVlEXBQRe7zsmD0i4rz6klsjYnwpZZ0B3rZrniQCAAAAgCYGeklqsnUj4tF+rz8W\nL03JreiTrEBTAAAfhElEQVSYdQd4267ZoAMAAADgzWaNUsqMfq+fWWv9nf09hDboAAAAAGimRxN0\nT73a76CLiNkRsV6/16f0vW0gx4wYwG271tUG3corr1xHjx79eu/zv1m6dGlqryN7nb3ywgsvpDeH\nDx+e3oyIWLZsWXpzwYIF6c1e/f3Hjh2b2lu4cGEsXbp0wJ+Fhg0bVldaKXdPfbPNNkvtddx1113p\nzS233DK9uWTJkvTmk08+md6M6M0XrF58npw0aVJ6MyLizjvvTG/WWgf8jzpq1Kg6bty41PsfMWJE\naq+X3V58rl5llVXSm8OG9eZX6y5fvjy9OWbMmPTmI488kt6MyP9/tXjx4li2bFlXn9RKKTX782D2\n19SO9ddfP725ePHi9GYvzusJEyakNyN683j5scceS2/26vuPRYsWpTe7+Ro4duzYuuaaa6bef68+\nX8+bNy+9+eKLL6Y3e/E18LnnnktvRkRsuumm6c1HH310xQd1qVdPfjlq1KjU3ty5c2PBggVv+LWc\ng0GDS1xvj4ippZSN4qXNtY9GxMdedswVEXFoKeWieOkS1nm11jmllN8M4LZd6+qRyejRo+Nd73rX\n673P/2bWrFmpvY5tttkmvdmLLyS9eHDUqwcHvfhEeuutt6Y3V1111fRmRMT73ve+1N7111/f1fEr\nrbRSrLHGGqlruPLKK1N7Hb345uSKK65Ib95zzz3pzVNOOSW9GdGbTZdtt912xQd16bDDDktvRkRk\nf2PQrXHjxsWnPvWp1GavNjPXXnvt9OZtt92W3txwww3Tm6uttlp6MyLiqaeeSm++7W1vS2/26vzb\neOONU3s/+clPur5NKSV9Q22ttdZK7XWceOKJ6c1e/ODrtfx/WJG99torvRnx0g81s33+859Pb77l\nLW9Jb0ZE/OxnP0vtdbvhtOaaa8bxxx+fuobsTY+Oa665Jr3Ziw3SjTbaKL15ww03pDcjIm6++eb0\n5mc/+9n0Zi+GSSIitt5669Tecccdl9rjtau1Li+lHBoR10bE8Ig4p9Y6s5Tymb73nxERV8VLz+A6\nKyIWRcQBv+22r3dNLnEFAAAAoJkGE3RRa70qXtqE6/+2M/r9uUbEIQO97evVm9liAAAAAGBATNAB\nAAAA0EyLCbrfNSboAAAAAKAhE3QAAAAANFFKMUEXNugAAAAAaMgGnUtcAQAAAKApE3QAAAAANGOC\nzgQdAAAAADRlgg4AAACAZkzQ2aADAAAAoCEbdC5xBQAAAICmTNABAAAA0EQpxQRdmKADAAAAgKZM\n0AEAAADQjAk6G3QAAAAANGSDziWuAAAAANCUCToAAAAAmjFB1+UG3YgRI2Ly5MmpC/ja176W2uu4\n6KKL0pvnnntuevP8889Pb+61117pzYiIddddN73593//94OiGRFxzz33pPaWLFnS1fHrr79+nHTS\nSalr2H///VN7HWeddVZ6c9myZenND37wg+nNKVOmpDcjIt761remN0855ZT05nnnnZfejIi4++67\nU3v77LNPV8c/+eST6f9e2V9PO0444YT05sMPP5zePPvss9ObRx11VHozImLixInpzY985CPpzSef\nfDK9GRFx1113pfY+8YlPdH2bddZZJz796U+nrqNXXwP33HPP9OZf/uVfpjdHjRqV3jziiCPSmxER\nDz30UHrzvvvuS28++OCD6c2IiLe//e2pvV/84hddHT9s2LD0j5e/+Zu/Se11XHzxxenNXjxe6sXX\ngKVLl6Y3IyKmTp2a3hw9enR688ADD0xvRkQ88cQTqb3ly5en9nhzMUEHAAAAQDMm6PwOOgAAAABo\nygQdAAAAAE2UUkzQhQ06AAAAABqyQecSVwAAAABoygQdAAAAAM2YoDNBBwAAAABNmaADAAAAoBkT\ndDboAAAAAGjIBp1LXAEAAACgKRN0AAAAADRRSjFBFwOYoCulHFRKmVFKmbFkyZI3Yk1An/7n33PP\nPdd6OTCk9D//aq2tlwNDTv9zcOHCha2XA0NK//Nv3rx5rZcDMCSscIOu1npmrXVarXXayJEj34g1\nAX36n39jx45tvRwYUvqff36iB2+8/ufgmDFjWi8HhpT+59+4ceNaLwcYAjpTdJkvg41LXAEAAABo\nZjBuqGXzJBEAAAAA0JAJOgAAAACaMUFngg4AAAAAmjJBBwAAAEAzJuhM0AEAAABAUyboAAAAAGii\nlGKCLmzQAQAAANCQDbouN+g22GCD+Na3vpW6gO233z6113HKKaekNw899ND05jrrrJPevO+++9Kb\nERH77LNPevOBBx5Ib77wwgvpzYiI5557LrXX7Tofeuih+MQnPpG6hs033zy11zF58uT05sEHH5ze\nHDduXHoz++OkY8KECenND33oQ+nNPfbYI70ZETFr1qzU3tKlS7s6frXVVosdd9wxdQ0/+tGPUnsd\nW265ZXpz5MiR6c3DDz88vfn888+nNyMi/uEf/iG92YsHoQsWLEhvRkSsvfbaqb0RI0Z0fZsnnngi\nTjrppNR1fPWrX03tdZx88snpzV58vOy3337pzYsvvji9GRFxyy23pDf/6q/+Kr254YYbpjcjIj7w\ngQ+k9rr9eFq+fHnMnTs3dQ0333xzaq+jF98DfvKTn0xvvpbPgyvyve99L70Z8dJjoGzPPPNMevNt\nb3tbejMiYrvttkvtXX755ak93lxM0AEAAADQjAk6TxIBAAAAAE2ZoAMAAACgGRN0NugAAAAAaMgG\nnUtcAQAAAKApE3QAAAAANFFKMUEXJugAAAAAoCkTdAAAAAA0Y4LOBh0AAAAADdmgc4krAAAAADRl\ngg4AAACAZkzQmaADAAAAgP+rlDKxlHJ9KeX+vv9OeJXjdi2l3FtKmVVKOaLf208opdxTSvllKeWf\nSinjV3SfNugAAAAAaKKU0pOX1+mIiLix1jo1Im7se/3l6x4eEadHxG4RsUVE7FtK2aLv3ddHxJa1\n1rdGxH0R8XcrukMbdAAAAADwX/aIiHP7/nxuROz5CsdsHxGzaq0P1lqXRcRFfbeLWut1tdblfcfd\nGhFTVnSHfgcdAAAAAM38Dv4OurVqrXP6/vx4RKz1CsesGxGP9nv9sYjY4RWO+7OIuHhFd2iDDgAA\nAIBmerRBt0YpZUa/18+stZ7Z7z5viIi1X+F2X+7/Sq21llLqa1lAKeXLEbE8Ii5c0bE26AAAAAB4\ns3mq1jrt1d5Za93l1d5XSnmilLJOrXVOKWWdiHjyFQ6bHRHr9Xt9St/bOo39I+J/RMR7a60r3ODz\nO+gAAAAAaOZ38EkiroiI/fr+vF9EXP4Kx9weEVNLKRuVUlaOiI/23S5KKbtGxBcj4sO11kUDuUMb\ndAAAAADwX46PiPeVUu6PiF36Xo9SyuRSylUREX1PAnFoRFwbEXdHxCW11pl9tz8tIlaLiOtLKb8o\npZyxojt0iSsAAAAAzfyuPUlErXVuRLz3Fd7+nxGxe7/Xr4qIq17huE26vc+uNuiWLFkSd999d7f3\n8Vsde+yxqb2OpUuXpjdXWWWV9Oavf/3r9OaECRPSmxERc+bMWfFBXXrxxRfTmw899FB6MyLiX//1\nX1N7n/vc57o6frPNNouLLroodQ3z589P7XU89thj6c1PfOIT6c2f/exn6c1///d/T29GRBx11FHp\nzc9//vPpze9+97vpzYj8j6m5c+d2dfzYsWPjAx/4QOoabr755tRex+23357efPzxx9Ob2Z/PIiL2\n3HPP9GZExNSpU9ObG2+8cXpz3333TW9GRNx0002pveeff77r26y11lpxyCGHpK7jtNNOS+11fOxj\nH0tvPvvss+nNbbfdNr3Zq3/Tf/iHf0hvfuUrX0lvLly4ML0ZEfHLX/4ytbd48eKujl+wYEHccsst\nqWu49tprU3sdxx9/fHpzgw02SG/24mv1k0++0q/Hev022mij9OZZZ52V3tx6663TmxERV199dWpv\n3rx5qb03i6RLUgc9l7gCAAAAQEMucQUAAACgGRN0JugAAAAAoCkTdAAAAAA0Y4LOBh0AAAAADdmg\nc4krAAAAADRlgg4AAACAZkzQmaADAAAAgKZM0AEAAADQRCnFBF2YoAMAAACAplY4QVdKOSgiDoqI\nWGeddXq+IOC/OP+gnf7n34QJExqvBoae/ufguHHjGq8Ghpb+59+qq67aeDXAUGCCbgATdLXWM2ut\n02qt0yZOnPhGrAno0//8s0EAb6z+59+YMWNaLweGHOcgtNP//Bs5cmTr5QBDQOcy18yXwcYlrgAA\nAADQkCeJAAAAAKCZwTjxls0EHQAAAAA0ZIIOAAAAgGZM0NmgAwAAAKCRwfqkDtlc4goAAAAADZmg\nAwAAAKAZE3Qm6AAAAACgqa4m6EopMXLkyNQFrL/++qm9jq222iq9OXny5PTmo48+mt4877zz0psR\nET/5yU/SmwsXLkxv3n777enNiIhddtkltTd27Niujh82bFiMGjUqdQ1f+MIXUnsdBxxwQHpzm222\nSW/uuOOO6c2DDz44vRkRcdJJJ6U3e/H333nnndObERGLFy9O7T3//PNdHT9q1Kj0ryuHH354aq9j\n7733Tm/+xV/8RXrz4YcfTm/OmDEjvRkR8eEPfzi9+R//8R/pzV6sMyLimmuuSe1Nmzat69s88cQT\nccIJJ6Su48c//nFqr2PixInpzT/5kz9Jb5544onpzXnz5qU3I3rz/cI666yT3vzQhz6U3ozo/jHj\niixatKir45977rn40Y9+lLqGv/7rv07tdey///7pze9+97vpza233jq9eeGFF6Y3IyLOPffc9GYv\nHi8+8MAD6c2IiF133TW197WvfS2192Zigs4lrgAAAAA0ZIPOJa4AAAAA0JQJOgAAAACaMUFngg4A\nAAAAmjJBBwAAAEATpRQTdGGDDgAAAICGbNC5xBUAAAAAmjJBBwAAAEAzJuhM0AEAAABAUyboAAAA\nAGjGBJ0JOgAAAABoygQdAAAAAM2YoLNBBwAAAEAjpRQbdOESVwAAAABoygQdAAAAAM2YoDNBBwAA\nAABNmaADAAAAoBkTdDboAAAAAGjIBp1LXAEAAACgKRN0AAAAADRjgs4EHQAAAAA01dUE3X333Re7\n7LJL6gJWXnnl1F7Hsccem948+uij05sXXnhhenO11VZLb0ZE7LTTTunNhx56KL35i1/8Ir0ZEXHx\nxRen9p5++umujh8+fHhMnDgxdQ0/+MEPUnsdjz32WHpz/vz56c2f/vSn6c0bbrghvRkRcdNNN6U3\njzvuuPTmPvvsk96MyP9YnTVrVlfH11pjyZIlqWt4xzvekdrrGDNmTHrzqKOOSm/24qekY8eOTW9G\n9ObftNuvAQNx1113pTcjIo488sjU3uzZs7u+ze/93u/FmWeembqOBx98MLXXMWHChPTmCSeckN7s\nxWPlnXfeOb0ZEfH1r389vbnWWmulN7O/TnTce++9qb199923q+M33XTT+OEPf5i6hmXLlqX2OjbZ\nZJP05tSpU9Oba665ZnrzD//wD9ObERHz5s1Lb15zzTXpzeyvVR3rr79+au+BBx5I7b1ZlFJM0IVL\nXAEAAABoyAadS1wBAAAAoCkTdAAAAAA0Y4LOBB0AAAAANGWCDgAAAIBmTNCZoAMAAACApkzQAQAA\nANCMCTobdAAAAAA0UkqxQRcucQUAAACA/6uUMrGUcn0p5f6+/054leN2LaXcW0qZVUo54hXe//lS\nSi2lrLGi+7RBBwAAAEAznSm6zJfX6YiIuLHWOjUibux7/eVrHh4Rp0fEbhGxRUTsW0rZot/714uI\n90fEIwO5wxVu0JVSDiqlzCilzHjxxRcH9LcAcvQ//+bOndt6OTCk9D//5s2b13o5MOQ4B6Gd/uff\n008/3Xo5AC3sERHn9v353IjY8xWO2T4iZtVaH6y1LouIi/pu13FyRHwxIupA7nCFG3S11jNrrdNq\nrdOGDTNwB2+k/uff6quv3no5MKT0P//GjRvXejkw5DgHoZ3+59/EiRNbLwcYAno0QbdG54cNfS8H\ndbGktWqtc/r+/HhErPUKx6wbEY/2e/2xvrdFKWWPiJhda71zoHfoSSIAAAAAaKZHTxLxVK112m+5\nzxsiYu1XeNeX+79Sa62llAFNwfV1R0fEl+Kly1sHzAYdAAAAAENKrXWXV3tfKeWJUso6tdY5pZR1\nIuLJVzhsdkSs1+/1KX1v+72I2Cgi7uzbeJwSET8vpWxfa3381e7TNasAAAAANPM7+CQRV0TEfn1/\n3i8iLn+FY26PiKmllI1KKStHxEcj4opa61211km11g1rrRvGS5e+bvvbNucibNABAAAAQH/HR8T7\nSin3R8Qufa9HKWVyKeWqiIha6/KIODQiro2IuyPiklrrzNd6hy5xBQAAAKCJpIm3VLXWuRHx3ld4\n+39GxO79Xr8qIq5aQWvDgdynDToAAAAAmvld26BrwSWuAAAAANCQCToAAAAAmjFB1+UG3dixY2Pn\nnXdOXcAf/MEfpPY6DjzwwPTm0Ucfnd7ce++905vf+MY30psREYceemh6c/fdd1/xQV3aZJNN0psR\nERtttFFqb86cOV0dv9JKK8XEiRNT13Drrbem9jouueSS9ObJJ5+c3tx8883Tmz/+8Y/TmxERDz30\nUHoz++MpImLu3LnpzYiIU089NbX35JOv9Czpr27MmDHx9re/PXUN06dPT+11/OQnP0lvXnPNNenN\nz33uc+nNY445Jr0ZEbHjjjumN7M/niIiPvnJT6Y3I/I/r/3gBz/o+jbLli2LRx55JHUdZ599dmqv\n44EHHkhvZj/+joh45zvfmd7cbrvt0psREd/61rfSm5dddll6821ve1t6MyL/+6XHH/+tTyL4/+jF\n+felL30ptdfx4osvpjf/7d/+Lb3Zi/NvxIgR6c2IiLvuuiu92Yuvgd/85jfTmxH5H1N33313ao83\nFxN0AAAAADRjgs7voAMAAACApkzQAQAAANCMCTobdAAAAAA0UkqxQRcucQUAAACApkzQAQAAANCM\nCToTdAAAAADQlAk6AAAAAJoxQWeDDgAAAICGbNC5xBUAAAAAmjJBBwAAAEAzJuhM0AEAAABAUybo\nAAAAAGiilGKCLmzQAQAAANCQDTqXuAIAAABAUyboAAAAAGjGBJ0JOgAAAABoygQdAAAAAM2YoDNB\nBwAAAABNmaADAAAAoBkTdF1u0C1evDjuuuuu1AV84QtfSO11HHbYYenNq6++Or158MEHpzcXL16c\n3oyI2HHHHdOb73rXu9KbG2ywQXozImL99ddP7f3mN7/p6vgnnngiTjrppNQ1vPDCC6m9jlprevPZ\nZ59Nbz744IPpzcmTJ6c3IyImTJiQ3hw+fHh6c80110xvRuR/rTj99NO7Ov7xxx+PE044IXUNvXLd\nddelN++888705jbbbJPe/PKXv5zejIg45JBD0psf+9jH0pvPPfdcejMi4rLLLkvtLVu2rOvbjB07\nNt7//venruPQQw9N7XVstdVW6c33ve996c358+enNydNmpTejIjYfvvt05vbbbddevPjH/94ejMi\nYrfddkvt/fznP+/q+Hnz5sU111yTuoalS5em9jrmzJmT3uzF9yujR49Ob44cOTK9GRGx0047pTd7\n8Xh58803T29G5D9emTt3bmrvzaKUYoMuXOIKAAAAAE25xBUAAACAZkzQmaADAAAAgKZM0AEAAADQ\njAk6G3QAAAAANGSDziWuAAAAANCUCToAAAAAmjFBZ4IOAAAAAJoyQQcAAABAE6UUE3Rhgw4AAACA\nhmzQDeAS11LKQaWUGaWUGc8///wbsSagT//zb+HCha2XA0NK//Nv8eLFrZcDQ07/c/Dpp59uvRwY\nUvqff4sWLWq9HIAhYYUbdLXWM2ut02qt00aMGPFGrAno0//8GzNmTOvlwJDS//wbNWpU6+XAkNP/\nHJw4cWLr5cCQ0v/8Gz16dOvlAENA5zLXzJfBxpNEAAAAAEBDfgcdAAAAAM0Mxom3bCboAAAAAKAh\nE3QAAAAANGOCzgYdAAAAAI0M1id1yOYSVwAAAABoyAQdAAAAAM2YoDNBBwAAAABNdTVBt+qqq8a7\n3/3u1AVceumlqb2OG2+8Mb15/vnnpzdvv/329OaYMWPSmxERH/3oR9Objz76aHrzy1/+cnozIuLU\nU09N7S1ZsqSr44cNGxajR49OXcP++++f2uuYOHFienPevHnpzb//+79Pbx588MHpzYiITTbZJL15\nxx13pDf33HPP9GZExLe//e3U3lNPPdXV8cOGDYtVVlkldQ3z589P7XX87d/+bXpz6623Tm9eccUV\n6c311lsvvRkRccYZZ6Q3p0+fnt486aST0psREbfccktqb8GCBV3f5pFHHkn//PrMM8+k9jouuOCC\n9OZXv/rV9ObMmTPTm0cffXR6MyLi93//99ObDz/8cHrzyiuvTG9GRIwfPz611+05uGTJkvjVr36V\nuoalS5em9jp68b3VZpttlt486KCD0puLFi1Kb0ZE3HbbbenN0047Lb35la98Jb0Zkf/96rJly1J7\nbyYm6FziCgAAAEBDNuhc4goAAAAATZmgAwAAAKAZE3Qm6AAAAACgKRN0AAAAADRRSjFBFyboAAAA\nAGios0mX+fI61zOxlHJ9KeX+vv9OeJXjdi2l3FtKmVVKOeJl7zuslHJPKWVmKeUbK7pPG3Tw/7d3\nP69Wp3UcwN/PlII/NophZhEOzAjTQhdO5qKFZFotLBDEJJhZjTT0BwhtBEFm0dIQZxG4i1lIpUhB\nswgEf3SXRYgRRD+mGlMX6uAYPS081gmueo88x2eeua8XXDjfc77n831/uffLvXzu5zlfAAAAgP85\nmuTdWutLSd6dbP+fUsonkvwwydeTvJLk26WUVyav7U7yzSTbaq1fSPKDpx1Qgw4AAACAbj5qE3R5\n2Fw7M3l8Jsm3Ftnni0l+X2v9Q631wyQ/nrwvSb6b5K1a6/0kqbX+42kH1KADAAAA4ONmQyllYerr\njRneu7HW+t7k8d+SbFxkn81J/jS1/efJc0nycpIvl1KulFJ+VUp59WkHdJMIAAAAALqZ000ibtRa\ndzzhmL9M8ulFXvr+9EattZZS6ozH/mSS9Um+lOTVJO+UUl6stT62jgYdAAAAAMtKrXXP414rpfy9\nlLKp1vpeKWVTksWWqP4lyeemtj87eS55OE13dtKQu1pK+XeSDUnef9wxLXEFAAAAoJuP4GfQ/SzJ\na5PHryX56SL7/DrJS6WULaWUlUkOTd6XJD9Jsntybi8nWZnkxpMOqEEHAAAAQBfzaM41aNC9leSr\npZTrSfZMtlNK+Uwp5UKS1Fr/leR7SX6R5HdJ3qm1/nby/h8lebGU8ps8vHnEa09a3ppY4goAAAAA\n/1Vr/WeSryzy/F+TfGNq+0KSC4vs92GS78xyTA06AAAAALqZ000ihmKJKwAAAAB0ZIIOAAAAgG5M\n0GnQAQAAANCRBp0lrgAAAADQlQk6AAAAALoopZigiwk6AAAAAOhqpgm6DRs25PXXX28a4MiRI03r\nPTKP7uvevXub11xYWGhe8+DBg81rJsmDBw+a1zxz5kzzmufPn29eM2mf9ejRozPtf//+/Vy/fr1p\nhlu3bjWt98imTZua17x8+XLzmrXW5jVPnjzZvGaSbNmypXnNixcvNq956tSp5jWTZNWqVU3rvfDC\nbP+fWrlyZfPvwbx+Vnbu3Nm85qVLl5rXnEfON998s3nNJDlw4EDzmmfPnm1e89ixY81rJsnatWub\n1vvggw9mfs/mzZtz4sSJpjn27dvXtN4jV65caV5zxYoVzWvu3r27ec39+/c3r5kkx48fb15z48aN\nzWseOnSoec0kOXz4cNN6p0+fnmn/1atXZ/v27U0zzONvkCS5evVq85rbtm1rXvPcuXPNa96+fbt5\nzXnZunVr85q7du1qXjNJ9uzZ07TetWvXmtb7ODFBZ4krAAAAAB1p0FniCgAAAABdmaADAAAAoBsT\ndCboAAAAAKArE3QAAAAAdGOCzgQdAAAAAHRlgg4AAACALkopJuiiQQcAAABARxp0lrgCAAAAQFcm\n6AAAAADoxgTdEiboSilvlFIWSikLN2/efB6ZgInp6+/evXu948CyMn393blzp3ccWHamr8Fbt271\njgPLyvT1d/fu3d5xAJaFpzboaq1v11p31Fp3rF+//nlkAiamr7/Vq1f3jgPLyvT1t3bt2t5xYNmZ\nvgbXrVvXOw4sK9PX35o1a3rHAZaBRzeKaPk1GktcAQAAAOhmxIZaa24SAQAAAAAdmaADAAAAoItR\nl6S2ZoIOAAAAADoyQQcAAABANyboNOgAAAAA6EiDzhJXAAAAAOjKBB0AAAAA3ZigS0qtdek7l/J+\nkj8uYdcNSW48a6jnbJSso+RMxsnaO+fna62fWurOM1x/Sf9zWyo52xsla++crr9xcibjZB0lZ9I3\n60zXX+Jv0M7kbK931nn9Dux9XrMYJesoOZNxsvbOOfPvwOWglPLzPPzetHaj1vq1OdSdi5kadEsu\nWspCrXVH88JzMErWUXIm42QdJeezGOXc5GxvlKyj5HwWo5zbKDmTcbKOkjMZK+ssRjqvUbLK2d5I\nWWcx0nmNknWUnMk4WUfJyfLkM+gAAAAAoCMNOgAAAADoaF4NurfnVHceRsk6Ss5knKyj5HwWo5yb\nnO2NknWUnM9ilHMbJWcyTtZRciZjZZ3FSOc1SlY52xsp6yxGOq9Rso6SMxkn6yg5WYbm8hl0AAAA\nAMDSWOIKAAAAAB1p0AEAAABARxp0AAAAANCRBh0AAAAAdKRBBwAAAAAd/QdCOLGXGii+rQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "W2 shape : (10, 10, 20)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\matplotlib\\colors.py:861: RuntimeWarning: overflow encountered in true_divide\n", + " resdat /= (vmax - vmin)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAKaCAYAAAB1MteQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu41nPax/3PKZNdUdppO0VFCY2SzSCbdjJzRzO2txFl\nQnZjm12bmUy33djdqAmhMhi6R6EpKTF4RJEIkaQiSVNUKNX3+aNr5llHzy+tPte1Vqtr3q/jWIfW\nWtfb+ZNaq1/nd10rUkoCAAAAAGBj223tCwAAAAAAVEzcMAIAAAAAMnHDCAAAAADIxA0jAAAAACAT\nN4wAAAAAgEzcMAIAAAAAMnHDCAAAAADIxA0jAAAAACATN4wAAAAAgEzbl+ewGjVqpIYNG1ptRFjd\nP//5T6uTpNWrV9ttjRo1rG79+vX2zCVLltjtDz/8YLdVqlSxui+//NKeecABB9jt7Nmzre7bb7+1\nZzZo0MBuv/7663Jvd9ttN3tmvXr17HbVqlVW9/3339szq1atarfVqlWzugULFtgz8/lv3X333e32\nq6++srq1a9faMxs1amS3n3/+udWtWbPGntmiRQu7dX+vup9rJGnRokV2m8/nqpSS1eXzMTif3+fV\nq1e3unw+r1aqVMlu8/l/4/4c165d2575xRdf2K37Z7x8/nxXv359u3U/x1WuXNmemc+fIfL5fOP+\nOWKnnXayZy5atOirlFItSYoI7wNN+ZmQUuqytS+itMr1hrFhw4Z67rnnrHaHHXawuscff9zqJGnO\nnDl2e+aZZ1rdd999Z8+899577Xbx4sV2e/jhh1vdXXfdZc+cNm2a3R555JFW9+abb9ozr7nmGrt9\n9tln7faZZ56xuvbt29sz+/XrZ7fu/9f33nvPnnnUUUfZbffu3a3u4osvtmd+9NFHdnvaaafZ7X33\n3Wd1y5Yts2fefffddvv73//e6ubOnWvPnDRpkt26v1d79Ohhz7zhhhvsNp+bN/cP6zNmzLBnHnvs\nsXbr/j7/7LPP7Jn5/OXOihUr7HbmzJlWd+GFF9ozb7nlFrsdOXKk1X3yySf2zMsvv9xup06danWN\nGze2Z/7973+3W/cv2CX/c2urVq3smTfccMOndlz+am7tC9gSHEkFAAAAAGQq1w0jAAAAAJQ198vZ\nyoN7NH9rYcMIAAAAAMjEhhEAAABAUWHDWDhsGAEAAAAAmbhhBAAAAABk4kgqAAAAgKJSkY+kbmvY\nMAIAAAAAMrFhBAAAAFBU2DAWDhtGAAAAAEAmbhgBAAAAAJk4kgoAAACgaEQER1ILKMrzG0fuueee\nafDgwVb7+uuvW91BBx1kdZL09ttv263rvvvus9sePXrY7fPPP2+3TZs2tbojjjjCnnnppZfabfPm\nza2uc+fO9sxatWrZbbNmzey2YcOGVrfbbrvZM/MxZcoUq5s2bZo987HHHrPb1atXW12fPn3smevX\nr7fbV199tdzb/fbbz555zz332G379u2trnXr1vbMt956y25btmxpdfPnz7dn5vMx+JBDDrHbSy65\nxOp+/etf2zPff/99u3322Wetrk2bNvbM0047zW4HDhxotwcffLDVuR8LJWnevHl2++6771rd8uXL\n7ZlHH3203T7++ONWN3nyZHvm2LFj7XbixIl2O2bMGKubPn26PfP111+fnlJqK0nbbbdd2n77irsX\n++GHH/59rduCivszCQAAAAAGNoyFw9cwAgAAAAAyccMIAAAAAMjEkVQAAAAARYUjqYXDhhEAAAAA\nkIkNIwAAAICiwoaxcNgwAgAAAAAysWEEAAAAUFTYMBYOG0YAAAAAQCZuGAEAAAAAmTiSCgAAAKBo\nRARHUguIDSMAAAAAIBMbRgAAAABFhQ1j4ZTrDeNOO+2kfffd12rnzZtndSeddJLVSdLpp59ut02a\nNLG62rVr2zNvvvlmu3WvV5Lq1atndUuWLLFn5qNatWpW16dPH3vmqlWr7Pbbb7+12/vvv9/qmjZt\nas/M57/1+OOPt7rDDz/cnvnSSy/Zrevkk0+2206dOtnt+PHj7fYPf/iD1T399NP2zDZt2tjtk08+\naXXuxwdJGj16tN3ecccdduvK52NaPh+/O3ToUK6dJL388st2e8stt1jd0qVL7ZmXX3653Q4ePNhu\nR44cabeuyy67zG733ntvq2vRooU9s3PnznZ74IEHWl27du3smfl8HM3n49Kjjz5qdfn8GvzlL39p\nt/hxHEkFAAAAAGTihhEAAABAUfnXE99UxJdSXn+XiJgdEXMi4uqM90dE3JV7/8yIOHCj91eKiLci\n4pl8fy65YQQAAACACiIiKkm6R9JxklpKOi0iWm70sOMkNcu99JY0ZKP3XyLp/UJcDzeMAAAAAIrK\n1t4i5rlhbCdpTkppbkppjaTHJHXb6DHdJI1IG7wmqVpE1M39tzeQdLwk78ksNlLqG8aN15oRsXtE\nTIyIj3L/rF6ICwIAAACAIlYzIqaVeOm90fvrS1pQ4vWFubeV9jF3SLpK0vpCXOyWbBg3XmteLWlS\nSqmZpEm51wEAAAAAm/ZVSqltiZdhhfoXR8QvJH2ZUppeqH9nqW4YN7HW7Cbp4dyPH5Z0QqEuCgAA\nAABcW/vYaZ5HUj+T1LDE6w1ybyvNY34u6b8iYp42HGU9JiJGuT+PUuk3jFlrzToppUW5H38hqU4+\nFwIAAAAA0BuSmkVEk4ioLOlUSWM3esxYSWfmni31EElfp5QWpZSuSSk1SCk1znWTU0pn5HMx22/u\nASXXmhFxVNZjUkopItIm+t7a8Mw9qlu3bh6XCgAAAAA/bku+fUVFlFJaGxEXSpogqZKk4SmlWRFx\nXu79QyWNk9RV0hxJ30o6u6yuZ7M3jPr/1ppdJe0oadfcWnNxRNRNKS3KPSPPl1lx7kzuMEnad999\nM28qAQAAAAAbpJTGacNNYcm3DS3x4yTpgs38O6ZImpLvtWz2SOqPrDXHSuqRe1gPSWPyvRgAAAAA\nQMVRmg3jptwo6a8R0UvSp5JOLswlAQAAAIBvWz6SWtFs0Q1jybVmSmmppGMLf0kAAAAAgIognw0j\nAAAAAFQ4bBgLp1xvGOfPn6+LLrrIatevX7/5B2V49tlnrU6SbrzxRrvde++9rW7gwIH2zCVLltht\nt27d7Hb33Xe3uiZNmtgz8/HAAw9YXfPmze2ZDz/88OYftAkvvPCC3S5btszqqlSpYs/cdddd7fb6\n66+3uiOPPNKeOXbsxs9SXfbc/05Jql+/vt2uXr3abq+44gqry+djyzPPPGO3J5/sfZXE0Ucfbc9c\nu3at3b799ttW1717d3tmPs9c/sUXX9ht48aNre6///u/7Zk9e/a02yeeeMLqDjjgAHvm4MGD7Xbx\n4sV2u3DhQrt13XTTTXa7cuVKq8vnc4b7e1WSnn76aatz/+wsSaeccordnnrqqXb7hz/8werWrVtn\nz0TZKe33YQQAAAAA/IfhSCoAAACAosKR1MJhwwgAAAAAyMSGEQAAAEBRYcNYOGwYAQAAAACZuGEE\nAAAAAGTiSCoAAACAohERHEktIDaMAAAAAIBMbBgBAAAAFBU2jIXDhhEAAAAAkIkbRgAAAABAJo6k\nAgAAACgqHEktHDaMAAAAAIBMbBgBAAAAFBU2jIVTrjeMzZo10zPPPGO1U6ZMsboWLVpYnSTdeOON\ndjtw4ECru+aaa+yZ3bp1s9vJkyfb7YEHHmh17du3t2eeffbZdjtixAirmzhxoj1zwYIFdnvooYfa\nbf/+/a1u7dq19sxFixbZbbt27azurbfesmc+8MADdnvHHXdY3ccff2zP/OCDD+z2jTfesNsVK1ZY\nnfuxW5JOP/10u126dKnVXXzxxfbMUaNG2W3jxo3t1nXttdfa7R577GG3N9xwg9Xl8/nxoIMOslt3\nbp06deyZq1atstsPP/zQblNKdusaOnSo3V511VVWd9ddd9kzf//739tt/fr1rW7u3Ln2zEaNGtlt\nPp9v+vbta3XDhg2zZ6LscCQVAAAAAJCJI6kAAAAAigpHUguHDSMAAAAAIBMbRgAAAABFIyLYMBYQ\nG0YAAAAAQCY2jAAAAACKChvGwmHDCAAAAADIxA0jAAAAACATR1IBAAAAFBWOpBYOG0YAAAAAQCY2\njAAAAACKChvGwmHDCAAAAADIxA0jAAAAACATR1IBAAAAFBWOpBZOud4wLlmyRMOGDbPa3/72t1Y3\nY8YMq5Okd999126bNGlidTvttJM9c/jw4XbboUMHu23Tpo3VHXzwwfbMfDzzzDNWd8cdd9gzGzdu\nbLdnnHGG3e63335Wd+2119ozhwwZYre9e/e2utdee82e+fnnn9ut+2uievXq9swqVarY7axZs+z2\n8ssvt7rvv//enrlmzRq7dT+mffXVV/bMH374wW5r1aplt64VK1bYbT6/50aMGGF1e+21lz1z8eLF\ndjt69Giry+dzxu23326377zzjt2uWrXKbl1/+ctf7PbQQw+1urPOOsuemc/nuMsuu8zqmjVrZs8c\nMGCA3bZq1cpuDzroIKu78cYb7ZkoO2wYAQAAABSNiGDDWEB8DSMAAAAAIBM3jAAAAACATBxJBQAA\nAFBUOJJaOGwYAQAAAACZ2DACAAAAKCpsGAuHDSMAAAAAIBM3jAAAAACATBxJBQAAAFBUOJJaOGwY\nAQAAAACZ2DACAAAAKCpsGAuHDSMAAAAAIBM3jAAAAACATJFSKrdhNWvWTN26dbPatWvXWl2fPn2s\nTpLOP/98u73kkkusbq+99rJnvvTSS3Z78MEH222HDh2srmbNmvbMJUuW2O3LL79sdYcccki5z5Sk\nhQsX2m3Hjh2tbtKkSfbMvn372u1FF11kdZ07d7ZnPv3003Z7/fXXW12VKlXsme3atbPbOnXq2G2/\nfv2szv05kqQFCxbY7U033WR1a9assWf+8Y9/tNuRI0daXePGje2ZS5cutdtjjjnGbj/99FOrmzp1\nqj1z1KhRdvv9999bXT6/36pWrWq369ats9snn3zS6iZPnmzPPPLII+3W/XPPE088Yc9888037bZT\np05W99RTT9kzt9/e/+oz93ol/9fh4Ycfbs/cbbfdpqeU2krSjjvumBo0aGD/u8raxx9//O9r3Raw\nYQQAAAAAZOJJbwAAAAAUFZ70pnDYMAIAAAAAMnHDCAAAAADIxJFUAAAAAEWFI6mFw4YRAAAAAJCJ\nDSMAAACAosKGsXDYMAIAAAAAMnHDCAAAAADIxJFUAAAAAEWFI6mFw4YRAAAAAJCJDSMAAACAohER\nbBgLiA0jAAAAAFQgEdElImZHxJyIuDrj/RERd+XePzMiDsy9fceIeD0i3o6IWRHx+3yvhQ0jAAAA\ngKKyLW8YI6KSpHskdZS0UNIbETE2pfReiYcdJ6lZ7uVgSUNy/1wt6ZiU0sqI+ImklyPi7yml19zr\nKdcbxuXLl2v06NFWe9hhh9kzXQsXLrTbUaNGWd0555xjz8yn/a//+i+7PfDAA63u1ltvtWfm4/vv\nv7e6yZMn2zPffvttu3V/fiXpueeeszr395skLVu2zG6nTp1qdSNHjrRnvvjii3br2m+//ey2a9eu\ndvvwww/bbffu3a3u6aeftmeecsopdnv99ddb3SeffGLPbNq0qd127tzZ6mbPnm3PbNKkid2ecMIJ\ndnvfffdZXYsWLeyZ/fr1s9snnnjC6iZOnGjPHDRokN3m8+vwyy+/tFtXx44d7faAAw6wunx+7Q8e\nPNhujzrqKKtbsWKFPTOfP39Ur17dbitXrmx106dPt2cWmXaS5qSU5kpSRDwmqZukkjeM3SSNSCkl\nSa9FRLWIqJtSWiRpZe4xP8m9pHwuhiOpAAAAAFB+akbEtBIvvTd6f31JC0q8vjD3tlI9JiIqRcQM\nSV9KmphS8v5GPocjqQAAAACKSgU/kvpVSqltWf3LU0rrJLWOiGqS/hYRrVJK77r/PjaMAAAAAFBx\nfCapYYnXG+TetkWPSSktl/SCpC75XAw3jAAAAACKyr++tUZFfCmFNyQ1i4gmEVFZ0qmSxm70mLGS\nzsw9W+ohkr5OKS2KiFq5zaIiYidteOKcD/L5udzskdSI2FHSS5J2yD3+yZTSgIgYKOm3kpbkHnpt\nSmlcPhcDAAAAAP/JUkprI+JCSRMkVZI0PKU0KyLOy71/qKRxkrpKmiPpW0ln5/K6kh7OPdPqdpL+\nmlJ6Jp/rKc3XMGY+NWvufbenlLbOU10CAAAAQBHKLeLGbfS2oSV+nCRdkNHNlPSzQl7LZm8YcxdT\n0KdmBQAAAICyUsGf9GabUqqvYfyRp2a9KCJmRsTwiMj8Zi0R0ftfTxm7fv36Al02AAAAAKCsleqG\nMaW0LqXUWhuefaddRLSSNETSnpJaS1ok6U+baIellNqmlNputx3PsQMAAACg7GztJ7UpwJPeVChb\ndAdX8qlZU0qLczeS6yXdJ6ldWVwgAAAAAGDr2OwN46aemjUi6pZ42ImS7G8GCQAAAACoeErzLKmZ\nT80aESMjorU2PAHOPEnnlt1lAgAAAEDpbItHPyuq0jxLauZTs6aUflMmVwQAAAAAqBBKs2EEAAAA\ngG0GG8bCKdcbxlatWun555+32unTp1vdhRdeaHWS9MQTT9htlSpVrG7GjBn2zAMPPNBuX375Zbt9\n913vy1fr1atnz8zHLrvsYnVXXXWVPbNnz552m8+viVq1alld06ZN7Zl9+/a1248++sjq3P+nknT2\n2Wfb7ZgxY6xu5cqVm3/QJowbN27zD9qEAQMG2O11111ndRMmTLBn5vNrf+HChVa3atUqe+bPf/5z\nu3399dft1nXttdfa7aeffmq3vXr1srqjjz7anjlkyBC7Pf74461u5513tme6f1aSpEMPPdRuf/Wr\nX9mtq3r1zO/KViqjRo2yuhEjRtgzZ86cabf/+7//a3Xz58+3Z/7xj3+02/PPP99uW7ZsaXXNmjWz\nZ6Ls8H0uAAAAAACZOJIKAAAAoKhwJLVw2DACAAAAADKxYQQAAABQVNgwFg4bRgAAAABAJm4YAQAA\nAACZOJIKAAAAoGhEBEdSC4gNIwAAAAAgExtGAAAAAEWFDWPhsGEEAAAAAGTihhEAAAAAkIkjqQAA\nAACKCkdSC4cNIwAAAAAgExtGAAAAAEWFDWPhlOsN47fffqvp06db7U9+8hOre+edd6xOkmbPnm23\nf/7zn63uzTfftGc2b97cbufNm2e3VatWtbrly5fbM/PRp08fq5s6dao989lnn7XbTp062e2YMWOs\nrkWLFvbMffbZp9zbzp072zPHjx9vt65XX33VbqdNm2a3TZs2tdu9997b6q699lp75hlnnGG3ffv2\ntbr+/fvbMy+77DK7nTlzptU1btzYnjlr1iy7ve++++x2woQJVrds2TJ75urVq+32pptusrpBgwbZ\nM2vXrm23RxxxhN3efPPNduu6++677Xa//fazuh49etgzn3vuuXJv3377bXvm+eefb7dHH3203a5f\nv97q7r33Xnsmyg5HUgEAAAAAmTiSCgAAAKCocCS1cNgwAgAAAAAysWEEAAAAUDQigg1jAbFhBAAA\nAABk4oYRAAAAAJCJI6kAAAAAigpHUguHDSMAAAAAIBMbRgAAAABFhQ1j4bBhBAAAAABkYsMIAAAA\noKiwYSwcNowAAAAAgEzcMAIAAAAAMkVKqdyGtW3bNk2bNq3c5gEAAAAofhExPaXUVpKqVKmSWrdu\nvbUvaZNeeeWVf1/rtoANIwAAAAAgE096AwAAAKBoRARPelNAbBgBAAAAAJm4YQQAAAAAZOJIKgAA\nAICiwpHUwmHDCAAAAADIxIYRAAAAQFFhw1g4bBgBAAAAAJm4YQQAAAAAZOJIKgAAAICiwpHUwmHD\nCAAAAADIxIYRAAAAQFFhw1g4bBgBAAAAAJm4YQQAAAAAZCrXI6nffPONxo8fb7V9+/a1uv3339/q\nJGnatGl226VLF6t7/vnn7ZkXXHCB3fbs2dNuL7/8cqs75phj7Jknnnii3d5xxx1W16JFC3vmww8/\nbLeHHXaY3T7++ONW99hjj9kzR40aZbcXXXSR1c2aNcueucMOO9it+/Eln2MyTz/9tN3+6le/stt+\n/fpZ3fXXX2/PbN26td3OmTPH6nbddVd75vHHH2+37du3t7ozzjjDnjls2DC7/elPf2q3M2bMsLrl\ny5fbM7ff3v/jjvvx+w9/+IM9s0+fPnbbpk0bu3U/vlSrVs2eefXVV9ut+7H/2GOPtWdeeOGFdvv1\n119b3eeff27PHDJkiN3Onz/fbm+99Vare/LJJ+2ZJUUER1ILiA0jAAAAACATT3oDAAAAoKiwYSwc\nNowAAAAAgEzcMAIAAAAAMnEkFQAAAEBR4Uhq4bBhBAAAAABkYsMIAAAAoKiwYSwcNowAAAAAgEzc\nMAIAAAAAMnHDCAAAAKCoRESFfSnl9XeJiNkRMScirs54f0TEXbn3z4yIA3NvbxgRL0TEexExKyIu\nyffnkhtGAAAAAKggIqKSpHskHSeppaTTIqLlRg87TlKz3EtvSUNyb18r6fKUUktJh0i6IKPdIjzp\nDQAAAICisSWbvAqqnaQ5KaW5khQRj0nqJum9Eo/pJmlESilJei0iqkVE3ZTSIkmLJCmltCIi3pdU\nf6N2i7BhBAAAAIDyUzMippV46b3R++tLWlDi9YW5t23RYyKisaSfSZqaz8WyYQQAAACA8vNVSqlt\nWQ6IiCqSRkv6XUrpm3z+XeV6w/jNN99o8uTJVjto0CCre/HFF60u33bKlClWV6NGDXtmPtd7wQUX\n2O2DDz5odbVq1bJn5mPt2rVWt3jxYnvmW2+9ZbeVK1e229dff93q2rb1P4a1bt3abufOnVvuM484\n4gi7dW2/vf+h1/31K0mXXnqp3bq/Dm+77TZ75jff+J/fatasaXX333+/PfPOO++021mzZtmty/08\nJUmHHXaY3e6yyy5W17NnT3vmkCFDNv+gTejfv7/VTZ8+3Z7ZsWNHu12wYMHmH7QJ5513ntU99thj\n9syxY8fa7YaTeFtu2LBh9sxrrrnGbt0/49WtW9ee6X5elaQrrrjCbps1a2Z17v/TLNv4kdTPJDUs\n8XqD3NtK9ZiI+Ik23Cw+klL6v3wvhiOpAAAAAFBxvCGpWUQ0iYjKkk6VtPHfroyVdGbu2VIPkfR1\nSmlRbLhTfkDS+ykl/29tS+BIKgAAAICisi1vGFNKayPiQkkTJFWSNDylNCsizsu9f6ikcZK6Spoj\n6VtJZ+fyn0v6jaR3ImJG7m3XppTGudfDDSMAAAAAVCC5G7xxG71taIkfJ0n/v68pSym9LKmgd8ub\nvWGMiB0lvSRph9zjn0wpDYiI3SU9LqmxpHmSTk4pLSvkxQEAAADAltqWN4wVTWm+hnG1pGNSSgdI\nai2pS+6c7NWSJqWUmkmalHsdAAAAAFAkNnvDmDZYmXv1J7mXpA3fLPLh3NsflnRCmVwhAAAAAGCr\nKNXXMEZEJUnTJTWVdE9KaWpE1EkpLco95AtJdTbR9pbUW5J23XXX/K8YAAAAAH4ER1ILp1TfViOl\ntC6l1Fobvr9Hu4hotdH7kzZsHbPaYSmltimltjvttFPeFwwAAAAAKB9b9CypKaXlEfGCpC6SFkdE\n3dz3+6gr6csyuUIAAAAAKKWIYMNYQJvdMEZErYiolvvxTpI6SvpAG75ZZI/cw3pIGlNWFwkAAAAA\nKH+l2TDWlfRw7usYt5P015TSMxHx/0j6a0T0kvSppJPL8DoBAAAAAOVsszeMKaWZkn6W8falko4t\ni4sCAAAAABdHUgunVE96AwAAAAD4z7NFT3qTr1WrVmnq1KlWe/7551vdb3/7W6uTpDPOOMNuBw8e\nbHVPPfWUPXP16tV226lTJ7vde++9re6LL76wZ+ZjypQpVletWjV7Zt26de32xRdftNudd97Z6kaP\nHm3PHDVqlN1WqVLF6vr372/PnDFjht26Jk+ebLf333+/3f7qV7+y2zVr1lhdv3797Jn77LOP3V55\n5ZVWd/LJ/ldXbL+9/yn13nvvtVtXz5497db9+ZWkPn36WF2XLl3smR999JHdnnCC922mv//+e3tm\n37597fbDDz+02+OOO85uXcOHD7fbN954w+patWq1+Qdtwr777mu35513ntWddNJJ9sxddtnFbjt2\n7Gi37p/33T+jZWHDWDhsGAEAAAAAmbhhBAAAAABkKtcjqQAAAABQ1jiSWjhsGAEAAAAAmdgwAgAA\nACgqbBgLhw0jAAAAACATN4wAAAAAgEwcSQUAAABQNCKCI6kFxIYRAAAAAJCJDSMAAACAosKGsXDY\nMAIAAAAAMnHDCAAAAADIxJFUAAAAAEWFI6mFw4YRAAAAAJCpXDeMEaFKlSpZ7ZQpU6zutddeszpJ\natSokd127drV6gYOHGjPvPHGG+32sMMOs9u+ffta3V133WXPzMenn35qdV9//bU9c8mSJXY7bdo0\nu23ZsqXVHXLIIfbMHXfc0W579epldXfeeac9c2u46qqr7Pbcc8+127lz59rtkCFDrO7SSy+1Z/7p\nT3+y2wULFljdiBEj7Jlr1qyx2ypVqtitq02bNna7//772+2yZcusrmnTpvbMcePG2a37a3j33Xe3\nZ3bu3Nluq1evbrdnnnmm3bquu+46u+3YsaPV5fP77eGHH7bb5s2bW90111xjz6xTp47dvvrqq3a7\nzz77WF0+n6c2xoaxcNgwAgAAAAAyccMIAAAAAMjEk94AAAAAKBoRwZHUAmLDCAAAAADIxIYRAAAA\nQFFhw1g4bBgBAAAAAJm4YQQAAAAAZOJIKgAAAICiwpHUwmHDCAAAAADIxIYRAAAAQFFhw1g4bBgB\nAAAAAJm4YQQAAAAAZOJIKgAAAICiwpHUwmHDCAAAAADIVK4bxmrVqql79+5W+95771ldt27drE6S\nWrZsabcPPfSQ1V1yySX2zBEjRtjthRdeaLcTJkywuo4dO9ozZ8+ebbcrV660uu228/9+pXbt2nbb\noEEDu3V/36xevdqe+eSTT9rtb37zG6urX7++PXPq1Kl26348q1Onjj2zSpUqdpvP3CuvvNLq7rrr\nLntm7945nX/vAAAgAElEQVS97faRRx6xuqFDh9oze/XqZbd77LGH1R188MH2zKuuuspue/bsabdj\nx461ukMOOcSe+cc//tFujzzySKtbs2aNPbNr1652+8EHH9it++u/T58+9sx8PgbPnz/f6o4//nh7\n5qxZs+y2UaNGVvfSSy/ZM2vVqmW3CxcutNtq1apZ3TfffGPPrFq16r9/HBFsGAuIDSMAAAAAIBNf\nwwgAAACgqLBhLBw2jAAAAACATNwwAgAAAAAycSQVAAAAQFHhSGrhsGEEAAAAAGRiwwgAAACgqLBh\nLBw2jAAAAACATNwwAgAAAAAycSQVAAAAQFHhSGrhsGEEAAAAAGRiwwgAAACgaEQEG8YCYsMIAAAA\nAMjEDSMAAAAAIFO5Hkn97rvv9Pbbb1vtyJEjrW7AgAFWJ0lr1qyx21atWlndoEGD7JmTJk2y2/PP\nP99uX3jhBatr3ry5PTMf8+bNs7oGDRrYM7t27Wq3vXr1stubb77Z6vr06WPPvO222+z20EMPtbor\nr7zSntmoUSO77d69u9W988479sznn3/ebsePH2+3I0aMsLrddtvNnvn555/b7UsvvWR1p5xyij3z\n0ksvtVv39+ro0aPtmZ9++qnd7rrrrna7bNkyq8vn8+NZZ51lt2+99ZbVLV682J6Zz8fRcePG2e2Z\nZ55pt65169bZ7WuvvWZ1/fr1s2ceccQRdvvJJ59Y3ZgxY+yZS5cutdt8/lx57rnnWl0hj5FyJLVw\n2DACAAAAADLxpDcAAAAAigobxsJhwwgAAAAAyMQNIwAAAAAgE0dSAQAAABQVjqQWDhtGAAAAAEAm\nbhgBAAAAFJWIqLAvpbz+LhExOyLmRMTVGe+PiLgr9/6ZEXFgifcNj4gvI+LdQvxccsMIAAAAABVE\nRFSSdI+k4yS1lHRaRLTc6GHHSWqWe+ktaUiJ9z0kqUuhrocbRgAAAACoONpJmpNSmptSWiPpMUnd\nNnpMN0kj0gavSaoWEXUlKaX0kqR/FupieNIbAAAAAEVjS45+biU1I2JaideHpZSGlXi9vqQFJV5f\nKOngjf4dWY+pL2lRIS9U4oYRAAAAAMrTVymltlv7IkqLG0YAAAAARaWCbxg35zNJDUu83iD3ti19\nTEHwNYwAAAAAUHG8IalZRDSJiMqSTpU0dqPHjJV0Zu7ZUg+R9HVKqeDHUaVy3jA2atRI99xzj9Ue\neeSRVvfcc89ZnSQ9/vjjdtut28Zfl1o6EyZMsGe+8cYbdnvMMcfY7Yknnmh1559/vj2zf//+dnv/\n/fdb3YUXXmjPvPPOO+22VatWdnvxxRdb3ZdffmnP/O677+z2lFNOsbqWLTd+4rDS22233ezWlc/H\npTPOOMNu8/mYNn36dKv78MMP7Znff/+93X72mfeXrA8++KA9c9iwYZt/0CZcfvnlduuaOHGi3Y4b\nN66AV1I6lSpVstt8/r/+/e9/t7rOnTvbM2+44Qa7zUe/fv2s7vbbb7dn1qhRw26bNGlideedd549\nM5+t1eDBg63uuOOOs2f27t3bbufPn2+3BxxwgNUtWLBg8w/6D5BSWhsRF0qaIKmSpOEppVkRcV7u\n/UMljZPUVdIcSd9KOvtffUQ8KukobfhayYWSBqSUHnCvhyOpAAAAAIrKNn4kVSmlcdpwU1jybUNL\n/DhJumAT7WmFvBaOpAIAAAAAMrFhBAAAAFBUtvUNY0XChhEAAAAAkGmzN4wR0TAiXoiI9yJiVkRc\nknv7wIj4LCJm5F66lv3lAgAAAADKS2mOpK6VdHlK6c2IqCppekT866nVbk8p3Vp2lwcAAAAAW4Yj\nqYWz2RvG3PfzWJT78YqIeF9S/bK+MAAAAADA1rVFX8MYEY0l/UzS1NybLoqImRExPCKqb6LpHRHT\nImLaV199ldfFAgAAAMCPiYgK/bKtKfUNY0RUkTRa0u9SSt9IGiJpT0mttWED+aesLqU0LKXUNqXU\ntmbNmgW4ZAAAAABAeSjVt9WIiJ9ow83iIyml/5OklNLiEu+/T9IzZXKFAAAAALAFtsVNXkVVmmdJ\nDUkPSHo/pXRbibfXLfGwEyW9W/jLAwAAAABsLaXZMP5c0m8kvRMRM3Jvu1bSaRHRWlKSNE/SuWVy\nhQAAAACAraI0z5L6sqSsne64wl8OAAAAAOSHI6mFs0XPkgoAAAAA+M9Rqie9KZS1a9dq6dKlVrvv\nvvta3bHHHmt1kjRunL9E3Xvvva1u9uzZ9szp06fb7bJly+z2uuuus7qmTZvaM/PxyiuvWN3BBx9s\nz1y8ePHmH7QJI0aMsNsGDRpY3ZNPPmnPrFevnt26v5bWrFljz+zVq5fduh555BG7zef3zZ///Ge7\n/eKLL6zupJNOsmf+7ne/s1v343f79u3tmddff73dVqtWzW5dq1atsttBgwaV+9wPP/zQntmiRQu7\n/e6776xuxYoV9swhQ4bY7aRJk7ZK68rn883y5cut7m9/+5s9s2HDhnbrfnxp1KiRPfOggw6y29at\nW5f73IkTJ9ozN8aGsXDYMAIAAAAAMnHDCAAAAADIVK5HUgEAAACgrHEktXDYMAIAAAAAMrFhBAAA\nAFA0IoINYwGxYQQAAAAAZOKGEQAAAACQiSOpAAAAAIoKR1ILhw0jAAAAACATG0YAAAAARYUNY+Gw\nYQQAAAAAZOKGEQAAAACQiSOpAAAAAIoKR1ILhw0jAAAAACBTuW4YZ86cqXr16lnt1KlTrW7+/PlW\nl68XX3zR6o455hh75tixY+22c+fOdjto0CCra9++vT2zS5cudrvrrrtaXYcOHeyZbdq0sdsmTZrY\n7VFHHWV1TZs2tWc+8cQTdjt48GCr6969uz3z9ttvt9tf/vKXVnfKKafYM4cPH263V111ld3eeuut\nVvfUU0/ZM9euXWu3v/3tb61uzZo19sxnnnnGbvv37291kydPtmfuueeednvxxRfb7Q8//GB1Z5xx\nhj1z2LBhdjtz5kyr69q1qz1zhx12sNtmzZrZ7cKFC+3W9eGHH9rtfvvtZ3VDhw61Z7of9yWpZs2a\nVtezZ097Zj5/vqtfv77d3nHHHVbXvHlze+bG2DAWDhtGAAAAAEAmbhgBAAAAAJl40hsAAAAARSMi\nOJJaQGwYAQAAAACZ2DACAAAAKCpsGAuHDSMAAAAAIBM3jAAAAACATBxJBQAAAFBUOJJaOGwYAQAA\nAACZ2DACAAAAKCpsGAuHDSMAAAAAIBM3jAAAAACATBxJBQAAAFBUOJJaOOV6w1ipUiVVrVrVaqtX\nr251ffv2tTpJ2mmnnez2xhtvtLpzzjnHntmmTRu7nTp1qt1+9913VnfppZfaM/OxaNEiq7vhhhvs\nmXPnzrXb888/327HjBljddOmTbNn9ujRw24///xzq3vllVfsmfm0rn/84x92u2bNGrvN57/11FNP\ntbpPPvnEnpnPx4iVK1fareu9996z29NPP72AV1I6jz76qN0+9NBDdtupUyerq1y5sj2zRo0adrvL\nLrtYXbdu3eyZjz/+uN02btzYbt3Pj/n44IMP7Hb69OlW536ukfK7Xvf3Tf/+/e2Z+fw+P/fcc+12\n4MCBVvfxxx/bM1F22DACAAAAKBoRwYaxgPgaRgAAAABAJm4YAQAAAACZOJIKAAAAoKhwJLVw2DAC\nAAAAADKxYQQAAABQVNgwFg4bRgAAAABAJjaMAAAAAIoKG8bCYcMIAAAAAMjEDSMAAAAAIBNHUgEA\nAAAUFY6kFg4bRgAAAABAJjaMAAAAAIpGRLBhLCA2jAAAAACATJFSKrdhbdu2TdOmTSu3eQAAAACK\nX0RMTym1laR69eqlXr16be1L2qQbbrjh39e6LeBIKgAAAICiwpHUwuFIKgAAAAAgExtGAAAAAEWF\nDWPhsGEEAAAAAGTihhEAAAAAKpCI6BIRsyNiTkRcnfH+iIi7cu+fGREHlrbdUhxJBQAAAFBUtuUj\nqRFRSdI9kjpKWijpjYgYm1J6r8TDjpPULPdysKQhkg4uZbtF2DACAAAAQMXRTtKclNLclNIaSY9J\n6rbRY7pJGpE2eE1StYioW8p2i7BhBAAAAFBUKviGsWZElPzm9MNSSsNKvF5f0oISry/Uhi2iNvOY\n+qVstwg3jAAAAABQfr5KKbXd2hdRWtwwAgAAAEDF8ZmkhiVeb5B7W2ke85NStFuEr2EEAAAAUDQi\nokK/lMIbkppFRJOIqCzpVEljN3rMWEln5p4t9RBJX6eUFpWy3SJsGAEAAACggkgprY2ICyVNkFRJ\n0vCU0qyIOC/3/qGSxknqKmmOpG8lnf1jbT7Xww0jAAAAgKJSwZ/0ZrNSSuO04aaw5NuGlvhxknRB\nadt8cCQVAAAAAJCp3DeM69ats7o99tjD6l544QWrk6S1a9fa7ZgxY6xu6tSp9swRI0bY7cqVK+12\n3rx5VtejRw975qeffmq3tWrVsrqGDRtu/kGbkM/1XnLJJXbbqVMnq5szZ449c9ddd7Xbhx56yOp2\n3HFHe+ZFF11kt4ceeqjVVa1a1Z6Zz3/rZ5/5X/P+/vvvW93OO+9sz9zwl6ee7t27W92qVavsmTfd\ndJPdXnfddVb30Ucf2TOHDBmyVdp//OMfVte/f3975oABA+x2+PDhVnfxxRfbM8ePH2+3+fwadq95\nyZIl9sxLL73Ubg866CCry+f3qvvrQZIuv/xyq9t///3tmflc7xdffGG37ueM1atX2zNRdjiSCgAA\nAKCobOtHUisSjqQCAAAAADKxYQQAAABQVNgwFs5mN4wR0TAiXoiI9yJiVkRcknv77hExMSI+yv2z\netlfLgAAAACgvJTmSOpaSZenlFpKOkTSBRHRUtLVkiallJpJmpR7HQAAAABQJDZ7JDWltEjSotyP\nV0TE+5LqS+om6ajcwx6WNEVS3zK5SgAAAAAoJY6kFs4WPelNRDSW9DNJUyXVyd1MStIXkupsoukd\nEdMiYlo+T7sMAAAAAChfpX7Sm4ioImm0pN+llL4pedeeUkoRkfkNs1JKwyQNk6S2bdv631QLAAAA\nADYjItgwFlCpNowR8RNtuFl8JKX0f7k3L46Iurn315X0ZdlcIgAAAABgayjNs6SGpAckvZ9Suq3E\nu8ZK6pH7cQ9JYwp/eQAAAACAraU0R1J/Luk3kt6JiBm5t10r6UZJf42IXpI+lXRy2VwiAAAAAJQe\nR1ILpzTPkvqypE39jB9b2MsBAAAAAFQUpX7SGwAAAADYFrBhLJwt+rYaAAAAAID/HOW6YZw1a5YO\nOOAAq+3YsaPVjR492uokaZdddrHbb775xuqGDh1qzzz5ZP/LSH/961/bbePGja1uhx12sGfm4+ij\nj7a6d955x5550kkn2e1f/vIXu+3Xr5/V/eY3v7Fnrlu3zm4//vhjq/uf//kfe2avXr3s9r333rO6\n2267bfMP2oS7777bbqdMmWK3jz76qNXdeuut9sx8PgaPGzfO6saOHWvPXLlypd3efPPNduv69ttv\n7bZr16522717d6ubP3++PbNy5cp2635+HD58uD2zUaNGdtuuXTu7vfbaa+3Wlc/HiEmTJpVrJ+X3\n67BDhw5W98ADD9gzTzjhBLt1/wwhSUcccYTV/fSnP7VnouxwJBUAAABAUeFIauFwJBUAAAAAkIkN\nIwAAAICiwoaxcNgwAgAAAAAysWEEAAAAUDQigg1jAbFhBAAAAABk4oYRAAAAAJCJI6kAAAAAigpH\nUguHDSMAAAAAIBMbRgAAAABFhQ1j4bBhBAAAAABk4oYRAAAAAJCJI6kAAAAAigpHUgunXG8Y99hj\nD11xxRVWW6dOHasbMGCA1UnSCy+8YLeHHXaY1dWqVcueOXHiRLu96qqr7Pbpp5+2ukcffdSemY9B\ngwZZXb9+/eyZ223nL/PPPfdcu33ooYes7uWXX7ZnVq5c2W533nlnq3v22WftmS1btrRb19KlS+22\nW7dudvvBBx/Yrfsx4sQTT7Rnvv7663Y7bdo0qzvvvPPsmS+++KLd7r777nbruu666+zW/bgvSWef\nfbbVjR8/3p45a9Ysu91rr72s7ne/+509s1WrVnb71FNP2e2DDz5ot66TTjrJbk899VSrW7ZsmT3z\n7rvvtttTTjnF6h544AF75llnnWW3kydPttu2bdta3WOPPWbPRNlhwwgAAACgqLBhLBy+hhEAAAAA\nkIkbRgAAAABAJo6kAgAAACgaEcGR1AJiwwgAAAAAyMSGEQAAAEBRYcNYOGwYAQAAAACZuGEEAAAA\nAGTiSCoAAACAosKR1MJhwwgAAAAAyMSGEQAAAEBRYcNYOGwYAQAAAACZuGEEAAAAAGTiSCoAAACA\nosKR1MIp1xvGpUuXasSIEVZ72223WV2DBg2sTpLOPfdcu129erXVPfjgg/bMwYMH2+2vf/1ru23c\nuLHVPfLII/bMNm3a2O2nn35qdU2bNrVnrlixwm6vuuoqu61atarVnXLKKfbMGjVq2O2hhx5qdcuW\nLbNnLlq0yG5d8+bNK/eZktShQwe7/fLLL60un//Wli1b2m2LFi2s7k9/+pM9c9SoUXa79957W90T\nTzxhz5w2bZrd7rnnnnY7fvx4q9thhx3smdtv7/9x5+uvv7a6zz77zJ751Vdf2e3VV19tt7Vr17Zb\n10EHHWS3S5cutboxY8bYM8855xy7HTp0qNX179/fnvnhhx/a7ZAhQ+y2UqVKVvftt9/aM1F22DAC\nAAAAKBoRwYaxgPgaRgAAAABAJm4YAQAAAACZOJIKAAAAoKhwJLVw2DACAAAAADKxYQQAAABQVNgw\nFg4bRgAAAABAJm4YAQAAAACZOJIKAAAAoKhwJLVw2DACAAAAADKxYQQAAABQVNgwFg4bRgAAAABA\nJjaMAAAAAIpGRLBhLCA2jAAAAACATOW6YWzWrJnGjRtntfXr17e62rVrW50kffDBB3Zbt25dq1u2\nbJk9c8CAAXa7cOFCu3X/n3733Xf2zNtuu81ujzrqqHLtJGn8+PF2u9dee9ntzJkzrS6f3zcNGjSw\n2/vuu69cO0m64IIL7NZ12WWX2W0+f2P62muv2e2rr75qddtt5/+95JQpU+y2X79+Vte8eXN75g8/\n/GC3L774ot26Jk6caLf5/D4fNmyY1XXt2tWeWblyZbvt0KGD1e2///72zE6dOtntzTffbLfur+F2\n7drZM/P5s1alSpWsLp9fv61bt7bbF154wepuueUWe+aSJUvsdsSIEXb70EMPWd3y5cvtmSg7HEkF\nAAAAUFQ4klo4HEkFAAAAgG1AROweERMj4qPcP6tv4nFdImJ2RMyJiKtLvP2kiJgVEesjom1pZnLD\nCAAAAKCo/OuJbyriS56uljQppdRM0qTc6xv/t1eSdI+k4yS1lHRaRLTMvftdSd0lvVTagdwwAgAA\nAMC2oZukh3M/fljSCRmPaSdpTkppbkppjaTHcp1SSu+nlGZvyUBuGAEAAACg/NSMiGklXnpvQVsn\npbQo9+MvJNXJeEx9SQtKvL4w9zYLT3oDAAAAoKhU8Ce9+SqltMmvH4yI5yXtkfGu60q+klJKEZEK\nfXEb44YRAAAAACqIlNImv59PRCyOiLoppUURUVfSlxkP+0xSwxKvN8i9zcKRVAAAAABFZWs/sU0Z\nPunNWEk9cj/uIWlMxmPekNQsIppERGVJp+Y6CzeMAAAAALBtuFFSx4j4SFKH3OuKiHoRMU6SUkpr\nJV0oaYKk9yX9NaU0K/e4EyNioaRDJT0bERM2N5AjqQAAAACwDUgpLZV0bMbbP5fUtcTr4ySNy3jc\n3yT9bUtmcsMIAAAAoGgU6OgncjiSCgAAAADIxIYRAAAAQFFhw1g45XrDuGzZMv3tb1t0ZPbfnnvu\nOaubMmWK1UnS9OnT7bZBgwZWt99++9kzt9/e/985evRou23SpInV7bzzzvbMfBxzzDFWV716dXvm\nf//3f9vt2LH2k1rprbfesrqaNWvaM7t06WK3I0eOtLr77rvPnrlw4UK7HTVqlNW1bt3annn//ffb\n7bx58+z273//u9XttNNO9swxY7Ke+K106tWrZ3X77LOPPTOf/9aLLrrIbl0ff/yx3bZtu8lvH7ZZ\n7q+lXXfd1Z75y1/+0m7r1/e+1/Vtt91mzzzvvPPsdt26dXbbv39/q7v66qvtmZUrV7bbvfbay+ry\n+f12/PHH2+0jjzxidfn82fCcc86x23z+LPCLX/zC6tzfb5I0efJku8WP40gqAAAAACATR1IBAAAA\nFBWOpBYOG0YAAAAAQCY2jAAAAACKChvGwtnshjEihkfElxHxbom3DYyIzyJiRu6l64/9OwAAAAAA\n257SHEl9SFLW0x7enlJqnXsZV9jLAgAAAABsbZs9kppSeikiGpf9pQAAAABAfiKCI6kFlM+T3lwU\nETNzR1Y3+Q3qIqJ3REyLiGkrVqzIYxwAAAAAoDy5N4xDJO0pqbWkRZL+tKkHppSGpZTappTaVq1a\n1RwHAAAAAKXzry1jRXzZ1lg3jCmlxSmldSml9ZLuk9SusJcFAAAAANjarBvGiKhb4tUTJb27qccC\nAAAAALZNm33Sm4h4VNJRkmpGxEJJAyQdFRGtJSVJ8ySdW4bXCAAAAAClti0e/ayoSvMsqadlvPmB\nMrgWAAAAAEAFstkbRgAAAADYlrBhLJxyvWFcuXKl/vGPf1jtO++8Y3U1atSwOklq0KCB3d5www1W\nd+ihh9ozJ06caLdLliyx208++cTqTjsta3ld9po1a2Z1TZo0sWfecsstdlurVi273WOPPazuqKOO\nsmd27drVbk8//XSrq127tj1z6dKlduu6+OKL7Xbu3Ll2m8/Hlz/9aZNPhv2jzjrrLHvm4sWL7bZz\n585W9+67/pfkX3TRRXb705/+1G5dO+ywg92OGzfObps2bWp1w4YNs2e6f4aQpLvvvtvq/vznP9sz\nx4wZY7fXXHON3Q4cONBuXZ999pndjho1yup+//vf2zPzadu3b291+Xye+uCDD+x2wIABdtuzZ0+r\ne/zxx+2ZKDv5fB9GAAAAAEAR40gqAAAAgKLCkdTCYcMIAAAAAMjEhhEAAABA0YgINowFxIYRAAAA\nAJCJG0YAAAAAQCaOpAIAAAAoKhxJLRw2jAAAAACATGwYAQAAABQVNoyFw4YRAAAAAJCJDSMAAACA\nosKGsXDYMAIAAAAAMnHDCAAAAADIxJFUAAAAAEWFI6mFs83cMPbq1cvqjj76aHvmK6+8YrcnnHCC\n1Q0YMMCeee+999rtJZdcYrcLFy60uieeeMKe2a5dO7s9++yzre6pp56yZ95+++12m8//myOOOMLq\ndtxxR3vmwIED7XbPPfe0ujfffNOe2apVK7t1vf7663bbsGFDuz3uuOPs1v3/ms/HtH79+tltp06d\nrK5evXr2zH/+8592O3LkSLt13XHHHXZ7/PHH2637+fyggw6yZw4aNMhumzdvbnV16tSxZ3bo0MFu\na9SoYbe777673bq++eYbuz3ttNOs7qabbrJnrl+/3m6328472NejRw975sUXX2y3V1xxhd3+7Gc/\ns7rVq1fbM4cPH263+HHbzA0jAAAAAGxORLBhLCC+hhEAAAAAkIkbRgAAAABAJo6kAgAAACgqHEkt\nHDaMAAAAAIBMbBgBAAAAFBU2jIXDhhEAAAAAkIkbRgAAAABAJo6kAgAAACgqHEktHDaMAAAAAIBM\nbBgBAAAAFBU2jIXDhhEAAAAAkIkbRgAAAABAJo6kAgAAACgaEcGR1AIq1xvGlJLWr19vtS+99JLV\n3X777VYnScOHD7fbG2+80erOOOMMe+Y999xjt8cdd5zdduzY0eoeeughe2b//v3ttkePHlbn/ndK\n0i9+8Qu77dmzp90++eSTVvfII4/YM++66y67vfPOO62uffv29swrr7zSbl2nnnqq3T7zzDN2e8AB\nB9ht27Ztre7www+3Z86aNctuFy5caHVVq1a1Z3bv3t1u582bZ3X5/PxeccUVdlu7dm27PfbYY61u\nwoQJ9sybb77Zbk866SSrW7RokT3z66+/ttsOHTrYbePGja1u/vz59syVK1fa7YwZM6zO/TOlJA0Y\nMMBuBw0aZHWVKlWyZ+bz6/Avf/mL3bqf5/L5tYSyw4YRAAAAQFFhw1g4fA0jAAAAACATN4wAAAAA\ngEwcSQUAAABQVDiSWjhsGAEAAAAAmdgwAgAAACgqbBgLhw0jAAAAACATN4wAAAAAgEwcSQUAAABQ\nVDiSWjhsGAEAAAAAmdgwAgAAACgaEcGGsYDYMAIAAAAAMnHDCAAAAADbgIjYPSImRsRHuX9W38Tj\nukTE7IiYExFXl3j7LRHxQUTMjIi/RUS1zc0s1yOp69at0/Lly632nXfesbrTTjvN6iTpwQcftNuG\nDRtaXa9e/297dx5kVX3mf/zzTAsJExcSNpFdRUqcgEMIKBMNLiAQsEmsQkVjowgSIYiFC4gOIGAR\nMTIiYoKCYnCURRNhZBEIBqRCpHElyNJxbWwFxIApzSD4/P7oa34d6kA3zz30cuf9qurqe849n34O\n3d++fb8833vuwHDNqVOnhrPLli0LZ0tKSkK5kSNHhmtm47zzzgvlTj/99HDNXbt2hbPdunULZ7/4\n4otQrl27duGay5cvD2fvvPPOUG7Lli3hmps2bQpnX3jhhVBu37594Zrz588PZ5cuXRrOFhcXh3Lb\ntm0L13zmmWfC2YcffjiUW7duXbhmNj+bl19+OZS7+uqrwzU3bNgQzh48eDCcPfHEE0O5733ve+Ga\nzz77bDhbu3btUO6WW24J18zmuUufPn3C2aFDh4azUZdcckk4e+ONN4Zyzz//fLjm4MGDw9mioqJQ\nrmfPnuGaTZo0CWc3btwYzvbr1y+Uu+OOO8I1D5XDS1JHSVrl7pMzE8FRkm4ve4CZ5Ul6SFI3ScWS\nNpjZInffLGmFpNHufsDMfiFp9KH5Q9FhBAAAAICaIV/SnMztOZL6JhzTSVKRu7/t7vslPZ3Jyd1f\ncHyzGzgAABrmSURBVPcDmePWS2paXkEuegMAAAAgp1TzDmN9Mysssz3T3WdWMNvI3b9e3veRpEYJ\nxzSR9EGZ7WJJnROOu07SvPIKMmEEAAAAgMqz2907Hu5OM1sp6eSEu8aU3XB3NzOPnICZjZF0QNKT\n5R3LhBEAAABATqnmHcYjcveLD3efmX1sZo3dvcTMGkvamXDYDkllL6jSNLPv668xQFJvSRe5e7kT\nTl7DCAAAAAA1wyJJBZnbBZKeSzhmg6TWZtbKzGpLuiKTk5n1kHSbpEvd/fOKFGTCCAAAAAA1w2RJ\n3cxsu6SLM9sys1PMbIkkZS5qM0zScklvSZrv7n/O5KdLOkHSCjN7zcx+VV5BlqQCAAAAyCk1eUnq\nkbj7J5IuStj/oaReZbaXSFqScNxRv08cHUYAAAAAQCI6jAAAAAByhpnlbIexKtBhBAAAAAAkYsII\nAAAAAEjEklQAAAAAOYUlqemhwwgAAAAASESHEQAAAEBOocOYHnP3SivWsWNHLywsrLR6AAAAAHKf\nmW10946S1KZNG//Vr8p9P/oqc+GFF/7jXGsClqQCAAAAABKxJBUAAABATmFJanroMAIAAAAAEpU7\nYTSz2Wa208w2ldn3HTNbYWbbM5+/fWxPEwAAAAAqxsyq7UdNU5EO4+OSehyyb5SkVe7eWtKqzDYA\nAAAAIIeUO2F09zWS9hyyO1/SnMztOZL6pnxeAAAAAIAqFr3oTSN3L8nc/khSo8MdaGaDJQ2WpObN\nmwfLAQAAAED5aurSz+oq64veeOkbOR72zRzdfaa7d3T3jg0aNMi2HAAAAACgkkQ7jB+bWWN3LzGz\nxpJ2pnlSAAAAABBFhzE90Q7jIkkFmdsFkp5L53QAAAAAANVFRd5W4ylJf5TUxsyKzWygpMmSupnZ\ndkkXZ7YBAAAAADmk3CWp7n7lYe66KOVzAQAAAICssSQ1PVlf9AYAAAAAkJuiF70BAAAAgGqJDmN6\nKnXCuG/fPi1btiyUHT58eChXt27dUE6Srr/++nC2uLg4lJsyZUq4ZvR7JElPPfVUOLt69epQbtCg\nQeGav//978PZ8847r1JzkrR169Zw9tJLLw1nzzzzzFDupZdeCtcsLCwMZ++9995Qbv369eGaa9as\nCWenTZsWymXz+7Z///5wdty4ceHszJkzQ7m8vLxwzfPPPz+cveaaa0K5xo0bh2v26dMnnO3Ro0co\n9/e//z1cs1+/fuHs4MGDw9lt27aFcqeffnq45tixY8PZ6N/lNm3ahGsWFRWFszfddFM4G/3Z/PWv\nfw3XvOii+Cucnn/++VBu8+bN4ZqTJk0KZ9etWxfKvfrqq+GaCxYsCGenTp0azkafk/7lL38J18Sx\nw5JUAAAAAEAilqQCAAAAyCksSU0PHUYAAAAAQCI6jAAAAAByhpnRYUwRHUYAAAAAQCImjAAAAACA\nRCxJBQAAAJBTWJKaHjqMAAAAAIBEdBgBAAAA5BQ6jOmhwwgAAAAASMSEEQAAAACQiCWpAAAAAHIK\nS1LTQ4cRAAAAAJCIDiMAAACAnEKHMT2VOmHcs2eP5s2bF8o2bdo0lGvfvn0oJ0ldunQJZ1999dVQ\n7o477qj0mpK0d+/ecHbGjBmh3NixY8M1s3H77beHcnfeeWe4ZteuXcPZbMbwGWecEco1aNAgXHPf\nvn3h7Pz580O51q1bh2sOGjQonI06/fTTw9m5c+eGs2eeeWY427x581Du3HPPDdds1KhRODtlypRQ\nrlevXuGaS5YsCWfvu+++cDZq8uTJ4exZZ50Vzt54442hXPfu3cM1o4+FUulzl4gbbrghXDObv+dt\n2rQJZ+vUqRPORjVu3DicffTRR0O5Dh06hGtm8zj61VdfhXItWrQI18zm93zt2rXh7LvvvhvK3Xvv\nveGaOHboMAIAAADIGWZGhzFFvIYRAAAAAJCICSMAAAAAIBFLUgEAAADkFJakpocOIwAAAAAgER1G\nAAAAADmFDmN66DACAAAAABIxYQQAAAAAJGJJKgAAAICcwpLU9NBhBAAAAAAkosMIAAAAIKfQYUwP\nHUYAAAAAQCImjAAAAACARJW6JLVhw4YaOnRoKHv99deHco8//ngoJ0mff/55OHvDDTeEcps2bQrX\nnDp1ajj7m9/8Jpx95513Qrndu3eHa2bj008/DeXOP//8cE13D2fr1q0bzv7iF78I5TZu3BiuuWrV\nqnC2QYMGodyGDRvCNb/73e+Gszt37gzlshn7LVq0CGdnzZoVzv7whz8M5X75y1+Ga7755pvh7Guv\nvRbKZXO+L774Yjj70EMPhbNRQ4YMCWejf5MlqX///qHc9OnTwzVbt24dzr711luh3K5du8I1W7Vq\nFc6+8sor4ezo0aPD2ajhw4eHs1dddVUot2XLlnDNxo0bh7NdunQJ5aZNmxauefLJJ4ez2XyfNm/e\nHMoVFBSEa5Z9zmNmLElNER1GAAAAAEAiLnoDAAAAIKfQYUwPHUYAAAAAQCImjAAAAACARCxJBQAA\nAJBTWJKaHjqMAAAAAIBEdBgBAAAA5BQ6jOmhwwgAAAAASMSEEQAAAACQiCWpAAAAAHIKS1LTQ4cR\nAAAAAGoAM/uOma0ws+2Zz98+zHE9zGyrmRWZ2agy+yeY2Rtm9pqZvWBmp5RXkwkjAAAAgJxhZtX6\nI0ujJK1y99aSVmW2D/3350l6SFJPSW0lXWlmbTN3T3H3du5+tqT/kfSf5RVkwggAAAAANUO+pDmZ\n23Mk9U04ppOkInd/2933S3o6k5O77ytz3LckeXkFeQ0jAAAAAFSe+mZWWGZ7prvPrGC2kbuXZG5/\nJKlRwjFNJH1QZrtYUuevN8xskqRrJO2VdEF5BSt1wlirVi01adIklD1w4EAo17p161BOkvbv3x/O\nDhw4MJTr169fuOa8efPC2REjRoSz3//+90O5Bx54IFwzG/fff38ot2nTpnDNRx55JJz98ssvw9lh\nw4aFctdff3245uuvvx7Ozpo1K5Q744wzwjU7d+5c/kEpW7x4cThbr169cHb48OHh7MKFC0O5E088\nMVzzuuuuC2effvrpUO7yyy8P1+zWrVs4+/7774ezUX/4wx/C2fXr14ez0d/zr776KlxzyJAh4Wyt\nWrVCuQkTJoRrjh49Opx96qmnwtno9+nmm28O1ywoKAhnt27dGsqdeuqp4ZotW7YMZ0eOHBnKnX/+\n+ZVeU8ruec+0adNCuQcffDBc81DV/KI3u9294+HuNLOVkk5OuGtM2Q13dzMrt0N4KHcfI2mMmY2W\nNEzS2CMdT4cRAAAAAKoJd7/4cPeZ2cdm1tjdS8yssaSdCYftkNSszHbTzL5DPSlpicqZMPIaRgAA\nAAA5paovbHMML3qzSNLXrfkCSc8lHLNBUmsza2VmtSVdkcnJzMouv8yXtKW8gnQYAQAAAKBmmCxp\nvpkNlPSepH6SlHl7jEfdvZe7HzCzYZKWS8qTNNvd//x13szaSPoqky93LToTRgAAAACoAdz9E0kX\nJez/UFKvMttLVLrc9NDjLjvamkwYAQAAAOSUan7RmxqF1zACAAAAABLRYQQAAACQU+gwpocOIwAA\nAAAgER1GAAAAADkjpbevQAYdRgAAAABAIiaMAAAAAIBELEkFAAAAkFNYkpoeOowAAAAAgER0GAEA\nAADkFDqM6anUCWNJSYkmTZoUyq5YsSKUW7t2bSgnSY888kg4O3bs2FCuXr164ZpDhw4NZ2fMmBHO\n5ufnh3JffvlluGY2zjzzzFBu9erV4ZqdO3cOZ2+77bZwtn79+qFc7969wzV79uwZzi5evDiU+/TT\nT8M1f/zjH4ezUR9++GE4W7t27XB23rx54ew555wTyrVt2zZcM5s/9ps3bw7lZs2aFa757LPPhrMX\nXnhhKDd58uRwzVGjRoWzX3zxRTj7zDPPhHLZ/J4vXLgwnJ02bVool8142L9/fzibl5cXzhYVFYWz\nUS1btgxn77nnnlBuwoQJ4Zp9+/YNZ1etWhXKZfM96tWrVzhbXFwczs6dOzeUu/baa8M1x4wZE87i\nyFiSCgAAAABIxJJUAAAAADmFJanpocMIAAAAAEiUVYfRzN6V9Jmkg5IOuHvHNE4KAAAAAKLoMKYn\njSWpF7j77hS+DgAAAACgGmFJKgAAAAAgUbYdRpe00swOSvq1u8889AAzGyxpsCQdf/zxWZYDAAAA\ngMMzM5akpijbCeMP3H2HmTWUtMLMtrj7mrIHZCaRMyWpYcOGnmU9AAAAAEAlyWrC6O47Mp93mtlv\nJXWStObIKQAAAAA4dugwpif8GkYz+5aZnfD1bUndJW1K68QAAAAAAFUrmw5jI0m/zczej5P03+6+\nLJWzAgAAAABUufCE0d3fltQ+xXMBAAAAgKyxJDU9vK0GAAAAACBRtldJPSp/+9vftG7dulD20ksv\nDeWaNGkSyknSwIEDw9mVK1eGcoMGDQrX7N27dzh73333hbO7du0K5aJjQcru31qvXr1Qbvny5eGa\n3/zmN8PZnTt3hrM33nhjKPejH/0oXDM/Pz+cfeONN0K56O+bJG3bti2c7dmzZyiXzflm8/ZEEyZM\nCGejv+d16tQJ19yzZ084u2xZ7BUS3/jGN8I1p0yZEs4+9thj4WzU6tWrqyS7devWUO7qq68O1zzr\nrLPC2ejziL1794ZrvvXWW+FscXFxOFtUVBTORtWvXz+c7dKlSyg3cuTIcM1s/mZMnDgxlNu3b1+4\n5uLFi8PZ559/PpwdMmRIKNe1a9dwzUPRYUwPHUYAAAAAQCImjAAAAACARJW6JBUAAAAAjjWWpKaH\nDiMAAAAAIBEdRgAAAAA5w8zoMKaIDiMAAAAAIBETRgAAAABAIpakAgAAAMgpLElNDx1GAAAAAEAi\nOowAAAAAcgodxvTQYQQAAAAAJGLCCAAAAABIxJJUAAAAADmFJanpocMIAAAAAEhUqR3GM844Q8uX\nLw9lzzvvvFCuXbt2oZwk5eXlhbMFBQWh3MMPPxyuuWXLlnC2ffv24ezatWtDuTfffDNcs3fv3uHs\n3LlzQ7kBAwaEa55yyinh7GOPPRbOnnzyyaHcH//4x3DNkpKScDbqpJNOCmcfeeSRFM+kYq655ppw\ndunSpeHsK6+8Es42adIklJs2bVq45vTp08PZvn37hnLbt28P18xm7NeqVSucjcrmMe2yyy4LZ3/9\n61+Hcrt37w7XzM/PD2dff/31UO7BBx8M17zkkkvC2VtvvTWcnTJlSih32mmnhWsuXLgwnB0xYkQo\nF32OJkmLFi0KZ88999xQbsGCBeGa0ec8kjRhwoRw9uabbw7lZs2aFa55KDqM6aHDCAAAAABIxIQR\nAAAAAJCIi94AAAAAyBlmxpLUFNFhBAAAAAAkosMIAAAAIKfQYUwPHUYAAAAAQCI6jAAAAAByCh3G\n9NBhBAAAAAAkYsIIAAAAAEjEklQAAAAAOYUlqemhwwgAAAAASESHEQAAAEBOocOYHjqMAAAAAIBE\nTBgBAAAAAIkqdUnqtm3b1L1791B2xIgRody1114byknSkCFDwtkXX3wxlHviiSfCNbdv314l2fvv\nvz+U27FjR7hmNu6+++5Q7qSTTgrXvOuuu8LZcePGhbOffPJJKNe5c+dwzeOOiz+sjB8/PpTbsmVL\nuOZVV10Vzr788suh3AcffBCumc3P5rLLLgtnzzrrrFBu1qxZ4ZrTp08PZ6OP/R07dgzXzOZ39U9/\n+lMol83P9I033ghnhw8fHs6+8847odzGjRvDNUtKSsLZPXv2hHJ9+/YN17zlllvC2WbNmoWzderU\nCWejCgoKwtnrrrsulMvmb/KTTz4Zzq5ZsyaUe/zxx8M1s/mZHjhwIJyNys/PD2dnz579j9tmxpLU\nFNFhBAAAAAAk4qI3AAAAAHIKHcb00GEEAAAAACRiwggAAAAASMSSVAAAAAA5hSWp6aHDCAAAAABI\nRIcRAAAAQE6hw5geOowAAAAAUAOY2XfMbIWZbc98/vZhjuthZlvNrMjMRiXcP9LM3Mzql1eTCSMA\nAAAA1AyjJK1y99aSVmW2/4mZ5Ul6SFJPSW0lXWlmbcvc30xSd0nvV6QgE0YAAAAAOcPMqvVHlvIl\nzcncniOpb8IxnSQVufvb7r5f0tOZ3NemSrpNklekIBNGAAAAAKg89c2ssMzH4KPINnL3ksztjyQ1\nSjimiaQPymwXZ/bJzPIl7XD31ytakIveAAAAAMgp1fyiN7vdvePh7jSzlZJOTrhrTNkNd3czq1CX\nMPN1/1XSHSpdjlphTBgBAAAAoJpw94sPd5+ZfWxmjd29xMwaS9qZcNgOSc3KbDfN7DtNUitJr2cm\n1E0lvWJmndz9o8PVZEkqAAAAANQMiyQVZG4XSHou4ZgNklqbWSszqy3pCkmL3P1Nd2/o7i3dvaVK\nl6p2ONJkUZLMvcJdzKyZmR93XKyp2aZNm1DugQceCOUkadCgQeHsCSecEMrVq1cvXLNPnz7h7Lnn\nnhvOrlu3LpTL5mfz/vsVuqhTotWrV4dyn3zySbjmlVdeGc62a9cunK1Vq1Yo1759+3DNFi1ahLOf\nf/55KHfw4MFwzdGjR4ezJ554YiiXze95NuPws88+C2d79+4dykUf8yXp8ssvD2fXr18fyhUWFoZr\n/uxnPwtnGzVKeglK+X7yk5+Ea+7duzecffTRR8PZ8ePHh3LZjN8OHTqEs0OHDg3lJk+eHK5Zp06d\ncHbAgAHh7MSJE0O5bB6XVq5cGc4uXbo0lHviiSfCNWfOnBnONmvWrPyDEnTseNiVi+VasmRJONup\nU6dwNvp96t+/f7hmq1atNn69zLNDhw6+du3a8Nc61o4//viNR1qSeiRmVk/SfEnNJb0nqZ+77zGz\nUyQ96u69Msf1kvRfkvIkzXb3SQlf611JHd1995FqsiQVAAAAAGoAd/9E0kUJ+z+U1KvM9hJJR/wf\ng0yXsVxMGAEAAADklGp+0ZsahdcwAgAAAAASMWEEAAAAACRiSSoAAACAnMKS1PTQYQQAAAAAJKLD\nCAAAACBnmBkdxhTRYQQAAAAAJGLCCAAAAABIxJJUAAAAADmFJanpocMIAAAAAEhEhxEAAABATqHD\nmB46jAAAAACARJXaYTz11FN1zz33hLItW7YM5caPHx/KSVLt2rXD2eLi4lCuTZs24Zo333xzODtu\n3LhwtkePHqHc/v37wzWzMWDAgFDunHPOCdd8+OGHw9muXbuGsw0aNAjlFixYEK7ZrFmzcPZf/iX2\nf1jNmzcP17ziiivC2SVLloRy7733XrjmoEGDwtkNGzaEsz/96U9DuYYNG4Zr3n333eFs//79Q7kx\nY8aEa/br1y+c/d3vfhfORl1wwQXh7LBhw8LZTZs2hXJ169YN17zrrrvC2ZEjR4ZykyZNqvSakjRx\n4sRwtrCwMJyNOvvss8PZW2+9NZR76aWXwjVvv/32cPbnP/95KLd48eJwzWwe02bMmBHOdunSJZRL\nsytIhzE9dBgBAAAAAImYMAIAAAAAEnHRGwAAAAA5hSWp6cmqw2hmPcxsq5kVmdmotE4KAAAAAFD1\nwh1GM8uT9JCkbpKKJW0ws0XuvjmtkwMAAACAo2FmdBhTlE2HsZOkInd/2933S3paUn46pwUAAAAA\nqGrZTBibSPqgzHZxZt8/MbPBZlZoZoX79u3LohwAAAAAoDId84veuPtMSTMl6bTTTvNjXQ8AAADA\n/20sSU1PNh3GHZLKvkN308w+AAAAAEAOyKbDuEFSazNrpdKJ4hWS+qdyVgAAAAAQRIcxPeEJo7sf\nMLNhkpZLypM0293/nNqZAQAAAACqVFavYXT3JZKWpHQuAAAAAIBq5Jhf9AYAAAAAKhNLUtOTzUVv\nAAAAAAA5zNwr750uzGyXpPcOc3d9Sbsr7WSQyxhLSAtjCWlhLCEtjCWkJdfGUgt3byBJZrZMpf++\n6mq3u/eo6pOoqEqdMB6JmRW6e8eqPg/UfIwlpIWxhLQwlpAWxhLSwlhCRbEkFQAAAACQiAkjAAAA\nACBRdZowzqzqE0DOYCwhLYwlpIWxhLQwlpAWxhIqpNq8hhEAAAAAUL1Upw4jAAAAAKAaYcIIAAAA\nAEhULSaMZtbDzLaaWZGZjarq80HNYWazzWynmW0qs+87ZrbCzLZnPn+7Ks8RNYOZNTOz1Wa22cz+\nbGY3ZfYznnBUzOybZvaymb2eGUvjM/sZSzhqZpZnZq+a2f9kthlHCDGzd83sTTN7zcwKM/sYTyhX\nlU8YzSxP0kOSekpqK+lKM2tbtWeFGuRxSYe+8ekoSavcvbWkVZltoDwHJI1097aSzpE0NPNYxHjC\n0fpfSRe6e3tJZ0vqYWbniLGEmJskvVVmm3GEbFzg7meXef9FxhPKVeUTRkmdJBW5+9vuvl/S05Ly\nq/icUEO4+xpJew7ZnS9pTub2HEl9K/WkUCO5e4m7v5K5/ZlKn6A1EeMJR8lL/S2zWSvz4WIs4SiZ\nWVNJP5L0aJndjCOkifGEclWHCWMTSR+U2S7O7AOiGrl7Seb2R5IaVeXJoOYxs5aS/l3Sn8R4QkBm\nGeFrknZKWuHujCVE/Jek2yR9VWYf4whRLmmlmW00s8GZfYwnlOu4qj4B4Fhydzcz3jsGFWZmx0t6\nRtIId99nZv+4j/GEinL3g5LONrO6kn5rZv92yP2MJRyRmfWWtNPdN5pZ16RjGEc4Sj9w9x1m1lDS\nCjPbUvZOxhMOpzp0GHdIalZmu2lmHxD1sZk1lqTM551VfD6oIcyslkoni0+6+7OZ3YwnhLn7XyWt\nVulrrRlLOBr/IelSM3tXpS/XudDM5opxhCB335H5vFPSb1X6sjDGE8pVHSaMGyS1NrNWZlZb0hWS\nFlXxOaFmWySpIHO7QNJzVXguqCGstJU4S9Jb7n5/mbsYTzgqZtYg01mUmdWR1E3SFjGWcBTcfbS7\nN3X3lip9bvR7d79ajCMEmNm3zOyEr29L6i5pkxhPqABzr/rOs5n1Uuk6/TxJs919UhWfEmoIM3tK\nUldJ9SV9LGmspN9Jmi+puaT3JPVz90MvjAP8EzP7gaS1kt7U/3+90B0qfR0j4wkVZmbtVHrxiDyV\n/sfsfHe/28zqibGEgMyS1FvcvTfjCBFmdqpKu4pS6UvS/tvdJzGeUBHVYsIIAAAAAKh+qsOSVAAA\nAABANcSEEQAAAACQiAkjAAAAACARE0YAAAAAQCImjAAAAACAREwYAQAAAACJmDACAAAAABL9P2o0\nuFN3P4PtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAKhCAYAAAC1lfQ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3We0nXW18O2Z3iC9QBJSIEAoShFBEQjSDUU6CGowdOm9\nF8kBBQQMSK+SiEhEkRJROooCoQqhl5iEhBTSQwpJ9vvhjPfDe47POGvPOc6j7xjX9fn/c+5yr3vd\ncy+GadHU1BQAAAA0T8t/9RcAAADw/0eWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAA\nJFimAAAAEixTAAAACa2bc7hLly5NvXv3Tg+bPHlyuo2IaNWqVbrt1atXafby5ctL/YwZM0p95ece\nETFnzpx0u/7665dmT5o0Kd0uXbo0vvjiixaNnG3Tpk1Tu3bt0rM6d+6cbiP+82vN6tq1a2l2hw4d\nSv3ChQtL/eLFi0v9WmutlW4XLVpUml353hcsWBBLlixp6PpcffXVmyr3oaampnQbETFt2rR0O3Dg\nwNLsFi0a+hH9H62++uql/qOPPir1bdu2TbddunQpzX7//ffTbVNTUzQ1NTX0w2/Xrl1Tp06d0rOq\n77GV+2f79u1Lsz/55JNSX7l/RdS//srPrvpctmzZslK/cuXK2U1NTQ1dPG3btm2q/KzWXXfddBsR\nsWTJknQ7ffr00uzq+9yGG25Y6ufOnVvqK8/A1effyjW6cOHCht7jm7VM9e7dO6699tr0F3Xcccel\n24jaA+fRRx9dmj1lypRSf8UVV5T673//+6X+nnvuSbe/+93vSrOPOOKIdPvyyy83fLZdu3ax6aab\npmftsMMO6TYi4u233063++yzT2n2RhttVOqfeeaZUv/iiy+W+tGjR6fb5557rjT7ySefTLe/+tWv\nGj7bq1evuPTSS9Ozqn/Qufjii9Pt9ddfX5pd+UNYRMSwYcNK/Xe/+91S37dv33S75557lmbvsssu\n6XbFihUNn+3UqVPsvPPO6VnV99j33nsv3VYfks8///xSf80115T66h8sKwv3CSecUJr97rvvlvr5\n8+f/o9Gz7du3j69+9avpWY888ki6jYh466230m3l3h9Rf5979NFHS/24ceNKfeU1cuKJJ5Zmf/jh\nh+n2vvvua+ic/8wPAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECC\nZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABJaN+fw3Llz4957700PGzhwYLqNiNhkk03S7dZb\nb12a/eqrr5b6888//186f968een2hhtuKM2++OKL0+3RRx/d8Nm+ffvGRRddlJ51+umnp9uIiB13\n3DHdbr755qXZQ4cOLfV9+vQp9fPnzy/1v/zlL9Pt+uuvX5p93HHHpdsnnnii4bPt2rWLIUOGpGeN\nGTMm3UZEbLDBBum2eu/eaqutSn31+vzpT39a6nffffd0+8gjj5RmX3311en2iiuuaPhs//79m3X+\nv6reg44//vh0u9tuu5VmV+8hs2fPLvWVn3tE7fmg+nvr0KFDqW/Oe0ebNm1izTXXTM+67bbb0m1E\n7X26eo2tXLmy1A8YMKDUX3755aX+z3/+c7qdNGlSaXbl9TV37tyGzvlkCgAAIMEyBQAAkGCZAgAA\nSLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYA\nAAASLFMAAAAJlikAAICE1s053KtXrzj++OPTw0aOHJluIyLuuOOOdLt48eLS7GOPPbbUv/nmm6X+\nZz/7Wan/xS9+kW4nTZpUmj179ux0u2LFimad/eyzz9Kzdthhh3QbEdHU1JRuu3XrVpp9ySWXlPoX\nX3yx1P/pT38q9T179ky377zzTmn2oEGD0u2CBQsaPrtixYrSa6HydUZE3Hrrrel22223Lc2++uqr\nS/0bb7xR6l977bVS/9Of/jTdPvPMM6XZ119/fbpt0aJFw2f/8Y9/xFFHHZWeVWkjIg499NB0O3r0\n6NLs9ddfv9S//fbbpb5yX4iIGDx4cLp9+eWXS7PPO++8Un/yySc3fLZ3795x4oknpmdVrrGI2nvN\nmmuuWZq99dZbl/prr7221Fe//srP7q233irNHjFiRLpt9NnZJ1MAAAAJlikAAIAEyxQAAECCZQoA\nACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZ\nAgAASGjR1NTU8OFNNtmk6dFHH00P22GHHdJtRESHDh3S7Ze+9KXS7Ndee63UH3TQQaW+VatWpf64\n445Lt1/5yldKs19++eV0u91228Urr7zSopGzHTt2bFp//fXTs6q/4zFjxqTb7bffvjS7W7dupf6Q\nQw4p9dddd12pv+mmm9LttddeW5q99dZbp9vnn38+FixY0ND12bt376b9998/PatHjx7pNiJi5cqV\n6XbcuHGl2T/5yU9KfeV1HRFx7733lvp+/fql27lz55Zmz58/P93+4he/iE8//bSh67Nly5ZNbdq0\nSc9q165duo2IWLFiRbpdtWpVafaxxx5b6tu2bVvq99hjj1J/5plnptsf//jHpdlHHnlkqf/ggw9e\nbmpq2qKRs+3bt28aNGhQetZbb72VbiMi1l577XRb+boj6tfI8OHDS/1pp51W6t988810W32PP/30\n09Pt1KlTY9myZf/jPdQnUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFim\nAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAktG7O4enTp8eoUaPS\nw5544ol0GxHx5z//Od3efPPNpdkXX3xxqe/Ro0ep/+EPf1jqf/7zn6fbvffeuzT7iy++SLdNTU0N\nn+3QoUNssMEG6VkvvPBCuo2I2GijjdLtqlWrSrN79epV6vfZZ59SP2zYsFJfuTfMmTOnNPuAAw5I\nt815XS5fvjw++eST9Kw2bdqk24iI++67L91utdVWpdkbbrhhqW/ZsvZ3v4kTJ5b6W2+9Nd0+8MAD\npdnf/OY30+3y5csbPrvGGmvE0UcfnZ61ZMmSdBsRMW7cuHQ7d+7cf9nsiNr7a0TE/fffX+pXrFiR\nblu1alWa/cEHH5T65mjXrl0MHjw43V922WWl+ZXn3+pzVPX5edCgQaV++PDhpX7KlCnpduzYsaXZ\nhx9+eLq9/vrrGzrnkykAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAA\nAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAElo35/CiRYviueeeSw/b\nY4890m1ERP/+/dPtkUceWZr92GOPlfqjjjqq1O+1116l/ic/+Um6nTVrVmn2X/7yl3S7aNGihs+2\nbt06evXqlZ71yCOPpNuIiPbt26fbGTNmlGYfdthhpX7vvfcu9fvvv3+pf+2119Lto48+Wpr9zjvv\npNtp06Y1fHbBggWl+8jqq6+ebiMiRo0alW5nzpxZmt2hQ4dSP2fOnFJfvUbatWuXbq+44orS7Lvu\nuivdnnvuuQ2fXbhwYTz55JPpWc8880y6jai9Dr/3ve+VZm+88calvvJsEvGf94aKt956K91OnTq1\nNPvjjz8u9YMHD274bOvWraNnz57pWVtvvXW6jYg47bTT0u17771Xmv0f//Efpb56jT344IOlfvz4\n8en2mGOOKc3efvvt0+3dd9/d0DmfTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEy\nBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQ0Lo5h9db\nb73405/+lB72jW98I91GRPTs2TPdtmrVqjT7Bz/4Qam/8cYbS/3bb79d6jfddNN0++yzz5Zmv/76\n6+l26tSpDZ+dPXt23HXXXelZRx55ZLqNiOjfv3+6vemmm0qz+/btW+qfe+65Uj9t2rRSX9G1a9dS\nP3bs2HQ7fPjwhs/27Nkz9t9///SsP/zhD+k2IuKVV15Jt5VrOyJi9OjRpf7aa68t9fvuu2+pf//9\n99Pt9OnTS7PbtGmTblu0aNHw2Z49e8bIkSPTs/bZZ590GxFx2223pdtZs2aVZu+xxx6lfuLEiaW+\n+vrYdddd0+2pp55amn311VeX+uaYO3du/OY3v0n3J598cmn+iBEj0u2DDz5Ymv21r32t1I8bN67U\n//KXvyz1l1xySbo95ZRTSrNvv/32dDt79uyGzvlkCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAA\nEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikA\nAICE1s05/N5778VOO+2UHnbKKaek24iIkSNHptujjjqqNPvpp58u9WPHji317733Xql///330+2V\nV15Zmj19+vRS36j+/fvH2Wefne67du1amn/ppZem27POOqs0+7PPPiv1X/va10p927ZtS/1PfvKT\ndDtx4sTS7G9/+9vp9sMPP2z47PLly2Py5MnpWVtuuWW6jYjYf//90+1GG21Umn377beX+htvvLHU\n/+AHPyj1X/nKV9Ltj370o9LsF154Id0uXbq04bOff/55vP766+lZJ598crqNiPjoo4/S7UsvvVSa\nXX2PmjNnTqnfe++9S/2ZZ56ZbgcMGFCa3aFDh1LfHD169Ij99tsv3VfvAxdeeGG6/eUvf1ma/eyz\nz5b6O++8s9RXf88rV64s9RV77bVXun3mmWcaOueTKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAA\nSLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAktG7O\n4SVLlsQbb7yRHnbdddel24iI9dZbL93++c9/Ls3u0qVLqb/wwgtL/V577VXq99lnn3Tbs2fP0uzR\no0en25kzZzZ8tkOHDrHJJpukZ73yyivpNiLi29/+drrdbLPNSrPbtGlT6puamkp93759S/0ll1yS\nbjfffPPS7IsvvjjdbrXVVg2fXbRoUfz1r39Nz5ozZ066/X/nZw0fPrw0u3XrZr3V/DcHH3xwqT/6\n6KNLfeX18dFHH5Vmb7zxxum2Q4cODZ/t169f6XV46623ptuIiIsuuijdLly4sDR7iy22KPWPPvpo\nqR8zZkyp/81vfpNuR44cWZp9+OGHl/rm6NatW+y3337pvlOnTqX5xx57bLq95ZZbSrPXWWedUl+9\nRsePH1/qR40alW6rP7tDDjkk3Xbs2LGhcz6ZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsU\nAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACCh\ndXMODx48OC677LL0sMGDB6fbiIiLL7443bZu3axv9b+ZOnVqqV9vvfVK/amnnlrqL7roonT7rW99\nqzT7iy++SLfXX399w2c/+uijOPDAA9Ozttlmm3QbEXHXXXel25122qk0u3fv3qX+l7/8ZakfNGhQ\nqW/RokW6rd5X9tprr3T7wQcfNHz2y1/+cjz77LPpWYcffni6jYiYMGFCuh0xYkRpdvX6rNz7IyIO\nPfTQUn/eeeel2wMOOKA0+/e//3267dixY8Nn33nnndhuu+3Ss0466aR0GxHx9ttvp9tu3bqVZp97\n7rml/pRTTin1P/7xj/9l8y+55JLS7Ndee63UDxgwoOGzHTt2jM022yw968wzz0y3ERF/+ctf0u1Z\nZ51Vmn3CCSeU+oceeqjUV+6BERE33HBDut16661LsyvPF43yyRQAAECCZQoAACDBMgUAAJBgmQIA\nAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFim\nAAAAEixTAAAACS2ampoaP9yixayI+Mf/3pcD/83ApqamXo0cdH3yL+D65N+Z65N/d65R/p01dH02\na5kCAADgP/nP/AAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkNC6OYd79uzZNGjQoPSw\n119/Pd1GRKy//vrptvp/AT9v3rxSv2jRolI/ePDgUr9q1ap0u3z58tLsjz/+ON2uWLEiVq5c2aKR\nsy1btmxq2TL/94G2bdum24jaz6lPnz6l2Z07dy71y5YtK/WtWrUq9bNnz063ld95RETv3r3T7fTp\n02PevHkNXZ8tWrQoXZ/V73OTTTZJt0uWLCnNrn7tVR988EGpr9w/+/fvX5o9derUdNuc++dqq63W\n1KNHj/SsmTNnptuIiA022CDdfvLJJ6XZffv2LfWV+1dE/f4/f/78dLty5crS7MmTJ5f6lStXzm70\n35nq0KFDU+W9rlOnTuk2IuLTTz9Nt5Vn54iIKVOmlPqOHTuW+lmzZpX6zTbbLN1W338qz/+Nvsc3\na5kaNGhQvPTSS+kvqlevhl4v/0fjxo1LtytWrCjNfuCBB0r93/72t1I/duzYUr948eJ0W1mGIiK+\n973vpdvm3LxatmxZWioGDhyYbiMi/vGP/L8lePTRR5dm77rrrqX+/fffL/VdunQp9XfeeWe6bd++\nfWn2CSeckG5HjhzZ8NmWLVtGhw4d0rMqbUTECy+8kG7feuut0uzqG3n1j2F77713qa/cPy+//PLS\n7LPOOivdNmcR69GjR5x99tnpWdddd126jYh45pln0u15551Xmn3JJZeU+ttuu63Un3LKKaV+/Pjx\n6bZybUdEHHvssaV+3rx5Db9xdu7cOQ499ND0rC233DLdRkRcdtll6fbuu+8uzT755JNLfeWPaRER\nt956a6l/7rnn0u3EiRNLsyt/6G70Pd5/5gcAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAA\ngATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACS2ampoaPtyhQ4emIUOG\npId96UtfSrcRERtssEG67dSpU2n2p59+WupPOumkUv+9732v1B944IHpdtCgQaXZJ554YrqdPHly\nLF26tEUjZ7t379604447pme98cYb6TYiYvvtt0+3Tz31VGn2u+++W+rXWWedUr9q1apS//HHH6fb\nyy67rDR7zJgx6XbSpEmxZMmShq7PQYMGNV1wwQXpWddee226jYi46qqr0u0999xTmn311VeX+ur9\ne8aMGaX+oYceSrcdOnQoze7WrVu6Pe200+KDDz5o6Ppca621mk4++eT0rJkzZ6bbiIgJEyak20mT\nJpVm77PPPqX+oIMOKvWvvPJKqR84cGC6HTp0aGn2Aw88UOpPPfXUl5uamrZo5OwWW2zR9NJLL6Vn\nPfHEE+k2ImLzzTdPt5MnTy7NrtyDIiJuu+22Ur/NNtuU+t69e6fb7bbbrjS78gx7yCGHxFtvvfU/\n3kN9MgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZ\nAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAQuvmHF5jjTXijDPOSA9bY4010m1ExAUX\nXJBun3nmmdLsr33ta6W+R48epf7JJ58s9ZXf24MPPliafd9996XbQw45pOGzffv2jUsvvTQ96/zz\nz0+3EREtWrRIt8cee2xp9p133lnq//a3v5X6du3alfr27dun2z/84Q+l2RtuuGG6Pf300xs+u2LF\nivjss8/Ss/bee+90GxHx9ttvp9uzzz67NHuvvfYq9S+++GKpf+2110r9Mccck26ffvrp0uzu3bun\n2+a8LqdOnVr6PVdfh0cccUS6HT9+fGn2m2++WerXXXfdUn/CCSeU+o033jjd/va3vy3NHjNmTKlv\njg8//DD23XffdN+c54l/Zu7cuel29OjRpdnf+c53Sv3tt99e6g8//PBS/8QTT6Tbr371q6XZ99xz\nT7pdsGBBQ+d8MgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEy\nBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACAhNbNOfzZZ5/FXXfdlR42evTodBsR0a9f\nv3R75JFHlmYvW7as1N95552l/tJLLy31BxxwQLodNGhQafaYMWPS7Zw5cxo+u3z58vjHP/6RnjVk\nyJB0GxGxYMGCdHvaaaeVZnfu3LnUH3zwwaW+W7dupX7rrbdOt825Rv6Z6dOnp9vly5c36+zHH3+c\nnlW18847p9sZM2aUZk+aNKnUb7jhhqV+6NChpf7KK69Mt5X7X0TE+uuvn26bc21vtNFGMW7cuPSs\ntddeO91GRIwfPz7dtmvXrjS7detmPQr9N/PmzSv1U6ZMKfUzZ85Mt+eff35p9hprrFHqm6NTp06x\n5ZZbpvvZs2eX5v/ud79Lt0cffXRp9vXXX1/qL7744lL/7rvvlvrK19+yZe1znyVLlqTbFStWNHTO\nJ1MAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAA\ngATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJLRuzuF11103/vjHP6aHrbHGGuk2IqJPnz7p\n9u233y7N7tevX6n/7LPPSv2PfvSjUj916tR0+/DDD5dmL1myJN025+e2+uqrx/bbb5+eVWkjIh59\n9NF0O2TIkNLs119/vdR379691FdfH7fddlu6veWWW0qzjz/++P8rs/v06ROnn356elbV3/72t3T7\n17/+tTS7Zcva3+3+/Oc/l/pzzz231A8dOjTdfvHFF6XZTz/9dLpduHBhw2fnz59fuoettdZa6TYi\n4oYbbki3e+65Z2l227ZtS331vWPTTTct9bvttlu6/fGPf1yaXb2+m2Pp0qXxzjvvpPvqfWjAgAHp\ntvo7fvLJJ0v9NddcU+pnzpxZ6seMGZNu77zzztLsefPmpdvPP/+8oXM+mQIAAEiwTAEAACRYpgAA\nABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYp\nAACABMsUAABAgmUKAAAgoXVzDs+bNy9++9vfpoc9/vjj6TYi4qmnnkq3r7zySml2//79S/3GG29c\n6tu0aVPqx40bl27XWWed0uwOHTqk22effbbhs++++24MGzYsPatHjx7pNiLi0EMPTbcPPvhgaXb1\n+u7du3epHz58eKm/++670+0tt9xSmj158uR0+8knnzR8duLEiaX7wJ133pluIyImTZqUbh955JHS\n7I4dO5b63/3ud6W+b9++pX7o0KHptvq9n3TSSen2xhtvbPjssmXL4v3330/P+upXv5puIyKeeOKJ\ndFt5j4mI2GuvvUp99fq69tprS/0RRxyRbletWlWafc4555T65mjRokW0bds23VefZU4++eR0u9tu\nu5Vm33vvvaW+cg+LiDjyyCNLfa9evdJt9fXZr1+/dPvDH/6woXM+mQIAAEiwTAEAACRYpgAAABIs\nUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACA\nBMsUAABAgmUKAAAgoXVzDi9cuDCeeeaZ9LA333wz3UZEdO/ePd3269evNPvSSy8t9VtuuWWpf/LJ\nJ0v9rFmz0u1HH31Umn3IIYek2+9///sNn23fvn2sv/766VmDBw9OtxERV1xxRbrt1atXafaaa65Z\n6rfffvtSP3z48FL/ne98J9327t27NHvu3LnpdsWKFQ2f7dOnTxx22GHpWdXX4dZbb51ur7zyytLs\nkSNHlvoZM2aU+m9961ul/o033ki3J554Ymn2wIED0+2YMWMaPtuyZcvo0KFDetbDDz+cbiMi1l13\n3XR72223lWZXfr8RETfddFOpv+GGG0r9I488km7POOOM0uzqs1FznuuWL18eU6dOTc+6++67021E\nxEUXXZRuR40aVZq97bbblvr58+eX+rfeeqvUX3DBBen2iCOOKM3+9a9/nW4bfT7wyRQAAECCZQoA\nACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZ\nAgAASLBMAQAAJFimAAAAEixTAAAACa2bG7Rsmd+/Ro4cmW4jIoYNG5Zu//a3v5Vmf/vb3y71P/rR\nj0r99ddfX+pPPvnkdDtlypTS7Pvuuy/dzp8/v+GzPXv2jB/84AfpWQ888EC6jYgYPXp0uj3hhBNK\ns7fddttS3759+1J/0UUXlfq111473b766qul2RtvvHG6bc79cPHixfHiiy+mZ6211lrpNiJi+PDh\n6XbUqFGl2eeff36pr15fO+64Y6nv27dvup0zZ05p9j333JNum3N9zpgxI66++ur0rN133z3dRkSM\nGDEi3W611Val2ZdddlmpHzRoUKnv3bt3qd9ll13Sba9evUqzu3XrVuqbY+XKlTFv3rx0f8ghh5Tm\nX3XVVel21apVpdmtWrUq9YceemiprzxDRkScddZZ6XbzzTcvzV62bFm6ffzxxxs655MpAACABMsU\nAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDB\nMgUAAJBgmQIAAEiwTAEAACS0bm6wcuXK9LBnn3023UZEjB49Ot3efvvtpdk/+clPSv0hhxxS6m+6\n6aZSv8suu6TbXXfdtTT7jjvuSLezZ89u+OzHH38cI0aMSM/aeeed021ExPDhw9PtyJEjS7Pvu+++\nUv/rX//bmN0vAAAgAElEQVS61P/sZz8r9dddd126/eijj0qzzzzzzHTbnNdG9+7d4zvf+U561oMP\nPphuIyI22WSTdLvZZpuVZm+zzTalfuLEiaV++vTppb5Dhw7pdr/99ivN/vjjj9PtsmXLGj7bp0+f\n0v2zV69e6Tai9h71hz/8oTT7sssuK/UHHnhgqa9en/PmzUu31fe9vn37lvrmWLVqVSxevDjdv/ba\na6X5Tz/9dLq94IILSrMvvfTSUt+yZe2zk+o1Onbs2HRbed+MiJg8eXK6Xb58eUPnfDIFAACQYJkC\nAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRY\npgAAABIsUwAAAAmWKQAAgATLFAAAQELr5hxesWJFzJs3Lz3s9ddfT7cREYceemi6veOOO0qzBwwY\nUOqPPPLIUv/Tn/601D/22GPpdtq0aaXZp59+err9xje+0fDZ1VZbLbbddtv0rCFDhqTbiIjPPvss\n3e60006l2UuXLi31X/7yl0v9448/XurPPffcdPv222+XZr/55pvp9uOPP2747MqVK2PBggXpWfff\nf3+6jYh45JFH0u306dNLs999991S/5vf/KbU33DDDaX+hRdeSLf33nvvv2z24sWLm3W2MmvlypXp\nNiKiS5cu6XaLLbYoza6+ttq2bVvqzz777FJ/wAEHpNu99tqrNPvEE08s9eecc07DZ7t06RLf+ta3\n0rOOP/74dBsR8fDDD6fbY445pjT7gw8+KPWVn1tExFprrVXqX3rppXR78MEHl2ZXXl8rVqxo6JxP\npgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAA\nCZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIaNHU1NT44RYtZkXEP/73vhz4bwY2NTX1auSg\n65N/Adcn/85cn/y7c43y76yh67NZyxQAAAD/yX/mBwAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAA\nCZYpAACAhNbNOdylS5emPn36pIdNnTo13UZEdOjQId0uXry4NLtLly6lfsGCBaW+d+/epb5Xr4b+\nGYd/asqUKaXZq6++erqdOXNmLFiwoEUjZ1dbbbWm7t27p2e1b98+3UZEfPbZZ+m2U6dOpdlz5swp\n9euss06pr3zvEbXre+nSpaXZLVo0dHn9U9OmTYu5c+c29D/QokWL0r9DMWTIkEoeH374Ybpdc801\nS7Or/VtvvVXqq9dIq1at0m3Xrl1Lsyv3z1mzZsXChQsbvn/26NEjPatdu3bpNiLi888/T7crV64s\nza7cAyIiZs+eXer79etX6v/xj/w/vdSxY8fS7HXXXbfUv/baa7Mb/XemOnbs2FR5FluyZEm6jYjo\n3Llzuq0+w1Wv8eXLl5f6WbNm/cvm9+/fvzR77ty56XbevHmxePHi//EG0axlqk+fPvHzn/88/UWd\nccYZ6TYi4stf/nK6nTBhQmn28OHDS/2f/vSnUn/CCSeU+iOPPDLdnnzyyaXZO+64Y7o97bTTGj7b\nvXv3Zp3/rzbYYIN0GxFx1113pdutt966NPvee+8t9ePGjSv1Y8aMKfWV63vixIml2ZWHwIMPPrg0\nuzmuueaaUr/vvvum22OPPbY0+/zzzy/1m2yySal///33S33lAW6PPfYozR42bFi6vfDCCxs+26NH\njzjvvPPSswYPHpxuIyJeffXVdDtv3rzS7Natm/Uo9N/ccccdpf7iiy8u9cccc0y63XTTTUuzx48f\nX+q7dOnS8CbYpUuXOOyww9Kz3nzzzXQbEbHTTjul2+oz3Pz580v9J598UupvuummUj9p0qR0e/XV\nV5dm33fffen2xhtvbOic/8wPAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAE\nyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABJaN+fwggUL4oknnkgPu/TSS9NtRMRT\nTz2Vbv/617+WZj/55JOlvnv37qX+mWeeKfXHHHNMuh0zZkxpdq9evdJt69aNX6JNTU2xYsWK9KwZ\nM2ak24iIV155Jd22bdu2NHvChAmlfvPNNy/1m266aan/6KOP/mWzt9tuu3TbokWLZp1v2TL/96vK\ntR0Rceqpp6bb6vV59dVXl/oFCxaU+so9KCLi9ttvT7ejR48uzZ44cWK6XbJkScNnFy1aFE8//XR6\n1vLly9NtRETHjh3T7eGHH16aff3115f6H/3oR6X+pZdeKvW77LJLup08eXJp9lFHHVXqm2PevHnx\n0EMPpfuVK1eW5t96663p9uyzzy7N7tGjR6nv27dvqf/www9L/emnn55uhwwZUprd1NRU6hvhkykA\nAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJl\nCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAElo35/DixYvj+eefTw877rjj0m1ExMiRI9PtiBEj\nSrNHjRpV6h9++OFSv2zZslK/6667ptuhQ4eWZk+fPj3drly5suGzCxcujKeeeio9q2vXruk2IqJv\n377p9umnny7N7tixY6n/7W9/W+rHjBlT6ldbbbV0e8EFF5Rm//3vf0+3rVq1avjs+uuvH7feemt6\nVqWNiNh///3T7RdffFGafd5555X6DTbYoNSfeeaZpX6//fZLt23atCnNvvHGG9PtI4880vDZnj17\nxuGHH56eddppp6XbiIjjjz8+3e68886l2e+9916p33fffUv90qVLS/3ZZ5+dbqvf+/Dhw0v9r3/9\n64bPDho0KO644470rBdffDHdRkRstNFG/5I2IuLYY48t9QceeGCprz5j7LTTTul2woQJpdnPPvts\nul24cGFD53wyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIF\nAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAICE1s053KJFi2jVqlV62FNPPZVuIyJeeuml\ndDtgwIDS7D333LPUX3jhhaX+iiuuKPXf+MY30u3pp59emn3DDTek244dOzZ8dtmyZTFp0qT0rG7d\nuqXbiIiZM2em21dffbU0e/311y/1X//610t9+/btS/3IkSPT7bXXXlua/X/L1KlT44wzzkj3xxxz\nTGn+Rx99lG5vvPHG0uxTTjml1F955ZWlfvLkyaV+7Nix6Xb58uWl2auttlq6bc77dceOHWOLLbZI\nz/ryl7+cbiMi5s6dm27XXXfd0uw//vGPpf6kk04q9d27dy/1O++8c7qtvu+NGDGi1DfHJ598Euec\nc06632WXXUrzK6/FMWPGlGYPGTKk1J999tmlfo011ij1zz//fLodOnRoafaHH36YbpctW9bQOZ9M\nAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAAS\nLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJDQujmHu3XrFgcccEB62MSJE9NtRMQ+++yTbtdb\nb73S7LFjx5b64447rtTfddddpf6kk05Kt48++mhp9vbbb59uJ0+e3PDZVatWxeLFi9OzWrVqlW4j\nIvr06ZNu11xzzdLsd999t9QvXbq01I8bN67Uf//730+3/fr1K81+/vnn021zrrfWrVuXrpHVVlst\n3UbUrs8zzjijNHv06NGl/phjjin11fv3Lbfckm5HjhxZmr3GGmuk2+a8rqdOnRqnn356etaRRx6Z\nbiMiHnjggXT79a9/vTR71KhRpX7YsGGlfvny5aV+9913T7dvv/12afaNN95Y6ptj8eLF8eKLL6b7\nKVOmlObvueee6fatt94qzR40aFCpf/bZZ0t9r169Sn3lZ9+5c+fS7IULF6bbbbfdtqFzPpkCAABI\nsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAA\nABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIKF1cw5//vnn8corr6SH3X333ek2IuKSSy5Jt8uXLy/N\n3njjjUv9ZZddVuoff/zxUn/UUUel22effbY0e+jQoel22LBhDZ9dvnx5TJo0KT2rX79+6TYiYvfd\nd0+3RxxxRGn25ZdfXup/+MMflvqrrrqq1H/9619Pt6eddlpp9sCBA9PttGnTGj67ZMmSeOONN9Kz\nHnvssXQbEfHoo4+m27Fjx5Zmd+nSpdQ35+f8z1TvYQcccEC6PfXUU0uzr7jiinT76aefNnx22bJl\npfvn6quvnm4jIubOnZtuq++v3/3ud0v9q6++Wuqb83v6Z0aPHp1uH3744dLsESNGlPrmvPc0NTXF\nihUr0rNeeOGFdBsRccEFF6TbbbbZpjT7ww8/LPUPPPBAqf/ss89KfeUZ9uijjy7Nbtnyf/9zI59M\nAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAAS\nLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJDQujmHBw4cGDfffHN62LBhw9JtRMSjjz6abu+/\n//7S7D322KPUP/HEE6V+woQJpX6nnXZKt3vttVdp9nHHHZduZ86c2fDZgQMHxgUXXJCedfzxx6fb\niIhrrrkm3X7pS18qzT7xxBNLfXN+zv/MsmXLSv2BBx6YbjfccMPS7K5du6bbWbNmNXx2vfXWi9//\n/vfpWYceemi6jYi477770u3LL79cmv3ee++V+iVLlpT6adOmlfo777wz3VbeMyMiTj/99HT797//\nveGzCxcujMcffzw9a5NNNkm3Va1atSr1d999d6kfP358qd9tt91K/SWXXFLqK84777z/a7Nat24d\nPXr0SPcDBw4szT/22GPTbYsWLUqzf/zjH5f64cOHl/ojjjii1E+ePDndbrrppqXZU6ZMSbfLly9v\n6JxPpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixT\nAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIaN2cwytWrIjZs2enh33pS19KtxERw4YN\nS7d/+tOfSrOHDh1a6t99991SP2HChFI/d+7cdHvhhReWZg8ZMiTdjhkzpuGzixYtiueeey49a6ut\ntkq3EREzZsxIt2PHji3N7t+/f6kfN25cqV9zzTVL/XnnnZduly9fXpp9xBFHpNtTTjml4bNz5swp\n/Z4rr6OIiJtvvjndfvrpp6XZBx54YKlvzs/5nxk/fnyp33777dNt5dqOiOjatWu6bdWqVcNnN998\n89L98+KLL063Ef95/8565513SrM33HDDUv/555+X+oULF5b6G264Id0+/fTTpdmPPfZYqW+OddZZ\nJ37xi1+k+3nz5pXm//a3v023/fr1K82u3IMiIgYOHFjqq89Hm222WbrdcsstS7Mrz/8LFixo6JxP\npgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAA\nCZYpAACABMsUAABAgmUKAAAgwTIFAACQ0Lo5h19//fXo06dPetiECRPSbUTE9OnTS33FU089Vep3\n3HHHUv/AAw+U+m9961vp9j/+4z9Ks7fZZpt0+8knnzR8tlWrVtG5c+f0rJ122indRkRsscUW6Xbw\n4MGl2dttt12pHzJkSKm///77S33lGttvv/1Ks6+++up0O2PGjIbPduvWLQ4++OD0rNtvvz3dRkSc\nddZZ6fbKK68sza7ev1asWFHqjzrqqFK/bNmydDt+/PjS7AsvvDDdTps2reGzf//732PAgAHpWSef\nfHK6jaj9jg855JDS7Opr6+9//3up32OPPUp927Zt0+26665bmj1lypRS3xzLli2L9957L91vvPHG\npfk33XRTuq3+jnv37l3qDzvssFK/2267lfp+/fql25/97Gel2ZVr/PPPP2/onE+mAAAAEixTAAAA\nCZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQA\nAECCZQoAACDBMgUAAJBgmQIAAEho3ZzDLVu2jNVWWy09rHv37uk2IuK0005Lt506dSrNvvLKK0v9\niBEjSv1Xv/rVUv/888+n26VLl5ZmV35v5557bsNnv/jii5g+fXp61qWXXppuIyI++uijdHv00UeX\nZj/00EOlfsKECaX+u9/9bqmv/N7+8pe/lGb/9a9/TbcHHXRQw2cXLVoUzz77bHrW8uXL021E7ed0\n8MEHl2ZXXhsREaeeemqpX7RoUalv0aJFup04cWJp9iGHHJJum/NzX3vtteOWW25Jz7r99tvTbUTE\nrrvumm733HPP0uwePXqU+spzUUTE7rvvXurvv//+dNu/f//S7FmzZpX65liyZEm888476f6ll14q\nzf/kk0/S7bvvvlua/Ytf/KLUX3TRRaX+V7/6VamvPONUv/b3338/3c6fP7+hcz6ZAgAASLBMAQAA\nJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMA\nAAAJlikAAIAEyxQAAECCZQoAACChRVNTU+OHW7SYFRH/+N/7cuC/GdjU1NSrkYOuT/4FXJ/8O3N9\n8u/ONcq/s4auz2YtUwAAAPwn/5kfAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASWjfn\ncI8ePZrWWmut9LCWLWu725w5c9Lt0qVLS7N79uxZ6letWlXqZ86cWepXrFiRbldbbbXS7BkzZqTb\nlStXxqpVq1o0crZNmzZN7du3T8/6/PPP021ERP/+/dPt/PnzS7OrfZcuXUp93759S/3ixYvTbfW1\nvfrqq6fbmTNnxoIFCxq6Pjt06NDUuXPn9Kzq99m9e/d0O2vWrNLslStXlvoBAwaU+mnTppX6ZcuW\npduNNtqoNHvevHnpdvbs2bFw4cKGrs9OnTo1de3aNT2r+h5X+WdaqvfuyusyIqJbt26lfvny5aW+\ndetmPcr9f1Rfm0uWLCn1kydPnt3ovzPVqVOnpsrP+rPPPku3EbX7QL9+/Uqzq9d427ZtS331GaPy\n/lV9fXbo0CHdzp8/Pz7//PP/8R7arFfgWmutFU8++WT6i2rXrl26jYj41a9+lW7ff//90uzDDjus\n1FdvOD//+c9LfWUZ23bbbUuzr7nmmnTbnJtf+/btY/PNN0/Pevnll9NtRMR5552Xbh9++OHS7Ice\neqjUb7/99qX+oosuKvUTJkxItxMnTizN3mGHHdLtaaed1vDZzp07x0EHHZSe9d5776XbiIhDDz00\n3d54442l2XPnzi31N910U6mvXp8ffvhhun3qqadKsx988MF025zvu2vXrnHcccelZ1Uf9ioLRfXe\nvdNOO5X6Aw44oNRPnTq11Pfo0SPdVh+S33jjjVL/wx/+sOF/hLdbt25x4oknpmeNGTMm3UbU7gPN\nea/4Z1588cVSP2jQoFI/fvz4Uv/uu++m2+rzycYbb5xub7/99obO+c/8AAAAEixTAAAACZYpAACA\nBMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoA\nACChdXMOL1y4MJ544on0sOeffz7dRkRstdVW6bZVq1al2WPGjCn1N998c6k/7LDDSv3LL7+cbl96\n6aXS7HPOOSfdXnXVVQ2f/eKLL2L69OnpWYcffni6jYiYOXNmuv3ud79bmn3uueeW+s6dO5f6quXL\nl6fb+fPnl2YfcMAB6XbFihUNn21qamrW+f9q0KBB6TYi4oorrki3L7zwQmn2hhtuWOqXLFlS6v/w\nhz+U+o022ijdtm3btjS78tpuzj1pwYIFpZ/T17/+9XQbEXHqqaem27333rs0+7LLLiv13/zmN0v9\nNttsU+or97BRo0aVZp944omlvjm6d+8eBx54YLrfYIMNSvPnzZuXbnfYYYfS7JUrV5b6yrN7RMQr\nr7xS6h977LF0+/vf/740+49//GO6XbBgQUPnfDIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJ\nlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAA\nQELr5hzu0KFDbLTRRulhH3/8cbqNiDjwwAPT7UEHHVSavfbaa5f6Pn36lPqrrrqq1A8YMCDdrrHG\nGqXZs2fPTrcrVqxo+GyrVq2iW7du6VnHH398uo2IWLRoUbpdvHhxafbNN99c6tddd91SX/neIyL2\n2muvdLvddtuVZj/zzDPpdtq0aQ2f7d69exx88MHpWd/85jfTbUTEE088kW4vvvji0uzx48eX+k02\n2aTU/+53vyv1lfvKb37zm9Ls6667Lt2eccYZDZ/t3bt3nHDCCelZM2fOTLcREcOGDUu3u+yyS2n2\n888/X+ovv/zyUl95j4xo3u/5vxo1alRp9q9+9atSf8ABBzR8dsqUKXHqqaemZ6233nrpNiJigw02\nSLc777xzafZXvvKVUv+1r33tXzr/Zz/7Wbq95557SrPHjh2bbk855ZSGzvlkCgAAIMEyBQAAkGCZ\nAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAk\nWKYAAAASLFMAAAAJrZtzePLkyXH88cenh61cuTLdRkQ8/PDD6faKK64ozR46dGipv+CCC0r9rFmz\nSv3ee++dbrt3716avfbaa6fbdu3aNXx28ODBceedd6Znrbvuuuk2IuKuu+5Kt0899VRp9pw5c0r9\naqutVuq7du1a6s8555x0O2zYsNLsRx55JN0eeOCBDZ+dOnVqnH322elZAwYMSLcREUuXLk23Z511\nVmn2HnvsUeofffTRUr/vvvuW+h122CHdrlixojT7tddeS7eff/55w2fbtGkTa665ZnrW9OnT023E\nf96/s773ve+VZo8YMaLU//rXvy71m266aam//PLL0+2nn35amj116tRS3xz9+/cvfa+LFi0qzf/G\nN76Rbt98883S7AcffLDUn3jiiaX+oIMO+pf1o0aNKs2u7B5NTU0NnfPJFAAAQIJlCgAAIMEyBQAA\nkGCZAvh/2rXb0Kzrvo/jP20mmQuEvIlBV6NprXAVhmVUy8KykiKK8kmBRBndYFRqVtiM0iDqiasG\nQaiRkCMQI00RtBSy8nZGGIU2nCy8SW0uzbUd54Pz2XkF17Hvl4uzB6/X4/+br+h/x/ZhAgAEGFMA\nAAABxhQAAECAMQUAABBgTAEAAAQYUwAAAAHGFAAAQIAxBQAAEGBMAQAABBhTAAAAAcYUAABAgDEF\nAAAQUDOYh8ePH1/Wrl0bPrZp06ZwW0opjY2N4XbJkiWp2wsXLkz1L7/8cqqfMWNGqv/yyy/D7VVX\nXZW63dzcHG5PnTpV9bNHjx4ty5cvD99av359uC2llIMHD4bbKVOmpG4vWrQo1f/111+pvru7O9VP\nnjw53O7cuTN1+4MPPgi3R44cqfrZP//8s+zfvz986+effw63pZTy7bffhtuenp7U7S1btqT6Bx98\nMNWfPHky1T/99NPhdsWKFanbl1xySbg9e/Zs1c92dXWV+fPnh2+NGzcu3JZSyptvvhlun3/++dTt\n7OfvK6+8kurHjh2b6nt7e8Ptvn37UrcrlUqqH4wjR46Utra2cD9v3rzU/dbW1nCb/R5dV1eX6jPf\ne0op5eKLL071mfcs+++W+R4/MDBQ1XN+MwUAABBgTAEAAAQYUwAAAAHGFAAAQIAxBQAAEGBMAQAA\nBBhTAAAAAcYUAABAgDEFAAAQYEwBAAAEGFMAAAABxhQAAECAMQUAABBgTAEAAAQYUwAAAAE1g3n4\n8OHDpa2tLXxs9uzZ4baUUnbv3h1u9+7dm7p96aWXpvrzzjsv1S9fvjzVT506NdxOmjQpdfv6668P\ntxs2bKj62ZMnT5Y1a9aEby1dujTcllJKfX19uJ05c2bqdlNTU6qfP39+qn/vvfdSfeazYdu2banb\nhw4dCrfHjx+v+tmampoyatSo8K2RI0eG21Jyn4Fz5sxJ3T5z5kyq7+vrS/WZz79SSjl69Gi4zf7Z\nx4wZE24HBgaqfra/v7/09PSEb3399dfhtpRSVq5cGW4nTJiQut3d3Z3q29vbU31ra2uqf+utt8Lt\njz/+mLp96tSpVP/cc89V/eyxY8dS70nmZ5FSSpk1a1a4ff/991O3B/P39HfGjx+f6hcuXJjqr7zy\nynA7efLk1O3FixeH22o/G/xmCgAAIMCYAgAACDCmAAAAAowpAACAAGMKAAAgwJgCAAAIMKYAAAAC\njCkAAIAAYwoAACDAmAIAAAgwpgAAAAKMKQAAgABjCgAAIMCYAgAACDCmAAAAAoZUKpWqHx49enTl\nvvvuCx/r6+sLt6WU8tRTT4Xb2bNnp24/++yzqb6hoSHVf/XVV6n+uuuuC7dTp05N3b7wwgvD7YkT\nJ0pfX9+Qap5tbGysfPjhh+FbU6ZMCbellLJly5Zw29XVlbo9bdq0VL9x48ZUP3fu3FQ/Z86ccDt9\n+vTU7TVr1oTbd999txw6dKiq93Po0KGV4cOHh29l388xY8aE25aWltTtl156KdX/8ssvqf6dd95J\n9WfPng23r732Wur2ypUrw+2MGTNKR0dHVe/nNddcU9m8eXP41k033RRuSymls7Mz3O7cuTN1e/ny\n5feSLs8AAAW4SURBVKn+zJkzqX7cuHGpvra2Ntz29/enbq9atSrVb9q0aUelUrm2mmdra2srV199\ndfhW5nt0KaW0t7eH2x07dqRu33777al+9erVqb6mpibV33HHHeE2ux1uvvnmcNvc3Fx27dr1f36G\n+s0UAABAgDEFAAAQYEwBAAAEGFMAAAABxhQAAECAMQUAABBgTAEAAAQYUwAAAAHGFAAAQIAxBQAA\nEGBMAQAABBhTAAAAAcYUAABAgDEFAAAQYEwBAAAE1Azm4ePHj5dVq1aFj914443htpRSTpw4EW67\nurpStz/66KNU//jjj6f6xx57LNXffffd4fbaa69N3X777bfD7WD+3gYGBsrp06fDtzZu3BhuSyll\nz5494XbSpEmp21988UWqz35tHjt2LNV/88034XbFihWp21u3bg237e3tVT87YsSIMnHixPCtu+66\nK9yWUsqyZcvC7b333pu6vXbt2lT/wAMPpPoFCxak+v3794fb8ePHp27fdttt4fbgwYNVP9vR0VHq\n6urCt+6///5wW0ru/WxoaEjdfvXVV1P9J598kuo3b96c6ltaWsJt9v389ddfU/1gXHDBBWXatGnh\nvqmpKXW/vr4+3C5ZsiR1u7m5OdX39PSk+o6OjlQ/atSocHvuueembm/fvj3c/vHHH1U95zdTAAAA\nAcYUAABAgDEFAAAQYEwBAAAEGFMAAAABxhQAAECAMQUAABBgTAEAAAQYUwAAAAHGFAAAQIAxBQAA\nEGBMAQAABBhTAAAAAcYUAABAQM1gHp44cWLZtGlT+Nj27dvDbSmlPPnkk+H2008/Td0eOXJkqt+1\na1eqb2pqSvXbtm0Lt3v37k3drqurC7fDhg2r+tmhQ4em/p1eeOGFcFtKKY8++mi4zb4fo0ePTvX1\n9fWpfsGCBan+p59+Crfnn39+6vYjjzwSbg8cOFD1s/39/aWnpyd86/PPPw+3pZSyaNGicJv99123\nbl2q3717d6rv7u5O9b29veF28uTJqduZz4YZM2ZU/exFF11UnnnmmfCtzs7OcFtK7uvw1ltvTd1e\nunRpqr/nnntS/YgRI1L9hg0bwu0NN9yQuv3QQw+l+paWlqqfPeecc8qoUaPCtz7++ONwW0opy5Yt\nC7cdHR2p262trak++/X5+uuvp/rMz+9XXHFF6vaECRPC7fDhw6t6zm+mAAAAAowpAACAAGMKAAAg\nwJgCAAAIMKYAAAACjCkAAIAAYwoAACDAmAIAAAgwpgAAAAKMKQAAgABjCgAAIMCYAgAACDCmAAAA\nAowpAACAAGMKAAAgoGYwD/f29pbt27eHjw0bNizcllLKDz/8EG737duXut3W1pbqd+zYkeonTJiQ\n6g8cOBBua2trU7ePHz8ebvv7+6t+trOzszzxxBPhW5l3u5RSPvvss3A7ffr01O3Vq1en+sbGxv9q\nf/nll4fbO++8M3V73bp14XbPnj1VP9vY2Fi2bt0avvXdd9+F21JKaWhoCLeXXXZZ6vaLL76Y6h9+\n+OFUP3fu3FTf0tISbufNm5e6PZh37D+dPn16UM9+//334VvLli0Lt6Xkvg5/++231O2ZM2em+sWL\nF6f6zPtVSiljx44Nt7fcckvq9htvvJHqB+Pw4cOltbU13Dc1NaXuz5o1K9yuX78+dXvDhg2pvqOj\nI9VnfrYqJfeeDebnwL+T+fn9999/r+o5v5kCAAAIMKYAAAACjCkAAIAAYwoAACDAmAIAAAgwpgAA\nAAKMKQAAgABjCgAAIMCYAgAACDCmAAAAAowpAACAAGMKAAAgwJgCAAAIMKYAAAACjCkAAICAIZVK\npfqHhww5Ukrp/P/748D/8j+VSmV0NQ96P/kv8H7yT+b95J/OO8o/WVXv56DGFAAAAP/mv/kBAAAE\nGFMAAAABxhQAAECAMQUAABBgTAEAAAQYUwAAAAHGFAAAQIAxBQAAEGBMAQAABPwLxl+WFmKAGLUA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPsAAAN7CAYAAAAz859hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm4lWW9+P/PDTJsEFGZFFCxNIcs00i9aPJYllI5lJbD\nKQsTNYdsMk9pmh7NrCw0zYPjcfqZVnoszbLMofJoaJoKTqEJRioyqIQi8Pz+iHNal988sBefZ+14\neL2uiyvZe613nw08ey9u7vvZpaqqAAAAAABWfb16egAAAAAAIIfFPgAAAABoCIt9AAAAANAQFvsA\nAAAAoCEs9gEAAABAQ1jsAwAAAICGsNgHAAAAAA1hsQ8AAAAAGsJiHwAAAAA0hMU+AAAAAGiINbrz\n4MGDB1fDhw9PHeCJJ55I7UVE9O7dO705bNiw9OaiRYvSm0899VR6M/v3PCJizpw56c3NNtssvfn4\n44+n9l588cV4+eWXSzvP7dOnT9WvX7/UedZaa63UXsTfPsZsa6+9dnqzq6srvfn888+nNxcsWJDe\n3GCDDdKbL7zwQnqzjl/Pp59+enZVVd3+hD5o0KAq++tAVVWpvYiIP//5z+nNjTbaKL1ZSlufBv9P\ngwYNSm9Onz49vdm3b9/05uDBg9ObjzzySHqzqqq2rr+IiH79+lUDBw5MnaeO13Z1fA3s379/evPJ\nJ59Mb9bxtaWOj72O36M6/j7z0ksvpfaWLl0aS5cubeuTb9++favs34tNN900tRcRsXDhwvTmrFmz\n0pt1vGbacsst05tz585Nb64qf1fNvv6ef/75WLhwYf6Ln1VcKSX/xXC9flZV1S49PcSK6tZi3/Dh\nw+OMM85IHeCwww5L7UXUszBw8MEHpzdnzJiR3jzttNPSmx/72MfSm5dffnl68+qrr05vfvKTn0zt\n3XXXXW0/t1+/fvGmN70pcZqInXbaKbUXETFt2rT05p577pnefP3rX5/evOWWW9Kbd955Z3pz0qRJ\n6c3f/OY36c2bbropvTlp0qQ/tfO8YcOGxcknn5w6Sx3/4HPCCSekN88666z0Zh3/KPfOd74zvfmv\n//qv6c2RI0emNz/wgQ+kN9/znvekN19++eW2rr+IiIEDB8bOO++cOU4tr+0efvjh9GYdiyLHHnts\nevPb3/52erOOf8itYyH7iCOOSG8+9NBDqb2VWWDq379/vOUtb0mcJuK6665L7UVETJ06Nb2Z/bU/\nop7XTDfccEN686qrrkpv1vF54sgjj0xv/vGPf0ztXXnllak9eszQnh6gOxzjBQAAAICG6NbOPgAA\nAABYWXXc2qUuddyCp0529gEAAABAQ1jsAwAAAICGsNgHAAAAAA3hnn0AAAAAdJR79tXHzj4AAAAA\naAiLfQAAAADQEI7xAgAAANBRq9Ix3lWNnX0AAAAA0BAW+wAAAACgISz2AQAAAEBDuGcfAAAAAB3l\nnn31sbMPAAAAABrCYh8AAAAANIRjvAAAAAB0TCnFMd4a2dkHAAAAAA1hsQ8AAAAAGqJbx3jnzp0b\nV1xxReoAG220UWovImLrrbdOb44bNy69+fvf/z69eeyxx6Y365hz3rx56c2zzz47vXnCCSek9g4+\n+OC2nzty5Mg4/vjjE6eJ+PznP5/ai4h417veld7cdttt05ubb755enPEiBHpzfnz56c3L7vssvTm\nZpttlt487LDD0puTJk1q63n9+vWLTTbZJHWWSy65JLUXEbHFFlukN+v4Or399tunN+u4/r75zW+m\nN9/3vvelN6+77rr05umnn57ePOKII9p+7ujRo+O0005LnKaerwOHH354enOXXXZJb9bxOXv27Nnp\nzezf84h6XtfW8Wepq6srtbdgwYK2n9unT59Yf/31E6eJOO+881J7EfW8XqzjWlmyZEl6c8MNN0xv\nfv3rX09v3nbbbenNxx9/PL2Z/bln7ty5qb0mcYy3Pnb2AQAAAEBDWOwDAAAAgIaw2AcAAAAADdGt\ne/YBAAAAwMpyz7762NkHAAAAAA1hsQ8AAAAAGsIxXgAAAAA6yjHe+tjZBwAAAAANYbEPAAAAABrC\nYh8AAAAANMRy79lXSpkYERMjIgYOHFj7QMDftV5/w4cP7+FpYPXSev2tt956PTwNrH5ar8FRo0b1\n8DSwemm9/gYMGNDD0wBN5Z599Vnuzr6qqiZXVTW2qqqx/fv378RMwDKt19/gwYN7ehxYrbRef2uv\nvXZPjwOrndZrcN111+3pcWC14u+AAKs2x3gBAAAAoCGWe4wXAAAAALKUUhzjrZGdfQAAAADQEBb7\nAAAAAKBNpZRdSikPlVIeLaUc8w/eX0opZyx7/x9KKdu+4v29Sym/L6X8JGMex3gBAAAA6KimHOMt\npfSOiLMiYueImBkRvyulXFtV1dSWh+0aEZsu+7F9RHxv2f/+j09HxLSIWCtjJjv7AAAAAKA920XE\no1VVTa+qalFEXBERu7/iMbtHxMXV3/x3RKxdSlk/IqKUMjoi3hcR52UNZLEPAAAAANozKiJmtPx8\n5rK3rehjvhMRR0fE0qyBLPYBAAAAwKsbWkqZ0vJjYka0lPL+iHi6qqq7Mnr/o1v37Bs2bFgcfvjh\nmf//MWHChNReRMQFF1yQ3lywYEF689BDD01v3n///enN73znO+nN//zP/0xvPv744+nN2bNnp/YW\nL168Us999tlnE6eJ2GmnnVJ7ERFVVaU311lnnfTmiSeemN68884705s///nP05tDhw5Nbz744IPp\nzTFjxqQ327V48eL0zwd1fHznnntuevPtb397evP0009Pb953333pzXvuuSe9+c1vfjO9ecstt6Q3\nzzrrrPTmyvjTn/4UEyemvKb+X9m9iIj9998/vTlp0qT05mabbZbenDZtWnoz+/NuRMTGG2+c3rzr\nrtS/n0VExJe//OXU3re+9a22nzt8+PA48sgjE6ep51qp47XI+uuvn94cN25cevOMM85Ib9bxsdfx\nezR16tTlP6ibDjjggNReHX/3bYpV7J59s6uqGvsq73syIjZo+fnoZW9bkcd8KCJ2K6WMj4j+EbFW\nKeXSqqr+dWWGtbMPAAAAANrzu4jYtJSycSmlb0TsExHXvuIx10bEx5Z9V94dImJ+VVWzqqr6t6qq\nRldVNWbZ825a2YW+CN+NFwAAAADaUlXV4lLK4RHxs4joHREXVFX1QCnlkGXvPyciro+I8RHxaET8\nNSI+UedMFvsAAAAA6KhV7Bjv/6mqquvjbwt6rW87p+W/q4g4bDmNmyPi5ox5HOMFAAAAgIaw2AcA\nAAAADWGxDwAAAAAawj37AAAAAOioJt2z75+NnX0AAAAA0BAW+wAAAACgIRzjBQAAAKBjSimO8dbI\nzj4AAAAAaAiLfQAAAADQEI7xAgAAANBRjvHWx84+AAAAAGgIi30AAAAA0BAW+wAAAACgIdyzDwAA\nAICOcs+++tjZBwAAAAANYbEPAAAAABrCMV4AAAAAOsox3vqUqqpW+MFbb711dcMNN6QOsNNOO6X2\nIiK6urrSm294wxvSm/fcc0968yMf+Uh6s3fv3unNww47LL355je/Ob151113pfbe8Y53xN13393W\nZ7QBAwZUm222Weo8dfwZvOSSS9KbO+64Y3pznXXWSW/ut99+6c0zzzwzvXnOOeekN88444z05rhx\n49KbN954411VVY3t7vOGDx9e7bXXXqmzDBkyJLUXEbFkyZL05lVXXZXePPXUU9Ob2Z8fIyKuuOKK\n9OaoUaPSm3Pnzk1vzp8/P7152mmntXX9RUT06tWr6tOnT+o8/fr1S+1FRCxevDi9uXTp0vTmoYce\nmt7s27dvevP9739/evPoo49Ob37ta19Lbx500EGpvRkzZsSLL77Y1mvQ/v37V2PGjEmdZ+rUqam9\niIjXvOY16c3sjzuinj/X48ePT29+7nOfS2/ef//96c06XoN+/vOfT+3NnDkzXnrpJatar7DGGmtU\ngwcP7ukxVticOXPafh3TExzjBQAAAICGsNgHAAAAAA3hnn0AAAAAdJR79tXHzj4AAAAAaAiLfQAA\nAADQEI7xAgAAANAxpRTHeGtkZx8AAAAANITFPgAAAABoCMd4AQAAAOgox3jrY2cfAAAAADTEcnf2\nlVImRsTEiIhRo0bVPhDwd63XX58+fXp4Gli9tF5/a665Zg9PA6uf1msQ6KzW62+NNRwGA1jVLHdn\nX1VVk6uqGltV1dghQ4Z0YiZgmdbrzwst6KzW66+rq6unx4HVTus16JgPdFbr9de7d++eHgeAbrJ6\nAAAAAEBH+ce8+rhnHwAAAAA0hMU+AAAAAGgIx3gBAAAA6CjHeOtjZx8AAAAANITFPgAAAABoCIt9\nAAAAANAQ7tkHAAAAQEe5Z199urXYN2vWrDjppJNSB/jlL3+Z2ouIuO2229Kb//Ef/5HePOGEE9Kb\nQ4YMSW9+6lOfSm9+97vfTW/uscce6c2XX345tVdVVdvP7erqii222CJxmog77rgjtRcR8frXvz69\nuXTp0vTmsGHD0pt77rlnevOd73xnerOOz7tz5sxJb+69997pzRtvvLGt5y1atCiefPLJ1Fn69OmT\n2ouIuPLKK9Ob22+/fXpzyy23TG/26pV/WOGBBx5Ib5577rnpzWuuuSa9+S//8i/pzZWx3nrrxcEH\nH5zaXLhwYWovIuKqq65Kb86dOze9Wcecdby2++EPf5jeXLx4cXqzd+/e6c1HH300vdmufv36xcYb\nb5zaPOWUU1J7EZH+99SIev5+UcfrsDFjxqQ3x48fn96cMWNGevPSSy9Nbx544IGpvbPOOiu1ByvC\nMV4AAAAAaAjHeAEAAADomFKKY7w1srMPAAAAABrCYh8AAAAANIRjvAAAAAB0lGO89bGzDwAAAAAa\nwmIfAAAAADSExT4AAAAAaAj37AMAAACgo9yzrz529gEAAABAQ1jsAwAAAICGcIwXAAAAgI5yjLc+\ndvYBAAAAQENY7AMAAACAhrDYBwAAAAAN4Z59AAAAAHSUe/bVx84+AAAAAGgIi30AAAAA0BCO8QIA\nAADQMaUUx3hrZGcfAAAAADREt3b2vfDCC/Gb3/wmdYD3v//9qb2IiNGjR6c3DzrooPTmjTfemN6c\nOHFienO33XZLb5566qnpzWeeeSa9+etf/zq198ILL7T93DXWWCOGDRuWOE3Eddddl9qLiOjfv396\n86mnnkpvfvzjH09v7rHHHunNvfbaK715zz33pDdvuOGG9OaDDz6Y3mzXc889l/45e9CgQam9iIiT\nTjopvfn000+nN7u6utKbc+bMSW/W8ee6X79+6c3TTjstvXnRRRelN/fdd9+2n/v888/HTTfdlDhN\nxC233JLai6jn89ZHP/rR9OZWW22V3qzj9fdzzz2X3pw6dWp6c+bMmenNxx57LLW3Mq/n11hjjRg6\ndGjiNBHjxo1L7UVEfO5zn0tvPvzww+nNf//3f09v1nGtXHvttenN66+/Pr15yCGHpDd33HHH1N7F\nF1+c2oMV4RgvAAAAAB3lGG99HOMFAAAAgIaw2AcAAAAADWGxDwAAAAAawj37AAAAAOgo9+yrj519\nAAAAANAQFvsAAAAAoCEc4wUAAACgoxzjrY+dfQAAAADQEBb7AAAAAKAhlnuMt5QyMSImRkT06dOn\n9oGAv2u9/gYNGtTD08DqpfX6c8QAOq/1GuzXr18PTwOrl9brb+DAgT08DQDdtdzFvqqqJkfE5IiI\nAQMGVLVPBPyv1utvxIgRrj/ooNbrr1evXq4/6LDWa3DQoEGuQeig1utvyJAhrj+gFv5BvT6O8QIA\nAABAQ1jsAwAAAICGWO4xXgAAAADIUkpxjLdGdvYBAAAAQENY7AMAAACAhnCMFwAAAICOcoy3Pnb2\nAQAAAEBDWOwDAAAAgIbo1jHe173udfHzn/88dYC3vvWtqb2IiKFDh6Y3e/fund78xCc+kd783ve+\nl96cNm1aevNNb3pTevPWW29Nb957772pvZkzZ7b93NmzZ8dFF12UN0xEHHTQQam9iIjRo0enN885\n55z05siRI9Obv/nNb9Kbf/7zn9ObdVh77bXTm5deeml6c4MNNmjreUOHDo299tordZaf/vSnqb2I\niLvvvju9Wcc1PWnSpPTmGWeckd784Ac/mN585JFH0puzZs1Kb/bp0ye9uTKGDh0aEyZMSG3uueee\nqb2IiPPOOy+9+cwzz6Q33//+96c3H3jggfRmHZ8r3vve96Y3P/vZz6Y3Tz/99NTeCy+80PZz586d\nGz/4wQ8Sp4k46qijUnsREQcccEB689prr01v7rDDDunNq666Kr152WWXpTdPPPHE9OZnPvOZ9Ob5\n55+f2ps9e3ZqD1aEe/YBAAAA0FHu2Vcfx3gBAAAAoCEs9gEAAABAQzjGCwAAAEBHOcZbHzv7AAAA\nAKAhLPYBAAAAQENY7AMAAACAhnDPPgAAAAA6yj376mNnHwAAAAC0qZSySynloVLKo6WUY/7B+0sp\n5Yxl7/9DKWXbZW/vX0q5s5RybynlgVLKVzPmsdgHAAAAAG0opfSOiLMiYteI2DIi9i2lbPmKh+0a\nEZsu+zExIr637O0vRcROVVVtHRFviohdSik7rOxMjvECAAAA0DGllCYd490uIh6tqmp6REQp5YqI\n2D0iprY8ZveIuLiqqioi/ruUsnYpZf2qqmZFxAvLHtNn2Y9qZQeysw8AAAAA2jMqIma0/Hzmsret\n0GNKKb1LKfdExNMRcWNVVXes7EAW+wAAAADg1Q0tpUxp+TExK1xV1ZKqqt4UEaMjYrtSylYr23SM\nFwAAAICOWsWO8c6uqmrsq7zvyYjYoOXno5e9rVuPqapqXinlVxGxS0TcvzLD2tkHAAAAAO35XURs\nWkrZuJTSNyL2iYhrX/GYayPiY8u+K+8OETG/qqpZpZRhpZS1IyJKKV0RsXNEPLiyA9nZBwAAAABt\nqKpqcSnl8Ij4WUT0jogLqqp6oJRyyLL3nxMR10fE+Ih4NCL+GhGfWPb09SPiP5d9R99eEXFlVVU/\nWdmZLPYBAAAAQJuqqro+/rag1/q2c1r+u4qIw/7B8/4QEdtkz2OxDwAAAICOWsXu2bdKcc8+AAAA\nAGgIi30AAAAA0BDdOsb78MMPx7vf/e7UAT7zmc+k9iIiJkyYkN6cOHFievPmm29Ob1566aXpzYcf\nfji9+cgjj6Q3v/GNb6Q3Z82ald5s1+jRo+OYY45Jba699tqpvYiIk08+Ob35xS9+Mb357LPPpjd3\n2GGH9Gbfvn3Tm6eeemp684EHHkhv7r777unNdi1atCieeOKJ1OZ2222X2ouI2GuvvdKbr3/969Ob\n559/fnrze9/7XnrzE5/4xPIf1E1vfvOb05tf/epX05t33HFHenNl/PWvf4177703tXnUUUel9iIi\npk+fnt6cMmVKerOO1zdz5sxJb+6xxx7pzaOPPjq9ueGGG6Y3u7q6Unu9erW/x2PIkCHxoQ99KHGa\nej6/fuUrX0lvXnbZZenNW2+9Nb154YUXpjez/wxGRCxZsiS9WYfddtsttXfLLbek9prEMd762NkH\nAAAAAA1hsQ8AAAAAGsJiHwAAAAA0RLfu2QcAAAAAK8s9++pjZx8AAAAANITFPgAAAABoCMd4AQAA\nAOiYUopjvDWysw8AAAAAGsJiHwAAAAA0hGO8AAAAAHSUY7z1We7OvlLKxFLKlFLKlMWLF3diJmCZ\n1uvvhRde6OlxYLXSev0tWrSop8eB1U7rNbhw4cKeHgdWK63X34svvtjT4wDQTctd7KuqanJVVWOr\nqhq7xho2AkIntV5/a665Zk+PA6uV1uuvb9++PT0OrHZar8Gurq6eHgdWK63XX//+/Xt6HAC6yT37\nAAAAAKAhbNUDAAAAoKPcs68+dvYBAAAAQENY7AMAAACAhnCMFwAAAICOcoy3Pnb2AQAAAEBDWOwD\nAAAAgIaw2AcAAAAADdGte/YtXLgw7rvvvtQBzjzzzNReRMTrXve69OZtt92W3hw8eHB68ytf+Up6\nc7fddktv7rnnnunNoUOHpjcnTZqU2nv66afbfm5XV1dsvfXWidNE3H333am9iIjdd989vbnNNtuk\nN/v06ZPerKoqvTly5Mj05oknnpje3HbbbdObJ5xwQnqz3d/3F154IX7729+mzjJnzpzUXsTf5sw2\nfvz49OYaa+TfMnifffZJbx588MHpzTo+T0yfPj29udVWW6U3V8aoUaPSP3ede+65qb2IiOOPPz69\n+fzzz6c3x44dm9684YYb0puXXHJJevMHP/hBenPChAnpzQMPPDC1N3/+/Lafu84668SHPvShxGki\nBg4cmNqLiDj00EPTm5MnT05vvva1r01v1nH9XX/99enNk046Kb1Zx+/Rfvvtl9obMGBAaq9J3LOv\nPnb2AQAAAEBDWOwDAAAAgIbIP0cDAAAAAK+ilOIYb43s7AMAAACAhrDYBwAAAAAN4RgvAAAAAB3l\nGG997OwDAAAAgIaw2AcAAAAADWGxDwAAAAAawj37AAAAAOgo9+yrj519AAAAANAQFvsAAAAAoCEc\n4wUAAACgoxzjrY+dfQAAAADQEBb7AAAAAKAhLPYBAAAAQEO4Zx8AAAAAHeWeffWxsw8AAAAAGsJi\nHwAAAAA0hGO8AAAAAHRMKcUx3hp1a7Fv4403jlNOOSV1gI033ji1FxFxwgknpDfXWCN/XXTmzJnp\nzde97nXpzc9+9rPpzeOPPz69ueuuu6Y3X3755dTeWWed1fZzp0+fHh/+8IcTp4l429veltqLiLjo\noovSm+9+97vTm8OHD09vXnbZZenNMWPGpDfr+KJax+fy3XbbLb3Zrje+8Y1x6623pjYPPPDA1F5E\nxO9+97v05gEHHJDerOP6q+Nr//7775/e/PKXv5ze3HvvvdOb//Vf/5XeXBkPPvhgvOMd70htfvrT\nn07tRURMmzYtvbnOOuukN7/0pS+lNz/zmc+kN7/2ta+lN+uY88QTT0xv3nPPPam9973vfW0/d8CA\nAbHNNtskThNx9NFHp/YiIn7961+nN7/4xS+mN4844oj05o9//OP0Zh1fr84+++z05rhx49KbFqBo\nAsd4AQAAAKAhHOMFAAAAoKPsoqyPnX0AAAAA0BAW+wAAAACgISz2AQAAAEBDuGcfAAAAAB3lnn31\nsbMPAAAAABrCYh8AAAAANIRjvAAAAAB0lGO89bGzDwAAAAAaYrmLfaWUiaWUKaWUKc8//3wnZgKW\nab3+li5d2tPjwGql9fqbPXt2T48Dq53Wa3Dx4sU9PQ6sVlqvv2effbanxwGgm5a72FdV1eSqqsZW\nVTV20KBBnZgJWKb1+uvVy0Zc6KTW62/o0KE9PQ6sdlqvwTXWcOcZ6KTW62/IkCE9PQ7QUKWUVebH\nqsbqAQAAAAA0hMU+AAAAAGgIi30AAAAA0BBugAIAAABAx6yq98JbVdjZBwAAAAANYbEPAAAAABrC\nMV4AAAAAOsox3vrY2QcAAAAADVGqqlrxB5fyTET8aQUeOjQiZrc7VAeZM5c5l2+jqqqGtfNE11+P\nMWeunp6zrWuwG9dfRM9/jCvKnLlWhTl7ekZfA//OnLnMuXyuv78zZy5zLl/b11+TDRo0qNpmm216\neowVdtttt91VVdXYnp5jRXXrGO+K/gEtpUxZFX4RzJnLnPVy/fUMc+ZaVeZ8pe68QFtVPkZz5loV\n5lwVZnw1vgb2DHPmWlXmfCXXX88wZ65VZU7I4p59AAAAAHSUe/bVxz37AAAAAKAh6lrsm1xTN5s5\nc5nzn8Oq8vGZM5c5/3msKh+jOXOtCnOuCjOurFXlYzRnLnP+c1hVPj5z5jIn/BPq1jfoAAAAAICV\nMWjQoOrNb35zT4+xwm655ZZV6ht0OMYLAAAAAA1hsQ8AAAAAGsJ34wUAAACgo3w33vrY2QcAAAAA\nDWGxDwAAAAAaolvHeIcOHVqNGTMmdYB77703tRcRsdlmm6U36/iuxfPmzUtvvvDCC+nNjTfeOL25\ndOnS9OaiRYvSm4899lhqb/HixbFkyZK29ir36tWr6tUrd32+b9++qb2Ien4fRowYkd5ca6210psv\nvfRSerN3797pzdmzZ6c3s/9sRkQMHz48vfnggw/OrqpqWHefV0pJv/7q+DXbeuut05sLFy5Mb9bx\nsdfh0UcfTW/W8fVv9OjR6c2ZM2emNxctWtTW9RcRseaaa1ZDhgxJnefpp59O7UVEbLHFFunNJ598\nMr05cuTI9GYdX1vq+Po/f/789OaSJUvSm0888URqb+nSpbF06dK2XoN2dXVV2a+bBg4cmNqLiPjL\nX/6S3sz+u29ExIwZM9KbAwYMSG8+88wz6c1tttkmvVnH65Tsv/vPmjUr5s2b57wqHdWtxb4xY8bE\nlClTUgcYNqyt13z/p6uuuiq9uXjx4vTmNddck968/fbb05uXXnppenPBggXpzeyFuYiIj370o6m9\nlXkR0qtXr/QFqo022ii1FxHxpz/9Kb158MEHpzff+973pjcfeeSR9ObgwYPTmxdeeGF6s3///unN\nI444Ir05bty4tv6A9urVK7q6ulJnye5FRNxxxx3pzalTp6Y36/hLSR3/KLfHHnukN+v4+vf1r389\nvfnFL34xvTl9+vS2v0AMGTIkjjnmmMxx4swzz0ztRUTccsst6c0vf/nL6c0TTzwxvXneeeelNz/z\nmc+kN6+//vr0Zh3X9aGHHprae/7559t+7lprrRX7779/4jQR2223XWovIuKUU05Jb1588cXpzaOO\nOiq9Wcc/9p177rnpzd/85jfpzQceeCC9mb15YcKECam9piiluGdfjVaNf1oHAAAAAJbLYh8AAAAA\nNES3jvECAAAAwMpyjLc+dvYBAAAAQENY7AMAAACAhrDYBwAAAAAN4Z59AAAAAHSUe/bVx84+AAAA\nAGgIi30AAAAA0BCO8QIAAADQUY7x1sfOPgAAAABoUylll1LKQ6WUR0spx/yD95dSyhnL3v+HUsq2\ny96+QSnlV6WUqaWUB0opn86Yx2IfAAAAALShlNI7Is6KiF0jYsuI2LeUsuUrHrZrRGy67MfEiPje\nsrcvjojcrOpqAAAgAElEQVTPVVW1ZUTsEBGH/YPndptjvAAAAAB0VIOO8W4XEY9WVTU9IqKUckVE\n7B4RU1ses3tEXFxVVRUR/11KWbuUsn5VVbMiYlZERFVVz5dSpkXEqFc8t9vs7AMAAACA9oyKiBkt\nP5+57G3dekwpZUxEbBMRd6zsQHb2AQAAAMCrG1pKmdLy88lVVU3OipdS1oyIH0bEUVVVPbeyPYt9\nAAAAAPDqZldVNfZV3vdkRGzQ8vPRy962Qo8ppfSJvy30XVZV1Y8yhnWMFwAAAICOKaWsUj+W43cR\nsWkpZeNSSt+I2Ccirn3FY66NiI8t+668O0TE/KqqZpW/xc+PiGlVVZ2e9etrZx8AAAAAtKGqqsWl\nlMMj4mcR0TsiLqiq6oFSyiHL3n9ORFwfEeMj4tGI+GtEfGLZ098aER+NiPtKKfcse9uXqqq6fmVm\nKn/7RiArpqurq9pkk01W5v/v//GGN7whtRcRscUWW6Q3Bw4cmN78y1/+kt789Kc/nd786Ec/mt78\n8Ic/nN4cM2ZMevPII49M7T3xxBPx4osvtvUth9Zdd93qXe96V+o89913X2ovImLHHXdMb/7qV79K\nbz700EPpzde+9rXpzaVLl6Y3H3vssfTmKaeckt685JJL0psPPvjgXf/H9vtXNWbMmOq4445LneWM\nM85I7UVEfOtb30pvXn755enN009P+0fL/1XH1+mnnnoqvfnjH/84vdnV1ZXeXGedddKbe+yxR1vX\nX0TEBhtsUB111FGp8zz99NOpvYiI3/3ud+nNxx9/PL255557pjc/8pGPpDfvvvvu9OZGG22U3tx8\n883Tm9dcc01q7/TTT48ZM2a09Rp07Nix1ZQpU5b/wG745S9/mdqLiNh2223Tm0888UR6s46vA+ed\nd156821ve1t6c/jw4enNd7zjHenN7L9X7rfffjF16tTGfNvZLIMHD6522GGHnh5jhf385z9v+3VM\nT7CzDwAAAICOWoHjsbTJPfsAAAAAoCEs9gEAAABAQ1jsAwAAAICGcM8+AAAAADrKPfvqY2cfAAAA\nADSExT4AAAAAaAjHeAEAAADoKMd462NnHwAAAAA0hMU+AAAAAGiI5R7jLaVMjIiJERF9+vSpfSDg\n71qvvwEDBvTwNLB6ab3+1l133R6eBlY/rdfgOuus08PTwOql9frbcMMNe3gaoKkc463Pcnf2VVU1\nuaqqsVVVje3du3cnZgKWab3++vXr19PjwGql9fobNGhQT48Dq53Wa3DgwIE9PQ6sVlqvv2HDhvX0\nOAB0k2O8AAAAANAQFvsAAAAAoCGWe88+AAAAAMhSSnHPvhrZ2QcAAAAADWGxDwAAAAAawjFeAAAA\nADrKMd762NkHAAAAAA1hsQ8AAAAAGqJbx3jXW2+9+MIXvpA6wHrrrZfai4g47rjj0pu33HJLenOH\nHXZIbw4ZMiS9edNNN6U3s/8cRURce+216c0rr7wytbfffvu1/dyRI0fGySefnDhNxLHHHpvai6hn\nK/ahhx6a3rzwwgvTm7fffnt6s1+/funN/v37pzd/+tOfpje33HLL9Oaee+7Z1vMWL14czz77bOos\ne+yxR2ovImLatGnpzWOOOSa9udtuu6U377zzzvTmPffck9485JBD0ps333xzenPddddNb66MmTNn\npv9ZrOPz1ic/+cn05vXXX5/evP/++9Obm266aXrziCOOSG9utdVW6c0f/ehH6c1LLrkktbcyX/v/\n+Mc/xgc/+MHEaVbuNfGrmTt3bnpz0qRJ6c199903vXn++eenNw888MD05i9/+cv05lve8pb05uWX\nX57ae+6551J7sCLcsw8AAACAjnLPvvo4xgsAAAAADWGxDwAAAAAawjFeAAAAADrKMd762NkHAAAA\nAA1hsQ8AAAAAGsIxXgAAAAA6yjHe+tjZBwAAAAANYbEPAAAAABrCYh8AAAAANIR79gEAAADQMaUU\n9+yrkZ19AAAAANAQFvsAAAAAoCEc4wUAAACgoxzjrY+dfQAAAADQEBb7AAAAAKAhLPYBAAAAQEO4\nZx8AAAAAHeWeffWxsw8AAAAAGsJiHwAAAAA0RLeO8T777LNx0UUXpQ4wadKk1F5ExKhRo9KbBx10\nUHrzpZdeSm9eeOGF6c2TTz45vbn33nunN8eMGZPevOSSS1J7c+bMafu5ixYtij/96U+J00Rssskm\nqb2IiOeeey69+bnPfS69udZaa6U399lnn/TmOuusk94cN25cenNl/my/mlmzZqU327Vo0aJ47LHH\nenqM5dp5553Tm0899VR68/HHH09vbrnllunNzTffPL35jW98I72Z/bUqImKzzTZLb66M17/+9XHV\nVVelNl/zmtek9iIirr/++vRmv3790ptrrJF/J5958+alN2fMmJHefPrpp9Obxx57bHpzvfXWS+31\n6dOn7ecOHDgwtttuu8RpImbPnp3ai4i4+uqr05sHH3xwevOss85Kb55wwgnpzYceeii9WcfH3qtX\n/v6lhQsXpvYWL16c2msSx3jrY2cfAAAAADSExT4AAAAAaAjfjRcAAACAjimlOMZbIzv7AAAAAKAh\nLPYBAAAAQENY7AMAAACAhnDPPgAAAAA6yj376mNnHwAAAAA0hMU+AAAAAGgIx3gBAAAA6CjHeOuz\n3J19pZSJpZQppZQpixYt6sRMwDKt19/8+fN7ehxYrbRefwsXLuzpcWC103oNzpkzp6fHgdVK6/W3\nYMGCnh4HgG5a7mJfVVWTq6oaW1XV2L59+3ZiJmCZ1utv8ODBPT0OrFZar7+urq6eHgdWO63X4Lrr\nrtvT48BqpfX6GzhwYE+PA0A3uWcfAAAAADSEe/YBAAAA0FHu2VcfO/sAAAAAoCEs9gEAAABAQzjG\nCwAAAEBHOcZbHzv7AAAAAKAhLPYBAAAAQEM4xgsAAABAx5RSHOOtUbcW+zbddNP42c9+ljrAeuut\nl9qLiBgxYkR6c9q0aenNUaNGpTefffbZ9OZXv/rV9ObMmTPTmz/5yU/SmwsXLkztrczvz6BBg2LH\nHXfMGyYivRcRccMNN6Q3N9lkk/Tmvffem95cd91105t1fJ4477zz0puTJ09Obx5++OHpzSOOOKKt\n540YMSI+//nPJ0+T7/bbb09v/va3v01v9uqVf7DgtttuS29+6UtfSm9uvvnm6c2XX345vXnzzTen\nN1fG/Pnz07++bLDBBqm9iIizzz47vfmBD3wgvdm3b9/0Zh2vKd70pjelN3fZZZf05te+9rX0ZvZ1\n/dxzz7X93BdffDEefPDBxGnq+Tqw4YYbpjfr+DN40003pTe//e1vpzeffvrp9OYll1yS3rzwwgvT\nm/PmzUvt/fWvf03twYpwjBcAAAAAGsJiHwAAAAA0hHv2AQAAANBR7tlXHzv7AAAAAKAhLPYBAAAA\nQEM4xgsAAABARznGWx87+wAAAACgISz2AQAAAEBDWOwDAAAAgIZwzz4AAAAAOso9++pjZx8AAAAA\nNITFPgAAAABoCMd4AQAAAOgox3jrY2cfAAAAADSExT4AAAAAaAjHeAEAAADomFKKY7w1srMPAAAA\nABrCYh8AAAAANITFPgAAAABoCPfsAwAAAKCj3LOvPt1a7Js3b1786Ec/Sh3gF7/4RWovIuJXv/pV\nevPuu+9Ob44ePTq9udVWW6U3+/Tpk9686qqr0puvfe1r05tdXV2pvVtvvbXt5z700EPxzne+M3Ga\niCFDhqT2IiL233//9Oa1116b3qzjmh4+fHh6c/z48enNiy++OL05efLk9OYTTzyR3mzXAw88kP75\n9cILL0ztRUQ8/vjj6c3rrrsuvTlgwID05tVXX53eHDlyZHpz8803T2/W8ev56U9/Or153HHHtf3c\nl156KR555JHEaSLe8pa3pPYiIn75y1+mN7Nfi0RE7LbbbunNOq6XM844I735yU9+Mr25dOnS9Oa/\n/du/pTfbVUqJvn37pjbreN1+1FFHpTd32WWX9OYVV1yR3qzja8tBBx2U3hw2bFh6s47PZ6NGjUrt\nfepTn0rtwYpwjBcAAAAAGsIxXgAAAAA6yjHe+tjZBwAAAAANYbEPAAAAABrCYh8AAAAANITFPgAA\nAAA6qpSyyvxYgY9ll1LKQ6WUR0spx/yD95dSyhnL3v+HUsq2Le+7oJTydCnl/qxfW4t9AAAAANCG\nUkrviDgrInaNiC0jYt9SypaveNiuEbHpsh8TI+J7Le+7KCJ2yZzJYh8AAAAAtGe7iHi0qqrpVVUt\niogrImL3Vzxm94i4uPqb/46ItUsp60dEVFV1a0TMyRxojcwYAAAAACzPihyPXUWMiogZLT+fGRHb\nr8BjRkXErDoGstgHAAAAAK9uaCllSsvPJ1dVNbnHplmO5S72lVImxt/OE8fQoUNrHwj4u9brr2/f\nvj08DaxeWq8/oPNar8E111yzh6eB1YvrD+D/MbuqqrGv8r4nI2KDlp+PXva27j4mzXLv2VdV1eSq\nqsZWVTV2rbXWqmsO4B9ovf769OnT0+PAaqX1+mvQEQNYZbReg11dXT09DqxWWq+//v379/Q4QAP1\n9HfXTf5uvL+LiE1LKRuXUvpGxD4Rce0rHnNtRHxs2Xfl3SEi5ldVVcsR3gjfoAMAAAAA2lJV1eKI\nODwifhYR0yLiyqqqHiilHFJKOWTZw66PiOkR8WhEnBsRn/qf55dS/r+IuD0iNiulzCylHLiyM7ln\nHwAAAAC0qaqq6+NvC3qtbzun5b+riDjsVZ67b/Y8dvYBAAAAQEPY2QcAAABAR7kvdn3s7AMAAACA\nhrDYBwAAAAAN4RgvAAAAAB3lGG997OwDAAAAgIbo1s6+559/Pm655ZbUAe6///7UXkTEuuuum94c\nNWpUevPkk09Ob2633XbpzZtuuim9+cwzz6Q3p0+fnt7cb7/9Unsf+9jH2n5u//79Y7PNNkucJmLj\njTdO7UVEnHbaaenNYcOGpTfXX3/99OaOO+6Y3hw/fnx6c99907+zewwfPjy9OXfu3PRmu0aMGBEf\n//jHU5t1fM4aN25cevMb3/hGenPChAnpzaeeeiq9ueuuu6Y377vvvvTmkUcemd7caKON0psro1ev\nXtHV1ZXa/MlPfpLai4jYdNNN05vnnXdeerOOP4fnnHNOevPss89Ob1533XXpzS984Qvpzey/J+y0\n005tP3fRokUxc+bMxGkiLr744tReRMTxxx+f3jzppJPSm29/+9vTm/Pnz09vTp06Nb153HHHpTc/\n+clPpje///3vp/b+mV7Tsvqwsw8AAAAAGsI9+wAAAADoKPfsq4+dfQAAAADQEBb7AAAAAKAhHOMF\nAAAAoKMc462PnX0AAAAA0BAW+wAAAACgIRzjBQAAAKBjSimO8dbIzj4AAAAAaAiLfQAAAADQEBb7\nAAAAAKAh3LMPAAAAgI5yz7762NkHAAAAAA1hsQ8AAAAAGsIxXgAAAAA6yjHe+tjZBwAAAAANYbEP\nAAAAABrCYh8AAAAANIR79gEAAADQUe7ZVx87+wAAAACgIbq9s69Xr9z1wQkTJqT2IiLe+c53pjdv\nv/329Obuu++e3vzqV7+a3jzrrLPSm0cddVR6c8aMGenNK6+8MrU3f/78tp87dOjQ+MQnPpE4TcQ1\n11yT2ouImDRpUnrziCOOSG++/e1vT2/2798/vXn88cenN1/zmtekN3//+9+nN7faaqv0ZrsWLFgQ\nd955Z2pzgw02SO1FRIwfPz69edJJJ6U3jz322PRmHdfKu971rvTmyJEj05tz5sxJb15++eXpzZXx\n1FNPxemnn57afN/73pfai4g44IAD0pvbb799evOUU05Jb44ZMya9OXz48PTme97znvTmsGHD0pvr\nrLNOaq93795tP3fJkiUxb968xGki9ttvv9ReRMS3vvWt9ObSpUvTmyvze/Fq9t9///RmHX9f++IX\nv5je3HbbbdObL730UmrvF7/4RWoPVoRjvAAAAAB0lGO89XGMFwAAAAAawmIfAAAAADSEY7wAAAAA\ndEwpxTHeGtnZBwAAAAANYbEPAAAAABrCYh8AAAAANIR79gEAAADQUe7ZVx87+wAAAACgISz2AQAA\nAEBDLPcYbyllYkRMjIhYc801ax8I+LvW62/EiBE9PA2sXlqvv379+vXwNLD6ab0Ggc5qvf769u3b\nw9MATeUYb32Wu7OvqqrJVVWNrapqbFdXVydmApZpvf7WXnvtnh4HViut15+/6EDntV6DPT0LrG5a\nr78+ffr09DgAdJNjvAAAAADQEBb7AAAAAKAhlnvPPgAAAADI5J599bGzDwAAAAAawmIfAAAAADSE\nY7wAAAAAdJRjvPWxsw8AAAAAGsJiHwAAAAA0RLeP8S5ZsiR1gFtvvTW1FxExadKk9Ob555+f3jz1\n1FPTm/vtt19685xzzklvvuc970lvvve9701vXnDBBam92bNnt/3cxx57LA444IDEaSJ23nnn1F5E\nxPjx49ObEyZMSG9eeeWV6c3vf//76c3vfOc76c0zzzwzvTl9+vT05tFHH53evPrqq9t63rrrrhv7\n7rtv6izXXnttai8iYuutt05vbrPNNunNt73tbenNBx54IL05a9as9GZXV1d680Mf+lB687HHHktv\nrowRI0akfw0cNmxYai+intc3P/3pT9Obp5xySnrzwx/+cHqzjmtw3rx56c06Xk+NHDkytbcyr0GX\nLl0aCxYsSJwm4p577kntRUTcfPPN6c3jjjsuvXnyySenN3v1yt/DU8f1d+mll6Y3s1+fRUQ88cQT\nqb1Fixal9pqilOIYb43s7AMAAACAhrDYBwAAAAANYbEPAAAAABqi2/fsAwAAAICV4Z599bGzDwAA\nAAAawmIfAAAAADSEY7wAAAAAdJRjvPWxsw8AAAAAGsJiHwAAAAA0hMU+AAAAAGgI9+wDAAAAoKPc\ns68+dvYBAAAAQENY7AMAAACAhnCMFwAAAICOcoy3Pnb2AQAAAEBDWOwDAAAAgIZwjBcAAACAjiml\nOMZbIzv7AAAAAKAhLPYBAAAAQENY7AMAAACAhujWPfsWL14c8+bNSx3g3nvvTe1FROy///7pzQsu\nuCC9ueGGG6Y3DzrooPTmN7/5zfTmjTfemN7885//nN78/Oc/n9p761vf2vZz11xzzXj729+eOE3E\nJptsktqLiHj22WfTm+9+97vTmy+++GJ6841vfGN68xe/+EV680tf+lJ6c9q0aenN+++/P73ZriVL\nlsRzzz2X2vzhD3+Y2ouIuO6669Kbs2bNSm8+9NBD6c0f/OAH6c2zzz47vXnHHXekN6+44or0Zh1z\nrowFCxakz7RkyZLUXkTE4MGD05tjx45Nb9bx+adv377pzWOOOSa9uffee6c3d9ttt/TmkUcemdr7\n7ne/2/ZzBw8eHLvuumviNBGHH354ai8i4ic/+Ul685BDDklvPvroo+nN7N+fiIgNNtggvTllypT0\n5j777JPezP7cs3jx4tRek7hnX33s7AMAAACAhrDYBwAAAAAN0a1jvAAAAACwshzjrY+dfQAAAADQ\nEBb7AAAAAKAhLPYBAAAAQEO4Zx8AAAAAHeWeffWxsw8AAAAAGsJiHwAAAAA0hGO8AAAAAHSUY7z1\nWe7OvlLKxFLKlFLKlJdeeqkTMwHLuP6g57RefwsWLOjpcWC103oNvvzyyz09DqxWWq+/v/71rz09\nDgDdtNzFvqqqJldVNbaqqrH9+vXrxEzAMq4/6Dmt19/AgQN7ehxY7bReg3369OnpcWC10nr9DRgw\noKfHAaCbHOMFAAAAoGNKKY7x1sg36AAAAACAhrDYBwAAAAANYbEPAAAAABrCPfsAAAAA6Cj37KuP\nnX0AAAAA0BAW+wAAAACgISz2AQAAANBRpZRV5scKfCy7lFIeKqU8Wko55h+8v5RSzlj2/j+UUrZd\n0ee29WtbVdWKP7iUZyLiTyvw0KERMbvdoTrInLnMuXwbVVU1rJ0nuv56jDlz9fScbV2D3bj+Inr+\nY1xR5sy1KszZ0zP6Gvh35sxlzuVz/f2dOXOZc/navv6abOTIkdVBBx3U02OssBNPPPGuqqrG/qP3\nlVJ6R8TDEbFzRMyMiN9FxL5VVU1tecz4iDgiIsZHxPYRMamqqu1X5Lnt6NY36FjRP6CllCmv9ovw\nz8ScucxZL9dfzzBnrlVlzlfqzgu0VeVjNGeuVWHOVWHGV+NrYM8wZ65VZc5Xcv31DHPmWlXmZJW1\nXUQ8WlXV9IiIUsr/z959h+lVlYv/fhYpQBJCChBCqJpQpag5KLaAFBFQEAU5NlA0oGCjCJgjolhQ\nLtsRBeJRaTY4KCBGqkH0eCIJoChIEaQEAiGBVNLZvz8Yju/XX3Ayk2e/4+y57+vKRWbm3Z9ZSWbN\nvLNYa8+PI+LgiGhdsDs4Ii6qnttxN62UMqyUMjoitl6Da7vMMV4AAAAA6J4xEfFIy8szO163Jo9Z\nk2u7rEs7+wAAAABgba3JvfD+hWxUSpnR8vLkqqom99hoOlHXYt+/7B/4HxhnLuP819Bb/nzGmcs4\n/3X0lj+jcebqDePsDWNcW73lz2icuYzzX0Nv+fMZZy7jpK+Y80+Ogj8aEVu0vLx5x+vW5DED1uDa\nLuvSD+gAAAAAgLWx2WabVRMnTuzpYayxz3zmM//sB3T0j+d+yMbe8dxC3fSIeEdVVXe2PObAiDg+\n/v4DOv6zqqrd1+Ta7nCMFwAAAIC26mXHeF9QVVUrSynHR8S1EdEvIr5XVdWdpZRjO95+XkRMiecW\n+v4aEc9ExHv/2bVrOyaLfQAAAADQTVVVTYnnFvRaX3dey++riDhuTa9dW34aLwAAAAA0hJ19AAAA\nALRNKaUxx3j/FdnZBwAAAAAN0aWdfRtuuGE1atSo1AHMnDkztRcRsf7666c3Fy9enN7ccMMN05sL\nFixIb26yySbpzY033ji9+cgjj6Q3N9hgg9Te7NmzY8GCBd363xdDhgypRowYkTqe9dZbL7UXETF3\n7tz05uDBg9ObTz31VHrzxS9+cXqzjr/POub00qVL05t1/J++u+66a05VVV3+BFRKSf/R9WPHjs1O\nxv3335/eHD16dK9o3nXXXenNOj6u+/Xrl94cNmxYejP7619ExN/+9rduzb+I574Gjhw5MnU86667\nbmovIuKZZ55Jb65atSq9Wcfn1zlz5qQ3x4wZk9586KGH0puDBg1Kb44bNy619/DDD8fcuXO79Q8/\naNCgKvv7liVLlqT2IiKGDh2a3qzjOVMdc3r58uXpzSeffDK9Wcc4N9988/Tm008/ndqbN29eLF68\n2BY22qpLi32jRo2Kc845J3UAJ598cmovImKXXXZJb06fPj29ecABB6Q3r7vuuvTmhz/84fTmBz7w\ngfTmxz72sfTm3nvvndo78cQTu33tiBEj1ur61dlhhx1SexERF1xwQXrzVa96VXrzxz/+cXrzsssu\nS29efPHF6c065vSdd671D4z6/6njG/Fddtkl/7u8bvra176W3jz00EPTmx/84AfTm//xH/+R3tx1\n113Tm/fdd196s47/0XfQQQelNydMmJDefPe7393t+Tdy5MiYNGlS5nBim222Se1FRNx+++3pzXnz\n5qU3+/fPv5PP9773vfTmGWeckd489thj05u77bZbenPKlNT7tK/VnN5www3jqKOOyhtMRPz5z39O\n7UVE7LPPPunNOp4zzZ8/P7356KOPpjfPO++8zh/URQ8++GB686tf/Wp689JLL03tnXvuuak9WBPu\n2QcAAABAW7lnX33csw8AAAAAGsJiHwAAAAA0hGO8AAAAALSVY7z1sbMPAAAAABrCYh8AAAAANITF\nPgAAAABoCPfsAwAAAKCt3LOvPnb2AQAAAEBDWOwDAAAAgIZwjBcAAACAtnKMtz529gEAAABAQ1js\nAwAAAICGcIwXAAAAgLYppTjGWyM7+wAAAACgISz2AQAAAEBDWOwDAAAAgIZwzz4AAAAA2so9++rT\npcW+BQsWxI033pg6gM9//vOpvYiIqVOnpjd/97vfpTd/9atfpTdHjBiR3vz1r3+d3jz22GPTmxdf\nfHF6c+ONN07t9e/f/fX1qqpi5cqViaOJeOKJJ1J7ERG33XZbenPgwIHpzenTp6c3X/ayl6U3d9tt\nt/TmAw88kN6sY5yve93r0ptrY511cjfDZ8/niIgTTjghvVnH/PvqV7+a3lywYEF6M/trQETEd7/7\n3fTmN77xjfTmnXfemd5cG4sWLYqbbroptbl8+fLUXkTEoEGD0ptHH310evNb3/pWevMzn/lMenPG\njBnpzf322y+9+fDDD6c3J06cmNp76KGHun3tvHnz4uc//3niaCJWrVqV2ouI+M53vpPePPXUU9Ob\nI0eOTG9uttlm6c37778/vXnSSSelN8eOHZverKoqvQnt5hgvAAAAADSEY7wAAAAAtJVjvPWxsw8A\nAAAAGsJiHwAAAAA0hGO8AAAAALSVY7z1sbMPAAAAABrCYh8AAAAANITFPgAAAABoCPfsAwAAAKCt\n3LOvPnb2AQAAAEBDdLrYV0qZWEqZUUqZsWTJknaMCejQOv8WL17c08OBPqV1/vX0WKAvap2DS5cu\n7enhQJ/SOv9WrVrV08MBoIs6PcZbVdXkiJgcEbHppptWtY8I+D+t82+LLbYw/6CNWudfKcX8gzZr\nnYMjR440B6GNWuff+uuvb/4B6UopjvHWyDFeAAAAAGgIi30AAAAA0BAW+wAAAACgITq9Zx8AAAAA\nZHLPvvrY2QcAAAAADWGxDwAAAAAawjFeAAAAANrKMd762NkHAAAAAA3RpZ19ixcvjmnTpqUO4Ljj\njkvtRUS8733vS28eeeSR6c0zzzwzvXn11VenN5ctW5befMMb3pDe3H777dObs2bNSu2tWrWq29cu\nXLgwpk6dmjiaiGHDhqX2IiI222yz9OZNN92U3hw0aFB686c//Wl68+KLL05vDhkyJL35qU99Kr15\nx6h5p5kAACAASURBVB13pDe7a7vttovvfOc7qc3sXkTE2972tvTmihUr0puTJk1Kb+6www7pzU98\n4hPpzbe+9a3pzQEDBqQ3zz333PTmWWed1e1rN9poozj66KMTRxNx4oknpvYiIo4//vj05r777pve\nvPfee9Obhx56aHpz6dKl6c1TTz01vVnH3+cBBxyQ2lubj6Ott946vve97yWOJuKWW25J7UVE7LTT\nTr2i+cEPfjC9efjhh6c363iuvM8++6Q3p0+fnt68+eabU3sLFy5M7cGacIwXAAAAgLZyjLc+jvEC\nAAAAQENY7AMAAACAhrDYBwAAAAAN4Z59AAAAALSVe/bVx84+AAAAAGgIi30AAAAA0BCO8QIAAADQ\nNqUUx3hrZGcfAAAAADSExT4AAAAAaAiLfQAAAADQEO7ZBwAAAEBbuWdffezsAwAAAICGsNgHAAAA\nAA3hGC8AAAAAbeUYb33s7AMAAACAhrDYBwAAAAAN4RgvAAAAAG3lGG997OwDAAAAgIaw2AcAAAAA\nDdGlY7yllOjXr1/qAKZOnZrai4iYMWNGenPLLbdMb77pTW9Kb55++unpzS9/+cvpzVe/+tXpzZNO\nOim9+e1vfzu1N2jQoG5fu2zZsnjwwQfzBhMRw4cPT+1FRMyePTu9efvtt6c3t9tuu/TmHnvskd5c\nb7310pvve9/70pv/+Z//md78VzJz5sw4+eSTU5vHHntsai8i4oEHHkhvnnvuuenNj3/84+nNs88+\nO7358MMPpzcvueSS9Oby5cvTm0OGDElvro1BgwbF+PHjU5u77LJLai8i4umnn05vjhs3Lr157bXX\npjc/+tGPpjdHjBiR3tx3333Tm3U8nzryyCNTe/37d//uTY8++micdtppiaOJ2G+//VJ7EfV83rr4\n4ovTm2PHjk1vnnrqqenNTTfdNL05bdq09Ob222+f3rz//vtTe8uWLUvtwZpwzz4AAAAA2so9++rj\nGC8AAAAANITFPgAAAABoCMd4AQAAAGibUopjvDWysw8AAAAAGsJiHwAAAAA0hMU+AAAAAGgI9+wD\nAAAAoK3cs68+dvYBAAAAQENY7AMAAACAhuj0GG8pZWJETIyIWHfddWsfEPB3rfNvwIABPTwa6Fta\n59/AgQN7eDTQ97TOwS222KKHRwN9i+8BgXZwjLc+ne7sq6pqclVV46uqGu+bHWiv1vnXr1+/nh4O\n9Cmt889iO7Rf6xwcOXJkTw8H+hTfAwL0bo7xAgAAAEBD+Gm8AAAAALSVY7z1sbMPAAAAABrCYh8A\nAAAANITFPgAAAABoCPfsAwAAAKCt3LOvPnb2AQAAAEBDWOwDAAAAgIbo0jHe4cOHx2GHHZY6gDvv\nvDO1FxHxlre8Jb257bbbpjcvueSS9OZxxx2X3rzgggvSmx/96EfTm9dcc016c88990ztPfzww92+\n9tlnn43FixcnjiaiX79+qb2IiFGjRqU3R48end6855570ptLly5Nb1522WXpzfe85z3pzTFjxqQ3\np02blt7srv79+6d/bA8ZMiS1F1HP/Dv55JPTm9/4xjfSm8cee2x6s46v05MnT05vvu9970tvbrrp\npunNtTFz5sw46aSTUpsf+MAHUnsREVdccUV6c4899khvnnnmmenNCRMmpDeXL1+e3jzwwAPTm3/5\ny1/Sm+eee25q78knn+z2tYsXL45bbrklcTQRjzzySGovIuJNb3pTevOuu+5Kb2699dbpzZtvvjm9\nufHGG6c36/h3Hzp0aHpz4cKFqb3Xvva1qb2mKKU4xlsjO/sAAAAAoCEs9gEAAABAQ1jsAwAAAIAa\nlFJGlFKuL6Xc1/Hf4S/wuP1LKfeUUv5aSjm15fWHlVLuLKU8W0oZvybv02IfAAAAAG31/H37esOv\ntXRqRNxYVdW4iLix4+V//LvoFxHfiog3RsSOEfHvpZQdO97854g4NCLW+AadFvsAAAAAoB4HR8SF\nHb+/MCIOWc1jdo+Iv1ZV9UBVVcsj4scd10VVVX+pqqpLP2HSYh8AAAAA1GNUVVWzOn7/eESMWs1j\nxkRE64+sntnxum7p390LAQAAAKA7Eo7HttNGpZQZLS9Prqpq8vMvlFJuiIhNV3PdpNYXqqqqSilV\nTWP8Pxb7AAAAAOCFzamq6gV/OEZVVfu80NtKKU+UUkZXVTWrlDI6Imav5mGPRsQWLS9v3vG6bnGM\nFwAAAADqcVVEHNnx+yMj4srVPGZ6RIwrpWxTShkYEUd0XNctFvsAAAAAaKue/gm7bfxpvGdFxL6l\nlPsiYp+Ol6OUslkpZUpERFVVKyPi+Ii4NiL+EhGXVlV1Z8fj3lJKmRkRe0TEL0op13b2Dh3jBQAA\nAIAaVFU1NyL2Xs3rH4uIA1penhIRU1bzuJ9FxM+68j7t7AMAAACAhrDYBwAAAAAN4RgvAAAAAG2V\ncC88XoCdfQAAAADQEBb7AAAAAKAhHOMFAAAAoG1KKY7x1sjOPgAAAABoCIt9AAAAANAQFvsAAAAA\noCG6dM++Z555Jm677bbUAVx00UWpvYiIz372s+nN5cuXpzdf8pKXpDe/8IUvpDdvuOGG9ObEiRPT\nmzfffHN6c/vtt0/tTZgwodvXLl++PB588MG8wUTEmDFjUnsREQceeGB68/3vf39680tf+lJ680Mf\n+lB68ytf+Up6c4899khvnnjiienNrbbaKr3ZXUuWLIk//elPqc3rr78+tRcRcc0116Q3L7nkkvTm\nhhtumN587LHH0pt1fF057LDD0psnnHBCevPLX/5yenNtLFu2LP1r4AYbbJDai4h4+umn05t1PLd7\n17veld68/fbb05uPP/54evMb3/hGevPqq69Obx555JGpve985zvdvraqqli5cmXiaCJ+//vfp/Yi\nIj71qU+lN1/zmtekN++///705hVXXJHenDt3bnqzju8rjznmmPTmOuvYE9Uu7tlXHx/FAAAAANAQ\nFvsAAAAAoCG6dIwXAAAAANaWY7z1sbMPAAAAABrCYh8AAAAANIRjvAAAAAC0lWO89bGzDwAAAAAa\nwmIfAAAAADSExT4AAAAAaAj37AMAAACgbUop7tlXo04X+0opEyNiYkTEkCFDah8Q8Het8w9or9b5\n169fvx4eDfQ9rXNwvfXW6+HRQN/iOShA79bpMd6qqiZXVTW+qqrxnmhBe7XOv54eC/Q1rfPPYh+0\nX+scHDBgQE8PB/qU1vln5w1A7+MYLwAAAABt5X8m1McP6AAAAACAhrDYBwAAAAANYbEPAAAAABrC\nPfsAAAAAaCv37KuPnX0AAAAA0BAW+wAAAACgIRzjBQAAAKCtHOOtT5cW+7baaqs4//zzUwcwYcKE\n1F5ExDXXXJPevPzyy9ObBx10UHrzxhtvTG9Onz49vbnPPvukN9/85jenN4877rjU3uzZs7t97VZb\nbRWf+tSnEkcTcfzxx6f2IiK+9rWvpTd33nnn9OZHPvKR9Oba/Pu+kGXLlqU3Dz/88PTmjjvumN4c\nNmxYevPBBx/s1nXbbrttXHnllaljeec735nai4i49NJL05u33nprevPee+9Nby5ZsiS9+dhjj6U3\nv//976c3s5+bRUScdNJJ6c2f/vSn3b524cKFccMNNySOJmLXXXdN7dWlX79+6c2LLroovTllypT0\n5v7775/e/OxnP5verMOkSZNSe48++mi3r+3fv3+MHDkycTTPPa/N9sEPfjC9WcdCxBe/+MX05gEH\nHJDefP/735/efPjhh9Obu+22W3rzkUceSe0tX748tQdrwjFeAAAAAGgIx3gBAAAAaCvHeOtjZx8A\nAAAANITFPgAAAABoCIt9AAAAANAQ7tkHAAAAQNuUUtyzr0Z29gEAAABAQ1jsAwAAAICGcIwXAAAA\ngLZyjLc+dvYBAAAAQENY7AMAAACAhrDYBwAAAAAN4Z59AAAAALSVe/bVx84+AAAAAGgIi30AAAAA\n0BCO8QIAAADQVo7x1sfOPgAAAABoCIt9AAAAANAQjvECAAAA0FaO8dbHzj4AAAAAaIgu7exbuXJl\nzJkzJ3UAO++8c2ovImLChAnpzeuuuy69uf3226c377nnnvTm9OnT05tPP/10evP0009Pb44dOza1\nd/HFF3f72kWLFsX//M//JI4m4hWveEVqLyLiiSeeSG9ecskl6c3NN988vXnZZZelN0ePHp3enDRp\nUnpz+fLl6c33v//96c03velN3bruqaeeSv84zP78EhFx/vnnpzcff/zx9Obhhx+e3vz4xz+e3pwy\nZUp6c88990xv1jGnhw0blt5cGy972cvSvwaeccYZqb2I575WZ7v77rvTmzvuuGN685lnnklvLly4\nML357W9/O7150003pTevv/761N6AAQO6fe2LX/ziuPDCCxNHEzFv3rzUXkTET3/60/TmmDFj0pt1\nfB3Yaqut0pt1fJ/w0pe+NL25++67pzezv/dfsGBBag/WhJ19AAAAANAQ7tkHAAAAQNuUUtyzr0Z2\n9gEAAABAQ1jsAwAAAICGcIwXAAAAgLZyjLc+dvYBAAAAQENY7AMAAACAhrDYBwAAAAAN4Z59AAAA\nALSVe/bVx84+AAAAAGiIThf7SikTSykzSikz5s6d244xAR1a59/SpUt7ejjQp7TOv8WLF/f0cKDP\naZ2DTz75ZE8PB/qU1vk3b968nh4OAF3U6WJfVVWTq6oaX1XV+JEjR7ZjTECH1vm33nrr9fRwoE9p\nnX+DBw/u6eFAn9M6BzfeeOOeHg70Ka3zb9iwYT09HKChSim95ldv4xgvAAAAADSExT4AAAAAaAg/\njRcAAACAtuqNx2N7Czv7AAAAAKAhLPYBAAAAQENY7AMAAACAhnDPPgAAAADappTinn01srMPAAAA\nABqiSzv7/vjHP8aoUaNSBzB9+vTUXkTErFmz0pt1mDp1anpz7733Tm9eccUV6c03vvGN6c3Pfe5z\n6c3XvOY1qb1HH32029f269cvhg4dmjiaiH322Se1FxExfvz49OY222yT3nzd616X3hw7dmx68/LL\nL09v1jFX3vrWt6Y3v/rVr6Y3u2v48OFxxBFHpDa/+93vpvYiIk455ZT05tlnn53erOPrysqVK9Ob\nEydOTG8uW7YsvTllypT05umnn57eXBt33HFHbLnllqnNj33sY6m9iHo+Dt/xjnekN+v4/HPHHXek\nNw866KD05sCBA9Ob48aNS28+8sgjqb311luv29cuW7Ys7r333sTRRLzkJS9J7UVEnHfeeenNOj4G\nN9lkk/TmUUcdld7cf//905tjxoxJb379619Pb2bP6WeeeSa1B2vCMV4AAAAA2sox3vo4xgsAAAAA\nDWGxDwAAAAAawmIfAAAAADSEe/YBAAAA0Fbu2VcfO/sAAAAAoCEs9gEAAABAQzjGCwAAAEBbOcZb\nHzv7AAAAAKAhLPYBAAAAQEM4xgsAAABAWznGWx87+wAAAACgISz2AQAAAEBDWOwDAAAAgIZwzz4A\nAAAA2qaU4p59NbKzDwAAAAAawmIfAAAAANSglDKilHJ9KeW+jv8Of4HH7V9KuaeU8tdSyqktrz+7\nlHJ3KeWOUsrPSinDOnufFvsAAAAAaKvnj/L2hl9r6dSIuLGqqnERcWPHy//4d9EvIr4VEW+MiB0j\n4t9LKTt2vPn6iHhJVVW7RMS9EXFaZ+/QYh8AAAAA1OPgiLiw4/cXRsQhq3nM7hHx16qqHqiqanlE\n/Ljjuqiq6rqqqlZ2PG5aRGze2Tu02AcAAAAA9RhVVdWsjt8/HhGjVvOYMRHxSMvLMzte94/eFxG/\n7Owddumn8a6zzjoxZMiQrlzSqREjRqT2IiJOPPHE9ObgwYPTm2effXZ688gjj0xv/tu//Vt6c9q0\naenNpUuXpjezP5Y++clPdvvaFStWxKxZszp/YBd8/vOfT+1FRDzwwAPpzWOOOSa9+fOf/zy9OX36\n9PTmu971rvRm9sdRRMRvf/vb9Obvfve79ObOO+/cresWLVoUN998c+pYli9fntqLqOff4Ygjjkhv\n1vF54oQTTkhvLlq0KL1Zx0+du/POO9Ob73jHO9KbU6dO7fa1L3rRi2Ly5MmJo4n47ne/m9qLiHjD\nG96Q3nzTm96U3hw5cmR6M/t7hIiIAw88ML15+eWXpzc337zTDRZd9uSTT6b2zjzzzG5fu2TJkrj7\n7rsTRxMxY8aM1F5ExKOPPprevOeee9KbF154YecP6qJPf/rT6c0f/ehH6c06ntPX8We/7777Unvz\n589P7dFjNiqltH7ymlxV1f89OSml3BARm67mukmtL1RVVZVSqu4MoJQyKSJWRsQPOntslxb7AAAA\nAGBt1fE/QWs0p6qq8S/0xqqq9nmht5VSniiljK6qalYpZXREzF7Nwx6NiC1aXt6843XPN46KiIMi\nYu+qqjpdLHSMFwAAAADqcVVEPH8M88iIuHI1j5keEeNKKduUUgZGxBEd10UpZf+I+EREvLmqqmfW\n5B1a7AMAAACAepwVEfuWUu6LiH06Xo5SymallCkRER0/gOP4iLg2Iv4SEZdWVfX8vVrOiYgNIuL6\nUsofSinndfYOHeMFAAAAoK162THebquqam5E7L2a1z8WEQe0vDwlIqas5nFju/o+7ewDAAAAgIaw\n2AcAAAAADeEYLwAAAABt1VeO8fYEO/sAAAAAoCEs9gEAAABAQ1jsAwAAAICG6PSefaWUiRExseP3\ntQ8I+LvW+Tdo0KAeHg30La3zb8SIET08Guh7WufgqFGjeng00Le0zr+hQ4f28GiAJiqlWGOqUac7\n+6qqmlxV1fiqqsb7h4D2ap1/6667bk8PB/qU1vm3wQYb9PRwoM9pnYMbbrhhTw8H+pTW+ed/OAP0\nPo7xAgAAAEBDdHqMFwAAAAAyOT1aHzv7AAAAAKAhLPYBAAAAQENY7AMAAACAhnDPPgAAAADayj37\n6mNnHwAAAAA0hMU+AAAAAGiIUlXVmj+4lCcj4qE1eOhGETGnu4NqI+PMZZyd26qqqo27c6H512OM\nM1dPj7Nbc7AL8y+i5/+Ma8o4c/WGcfb0GH0N/DvjzGWcnTP//s44cxln57o9/5psu+22q84///ye\nHsYa22uvvW6tqmp8T49jTXXpnn1r+gFaSpnRG/4SjDOXcdbL/OsZxpmrt4zzH3XlCVpv+TMaZ67e\nMM7eMMYX4mtgzzDOXL1lnP/I/OsZxpmrt4wTsjjGCwAAAAAN4afxAgAAANBWfhpvfera2Te5pm42\n48xlnP8aesufzzhzGee/jt7yZzTOXL1hnL1hjGurt/wZjTOXcf5r6C1/PuPMZZzwL6hLP6ADAAAA\nANbGdtttV02e3HvWYPfcc89e9QM63LMPAAAAABrCPfsAAAAAaJtSinv21cjOPgAAAABoCIt9AAAA\nANAQjvECAAAA0FaO8danS4t9I0eOrLbYYovUAayzTv7mwqeeeiq9uXTp0vTmRhttlN589tln05uz\nZ89Ob65cuTK9OWTIkPTmE088kdpbtWpVPPvss936jDZgwIBqvfXWSx3PM888k9qLiNh8883Tm/Pn\nz+8VzQ033DC9udlmm6U3Fy9enN6s43PkBhtskN68//7751RVtXFXr1t//fWroUOHpo6ljr+zESNG\npDeffPLJ9OaqVavSm1tuuWV687HHHktvLlu2LL250047pTfnzZuX3nzwwQe7Nf8iIgYPHlwNGzYs\ndTx1PGeqqiq9WcfX6uzPZxERw4cPT28uX748vdm/f/5ehzo+py1ZsiS1N3fu3Fi0aFG3noMOHjy4\nyv73nTt3bmovop7Pr2PGjElv1jGnBw4cmN6s47lyHc996vh8tv7666f25s+fH88884xVLdqqS1/t\ntthii/jVr36VOoB11103tRcR8aMf/Si9ed9996U3jzrqqPRm9hODiIhzzjknvVnHAuJrX/va9ObX\nvva11N7aPLFZb7314mUve1niaCJuvfXW1F5ExKRJk9KbV199dXrz5z//eXpzzz33TG9++tOfTm9O\nnz49vXnnnXemN1//+tenNw855JCHunPd0KFD4+1vf3vqWO69997UXkTEO9/5zvTmueeem958+umn\n05vnnXdeerOO+Xf//fenN6dOnZrevOqqq9KbRx55ZLfmX0TEsGHD4rjjjsscTi3fcNexOFXH1+p9\n9tknvXnYYYelN2fOnJneHDlyZHqzjkWRP/3pT6m9s846q9vXDh8+PD7ykY8kjibi4osvTu1F1PP5\n9cQTT0xv3nLLLenNrbfeOr05ZcqU9OY999yT3qzj+fdLXvKS1N53v/vd1B6sCffsAwAAAICGcM8+\nAAAAANrKPfvqY2cfAAAAADSExT4AAAAAaAjHeAEAAABoK8d462NnHwAAAAA0hMU+AAAAAGgIx3gB\nAAAAaCvHeOtjZx8AAAAANITFPgAAAABoCIt9AAAAANAQ7tkHAAAAQNuUUtyzr0Z29gEAAABAQ1js\nAwAAAICGcIwXAAAAgLZyjLc+dvYBAAAAQENY7AMAAACAhrDYBwAAAAAN0aV79i1cuDBuvPHG1AFM\nmzYttRcR8YpXvCK92a9fv/TmxRdfnN48//zz05tHHXVUevPWW29Nb86YMSO9edppp6X2vvKVr3T7\n2hUrVsSsWbMSRxNx9NFHp/YiImbPnp3efNe73pXe/OQnP5neHDp0aHqzDsuXL09vzp8/P7152GGH\npTe7q6qqWLlyZWpz6623Tu1FRHz5y19Ob/7+979Pb+64447pzSVLlqQ3f/nLX6Y3d9ppp/TmwIED\n05t1fI5cGwsWLEj/99hjjz1SexERJ5xwQnrzkEMOSW9+4QtfSG/utdde6c3XvOY16c06vraceeaZ\n6c2PfOQjqb21+Ro2YsSIOPzwwxNHE7HDDjuk9iIi5s2bl958/etfn95ctWpVejP7e/SIiNtuuy29\nef3116c3r7zyyvTmtddem9pbsGBBaq9J3LOvPnb2AQAAAEBDWOwDAAAAgIbo0jFeAAAAAFhbjvHW\nx84+AAAAAGgIi30AAAAA0BCO8QIAAADQVo7x1sfOPgAAAABoCIt9AAAAANAQFvsAAAAAoCHcsw8A\nAACAtimluGdfjTrd2VdKmVhKmVFKmbFgwYJ2jAno0Dr/Vq1a1dPDgT6ldf4tWbKkp4cDfU7rHFyx\nYkVPDwf6lNb5N3fu3J4eDgBd1OliX1VVk6uqGl9V1fihQ4e2Y0xAh9b5169fv54eDvQprfNv/fXX\n7+nhQJ/TOgcHDBjQ08OBPqV1/o0cObKnhwNAFznGCwAAAEBbOcZbHz+gAwAAAAAawmIfAAAAADSE\nxT4AAAAAaAj37AMAAACgrdyzrz529gEAAABAQ1jsAwAAAICGcIwXAAAAgLZyjLc+XVrsW3/99WOn\nnXZKHcDf/va31F5ExOGHH57efPvb357efNGLXpTeHDVqVHrzK1/5Snpzyy23TG9uuumm6c05c+ak\n9lauXNnta/v16xfDhw9PHE3E8ccfn9qLiFi0aFF6c/HixenN888/P705bty49GYdf59vfvOb05uv\ne93r0pu//vWv05sPPvhgt64bMWJEHHHEEalj2WuvvVJ7ERE33nhjevOMM85Ib06ZMiW9ueuuu6Y3\nf/azn6U3sz+PR0T893//d3rzm9/8Znrz0EMP7fa1m2yySXz4wx9OHE3E7NmzU3sRERMmTEhv7rff\nfunNadOmpTe/9KUvpTezn4dFRJx88snpzTPPPDO9+aMf/Si1d8opp3T72kceeSROOOGExNFEbLvt\ntqm9iIgddtghvbnvvvumN1/+8penN1/5ylemN+sY59e//vX05g9/+MP05iWXXJLa+/jHP57agzXh\nGC8AAAAANIRjvAAAAAC0lWO89bGzDwAAAAAawmIfAAAAADSExT4AAAAAaAj37AMAAACgbUop7tlX\nIzv7AAAAAKAhLPYBAAAAQEM4xgsAAABAWznGWx87+wAAAACgISz2AQAAAEBDWOwDAAAAgIZwzz4A\nAAAA2so9++pjZx8AAAAANITFPgAAAABoCMd4AQAAAGgrx3jrY2cfAAAAADSExT4AAAAAaAjHeAEA\nAABoK8d462NnHwAAAAA0RJd29j388MNx/PHHpw5g1apVqb2IiKuvvjq9+eUvfzm9uf3226c3P/Wp\nT6U3n3zyyfTmIYcckt4cMWJEevNFL3pRam/dddft9rXbbLNNfP/7308cTcS4ceNSexERF1xwQXpz\n6tSp6c2nnnoqvTlkyJD05rBhw9Kbp512WnpzwoQJ6c1f/OIX6c2ddtqpW9fNnDkzTj311NSxbLnl\nlqm9iIilS5emN0855ZT05kEHHZTevOaaa9Kbhx56aHrz9a9/fXpz5cqV6c0//OEP6c21MWDAgBg9\nenRqc9asWam9iOe+Vmd797vfnd488sgj05s/+clP0pu77bZbevNLX/pSevPxxx9Pb86cOTO1t3z5\n8m5fu/nmm6f/vS1atCi1FxHx6le/Or355z//Ob151VVXpTc/8pGPpDff/va394rmmWeemd7MXqOo\nqiq1R+9TShkRET+JiK0j4sGIOLyqqqdX87j9I+IbEdEvIv6rqqqzOl5/ZkQcHBHPRsTsiDiqqqrH\n/tn7tLMPAAAAAOpxakTcWFXVuIi4sePl/0cppV9EfCsi3hgRO0bEv5dSdux489lVVe1SVdVuEXF1\nRJze2Tt0zz4AAAAA2qaU0pfu2XdwROzZ8fsLI+KmiPjH4zO7R8Rfq6p6ICKilPLjjuvuqqpqQcvj\nBkdEp9tFLfYBAAAAQD1GVVX1/P1DHo+IUat5zJiIeKTl5ZkR8YrnXyilfD4i3hMR8yNir87eoWO8\nAAAAAPDCNiqlzGj5NbH1jaWUG0opf17Nr4NbH1c9dxPHLt/IsaqqSVVVbRERP4iITn+Yhp19AAAA\nALRVLzvGO6eqqvEv9MaqqvZ5obeVUp4opYyuqmpWKWV0PPdDNv7RoxGxRcvLm3e87h/9ICKmCl0G\ncwAAEbhJREFURMSn/9lg7ewDAAAAgHpcFRFHdvz+yIi4cjWPmR4R40op25RSBkbEER3XRSllXMvj\nDo6Iuzt7h3b2AQAAAEA9zoqIS0spR0fEQxFxeEREKWWziPivqqoOqKpqZSnl+Ii4NiL6RcT3qqq6\n8/nrSynbRcSzHdcf29k7tNgHAAAAADWoqmpuROy9mtc/FhEHtLw8JZ47ovuPj3trV9+nxT4AAAAA\n2qqX3bOvV3HPPgAAAABoiE4X+0opE5//0cLLly9vx5iADq3z76mnnurp4UCf0jr/VqxY0dPDgT6n\ndQ7Omzevp4cDfYrnoAC9W6eLfVVVTa6qanxVVeMHDhzYjjEBHVrn34gRI3p6ONCntM6/AQMG9PRw\noM9pnYPDhg3r6eFAn+I5KNAOpZRe86u3cYwXAAAAABrCYh8AAAAANISfxgsAAABAW/XG47G9hZ19\nAAAAANAQFvsAAAAAoCEs9gEAAABAQ7hnHwAAAABtU0pxz74a2dkHAAAAAA3RpZ1948aNiylTpqQO\nYOrUqam9iIgddtghvfnFL34xvXn66aenNydNmpTePOigg9Kbv/71r9Obu+66a3pzwoQJqb1FixZ1\n+9o5c+bEhRdemDiaiGuvvTa1FxHxyCOPpDf32GOP9OZnPvOZ9ObKlSvTm7NmzUpv7r777unN2267\nLb35ne98J73ZXcuWLYsHHnggtfnXv/41tRcRccstt6Q3Fy5cmN78zW9+k948/PDD05vz589Pbx5/\n/PHpzYsuuii9ufXWW6c318bMmTPjlFNOSW1uuummqb2IiLPOOiu9eeKJJ6Y36/i6+h//8R/pzVGj\nRqU3Fy9enN68++6705tVVaU3u+vJJ5+M8847L7X5iU98IrUXEXHOOeekN+t4vjhmzJj0ZvZzlIiI\nLbfcMr1Zx1yp42Mp+znos88+m9qDNeEYLwAAAABt5RhvfRzjBQAAAICGsNgHAAAAAA3hGC8AAAAA\nbeUYb33s7AMAAACAhrDYBwAAAAANYbEPAAAAABrCPfsAAAAAaCv37KuPnX0AAAAA0BAW+wAAAACg\nIRzjBQAAAKCtHOOtj519AAAAANAQFvsAAAAAoCEs9gEAAABAQ7hnHwAAAABtU0pxz74a2dkHAAAA\nAA1hsQ8AAAAAGsIxXgAAAADayjHe+tjZBwAAAAANYbEPAAAAABqiS8d4Z8+eHeedd17qAI455pjU\nXkTEH/7wh/Tmn/70p/Tmi1/84vTm+uuvn9688MIL05t77bVXevPlL395evOVr3xlau+6667r9rXz\n58+Pq666KnE0Ed/85jdTexER22yzTXrziCOOSG/usssu6c1TTjklvfntb387vVnH591p06alNx99\n9NH0Znf1798/hg8fntocMmRIai+inq9VH/3oR9ObS5cuTW+uWLEivVnH16o5c+akN+v4s2+yySbp\nzbWxatWqWLhwYWrzf//3f1N7ERE//OEP05vbbrttenPWrFnpzcsuuyy9ec4556Q3zz777PTmPffc\nk95ctGhRau/73/9+t6+dO3du+sd29nPsiIj3vve96c1zzz03vXnCCSekN8eNG5fePP3009ObO+20\nU3pz9913T29+4QtfSO3V8Tm3KRzjrY+dfQAAAADQEBb7AAAAAKAhLPYBAAAAQEN06Z59AAAAALC2\n3LOvPnb2AQAAAEBDWOwDAAAAgIZwjBcAAACAtnKMtz529gEAAABAQ1jsAwAAAICGsNgHAAAAAA3R\n6T37SikTI2JiRMTw4cNrHxDwd63zr39/t9iEdjL/oGe1zsEBAwb08Gigb2mdf+usY38IkK+U4p59\nNer0M3dVVZOrqhpfVdX4wYMHt2NMQIfW+WexAdrL/IOe1ToH+/Xr19PDgT6ldf5Z7APofXzmBgAA\nAICGsFUBAAAAgLZyjLc+dvYBAAAAQENY7AMAAACAhnCMFwAAAIC2coy3Pnb2AQAAAEBDWOwDAAAA\ngIaw2AcAAAAADVGqqlrjB2+88cbVW97yltQBrFixIrUXEXHcccelN4855pj05sc+9rH05tixY9Ob\nN998c3rzFa94RXpzr732Sm9utNFGqb158+bFihUrunVjgh122KH63ve+lzqePfbYI7UXEfGb3/wm\nvTlz5sz05r777pvevOGGG9KbJ598cnrzox/9aHpz//33T29eddVV6c1JkybdWlXV+K5et84661Tr\nrrtu6ljqmH+bbLJJevOMM85Ib37yk59Mbz744IPpza9+9avpzeXLl6c3P/vZz6Y3f/jDH6Y3t9pq\nq27Nv4iIl770pdVNN92UOp7Xvva1qb2IiIceeii9edttt6U3L7zwwvTm0qVL05ubbrppenODDTZI\nb65atSq9eemll6b2ZsyYEQsWLOjWc9ANNtig2m233VLHU8fzxcsuuyy9eeutt6Y399tvv/TmFVdc\nkd7s3z//9v5veMMb0pt1rCe87nWvS+1NmDAhbr/9djen+we77rprde211/b0MNbY6NGju/08pifY\n2QcAAAAADWGxDwAAAAAaIn9vLgAAAAD8E6U43VwXO/sAAAAAoCEs9gEAAABAQ1jsAwAAAICGcM8+\nAAAAANqmlOKefTWysw8AAAAAGsJiHwAAAAA0hGO8AAAAALSVY7z1sbMPAAAAABrCYh8AAAAANIRj\nvAAAAAC0lWO89bGzDwAAAAAawmIfAAAAADSExT4AAAAAaAj37AMAAACgrdyzrz529gEAAABAQ1js\nAwAAAICGcIwXAAAAgLZyjLc+XVrse/rpp+PSSy9NHcBrXvOa1F5ExLx589KbM2fOTG9efPHF6c2J\nEyemNz/wgQ+kNw888MD05vjx49ObX/nKV1J7a/Pv8+yzz8aSJUsSRxNxww03pPYiIv74xz+mN1/+\n8penN6+55pr0Zh2fz+bOnZve/P3vf5/evOiii9Kbv/3tb9ObkyZN6tZ1gwYNip133jl1LAcccEBq\nLyLiggsuSG8efPDB6c0pU6akN9/2trelN0877bT05gMPPJDeHDduXHpz7733Tm+ujTvuuCPGjBmT\n2nzrW9+a2ouoZw6OHTs2vfnpT386vfmTn/wkvXnTTTelN88444z0Zh1z8PHHH0/trVixotvXDh06\nNPbdd9/E0UTssssuqb2IiG222Sa9+cUvfjG9OWHChPTmwoUL05t33HFHenP48OHpzYEDB6Y3Z8yY\nkdp75plnUnuwJhzjBQAAAICGsNgHAAAAAA3hnn0AAAAAtE0pxT37amRnHwAAAAA0hMU+AAAAAGgI\nx3gBAAAAaCvHeOtjZx8AAAAANITFPgAAAABoCMd4AQAAAGgrx3jrY2cfAAAAADREpzv7SikTI2Ji\nx+9rHxDwd63zb5NNNunh0UDf0jr/Bg4c2MOjgb7Hc1DoOa3zb8MNN+zh0QDQVZ3u7KuqanJVVeOr\nqhq/zjo2AkI7tc6/YcOG9fRwoE9pnX8DBgzo6eFAn9M6By32QXu1zr/Bgwf39HAA6CL37AMAAACg\nrfzPvPrYqgcAAAAANSiljCilXF9Kua/jv8Nf4HH7l1LuKaX8tZRy6mrefmIppSqlbNTZ+7TYBwAA\nAAD1ODUibqyqalxE3Njx8v+jlNIvIr4VEW+MiB0j4t9LKTu2vH2LiNgvIh5ek3dosQ8AAACAtiml\n9Kpfa+ngiLiw4/cXRsQhq3nM7hHx16qqHqiqanlE/Ljjuud9LSI+ERHVmrxDi30AAAAAUI9RVVXN\n6vj94xExajWPGRMRj7S8PLPjdVFKOTgiHq2q6o9r+g79gA4AAAAAeGEblVJmtLw8uaqqyc+/UEq5\nISI2Xc11k1pfqKqqKqWs0e68ju6giPhkPHeEd41Z7AMAAACAFzanqqrxL/TGqqr2eaG3lVKeKKWM\nrqpqVilldETMXs3DHo2ILVpe3rzjdS+OiG0i4o8dx4k3j4jbSim7V1X1+Au9T4t9AAAAALRVwr3w\neourIuLIiDir479XruYx0yNiXCllm3huke+IiHhHVVV3RsQmzz+olPJgRIyvqmrOP3uHXVrs23nn\nnWPq1KlduaRTM2bM6PxBXfShD30ovXn55ZenN4cMGZLevP3229Obu+yyS3pz2rRp6c0//elP6c0x\nY8ak9gYMGNDta9dZZ530j5mTTjoptRcRcfTRR6c36/i43njjjdOb22yzTXrztNNOS2/ed9996c3B\ngwenN9/znvekN7tr1apVsXDhwtTmL37xi9ReRMRnPvOZ9GYdH4O//OUv05t/+MMf0puzZs3q/EFd\ntHjx4vTm7rvvnt6s4/PuVltt1e1rR48eHR/+8IcTRxPx0EMPpfYi6vm89frXvz69+c1vfjO9+eY3\nvzm9OWjQoPTmddddl9581ateld58+9vfnto7//zzu31tv379Yvjw4YmjifjBD36Q2ouIuOCCC9Kb\nd9xxR3rznHPOSW/W8fnsc5/7XHqzju/Td9xxx84f1EXbbrttam/ddddN7dErnRURl5ZSjo6IhyLi\n8IiIUspmEfFfVVUdUFXVylLK8RFxbUT0i4jvdSz0dYudfQAAAABQg6qq5kbE3qt5/WMRcUDLy1Mi\nYkonra3X5H1a7AMAAACgrfrQMd62W6enBwAAAAAA5LDYBwAAAAAN4RgvAAAAAG3lGG997OwDAAAA\ngIaw2AcAAAAADWGxDwAAAAAawj37AAAAAGgr9+yrj519AAAAANAQFvsAAAAAoCEc4wUAAACgbUop\njvHWyM4+AAAAAGgIi30AAAAA0BAW+wAAAACgIdyzDwAAAIC2cs+++tjZBwAAAAANYbEPAAAAABrC\nMV4AAAAA2sox3vrY2QcAAAAADdGlnX2LFy+OGTNmpA5gwIABqb2IiLvuuiu9effdd6c3zzvvvPTm\nrbfemt7cdttt05t/+9vf0psbbLBBevPpp59O7a1atarb1z700ENx7LHHJo4m0udzRMTPf/7z9Ob+\n+++f3rziiivSmzvssEOvaG6//fbpzTe+8Y3pzV/+8pfpzSuvvLJb1+2www7x29/+NnUs06dPT+1F\nRIwdOza9ud1226U3Tz311PTmu9/97vTmySefnN4844wz0puf+MQn0pt//OMf05trY8mSJfHnP/85\ntXnBBRek9iLq+bz11FNPpTePOOKI9OYXvvCF9GYd82XUqFHpzT333DO9+fnPfz61t2zZsm5fO3v2\n7DjnnHMSRxOxyy67pPYiIt773vemN6+99tr05nXXXZfevOOOO9Kb2d93RNQzV9bm+6sXkv19+oIF\nC1J7sCYc4wUAAACgrRzjrY9jvAAAAADQEBb7AAAAAKAhLPYBAAAAQEO4Zx8AAAAAbeWeffWxsw8A\nAAAAGsJiHwAAAAA0hGO8AAAAALRNKcUx3hrZ2QcAAAAADWGxDwAAAAAaotPFvlLKxFLKjFLKjPnz\n57djTECH1vm3cuXKnh4O9Cmt82/OnDk9PRzoc1rn4LJly3p6ONCntM6/VatW9fRwAOiiThf7qqqa\nXFXV+Kqqxm+44YbtGBPQoXX+9e/vFpvQTq3zb6ONNurp4UCf0zoH11133Z4eDvQprfOvX79+PT0c\noKGev29fb/jV2zjGCwAAAAANYbEPAAAAABrCuUAAAAAA2qo3Ho/tLezsAwAAAICGsNgHAAAAAA3h\nGC8AAAD/Xzt3bNswDARQlNwhqbNEhsiMmSRDZInU8Q6XIoVL0fJJ4hHv1bLwDwYh4GAZ4FRe4z2O\nX/YBAAAAwCIs+wAAAABgET0ixi/u/be19jNw6Utr7bY36kQ6c+nc9hYRr3s+6PxdRmeuqzt3ncEH\nzl9r1884SmeuCp1XN3oG3unMpXOb83enM5fObbvP38p671/t/3up4hYRH1dHjHpo2Td8096/I+I9\n/cbJdObSOYcq8+nMpXMeVWbUmatCZ4XGZ1WZUWcunXOoMp/OXDphTl7jBQAAAIBFWPYBAAAAwCKO\nWvZ9HnTfbDpz6ZxDlfl05tI5jyoz6sxVobNC47OqzKgzl845VJlPZy6dMKFD/rMPAAAAADif13gB\nAAAAYBGWfQAAAACwCMs+AAAAAFiEZR8AAAAALMKyDwAAAAAW8QdEJRVzDKjhpgAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize weights\n", + "W1 = model.layers[0].get_weights()[0]\n", + "W1 = np.squeeze(W1)\n", + "# W1 = np.asarray(W1)\n", + "print(\"W1 shape : \", W1.shape)\n", + "\n", + "mosaic_imshow(W1, 2, 5, cmap=cm.binary, border=1, layer_name=\"conv1_weights_before\")\n", + "plotNNFilter(W1, 2, 5, cmap=cm.binary, layer_name=\"conv1_weights_before\")\n", + "plotNNFilter2(W1, 2, 5, cmap=cm.binary, layer_name=\"conv1_weights_before\")\n", + "\n", + "# Visualize weights\n", + "W2 = model.layers[3].get_weights()[0][:,:,0,:]\n", + "W2 = np.asarray(W2)\n", + "print(\"W2 shape : \", W2.shape)\n", + "\n", + "mosaic_imshow(W2, 4, 5, cmap=cm.binary, border=1, layer_name=\"conv2_weights_before\")\n", + "plotNNFilter(W2, 4, 5, cmap=cm.binary, layer_name=\"conv2_weights_before\")\n", + "plotNNFilter2(W2, 4, 5, cmap=cm.binary, layer_name=\"conv2_weights_before\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fit model on training data" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:24: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(...] - ETA: 29s - loss: 1.2952 - acc: 0.4271 - top_2_categorical_accuracy: 0.6085 - f1_score: nan - precision: 0.8089 - recall: 0.1649Epoch 00000: val_loss improved from inf to 1.00429, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00000: val_acc improved from -inf to 0.56369, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 390s - loss: 1.2589 - acc: 0.4516 - top_2_categorical_accuracy: 0.6250 - f1_score: nan - precision: 0.8199 - recall: 0.1930 - val_loss: 1.0043 - val_acc: 0.5637 - val_top_2_categorical_accuracy: 0.6688 - val_f1_score: 0.4889 - val_precision: 0.9526 - val_recall: 0.4204\n", + "Epoch 2/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.8743 - acc: 0.6832 - top_2_categorical_accuracy: 0.7934 - f1_score: 0.6471 - precision: 0.9414 - recall: 0.4939Epoch 00001: val_loss improved from 1.00429 to 0.79898, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00001: val_acc improved from 0.56369 to 0.74522, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 393s - loss: 0.8776 - acc: 0.6875 - top_2_categorical_accuracy: 0.8031 - f1_score: 0.6491 - precision: 0.9391 - recall: 0.4969 - val_loss: 0.7990 - val_acc: 0.7452 - val_top_2_categorical_accuracy: 0.9076 - val_f1_score: 0.5226 - val_precision: 0.8875 - val_recall: 0.4650\n", + "Epoch 3/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.8276 - acc: 0.7413 - top_2_categorical_accuracy: 0.8620 - f1_score: 0.6879 - precision: 0.9476 - recall: 0.5417Epoch 00002: val_loss improved from 0.79898 to 0.79674, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00002: val_acc improved from 0.74522 to 0.74841, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 390s - loss: 0.8346 - acc: 0.7359 - top_2_categorical_accuracy: 0.8617 - f1_score: 0.6845 - precision: 0.9399 - recall: 0.5398 - val_loss: 0.7967 - val_acc: 0.7484 - val_top_2_categorical_accuracy: 0.9363 - val_f1_score: 0.6040 - val_precision: 0.9311 - val_recall: 0.5701\n", + "Epoch 4/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.7083 - acc: 0.7821 - top_2_categorical_accuracy: 0.9080 - f1_score: 0.7112 - precision: 0.9529 - recall: 0.5686Epoch 00003: val_loss improved from 0.79674 to 0.68171, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00003: val_acc improved from 0.74841 to 0.79618, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 389s - loss: 0.6988 - acc: 0.7844 - top_2_categorical_accuracy: 0.9055 - f1_score: 0.7145 - precision: 0.9551 - recall: 0.5719 - val_loss: 0.6817 - val_acc: 0.7962 - val_top_2_categorical_accuracy: 0.9554 - val_f1_score: 0.5677 - val_precision: 0.9335 - val_recall: 0.5096\n", + "Epoch 5/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.6435 - acc: 0.7908 - top_2_categorical_accuracy: 0.9089 - f1_score: 0.7140 - precision: 0.9705 - recall: 0.5660Epoch 00004: val_loss improved from 0.68171 to 0.57862, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00004: val_acc improved from 0.79618 to 0.81847, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 386s - loss: 0.6416 - acc: 0.7937 - top_2_categorical_accuracy: 0.9102 - f1_score: 0.7142 - precision: 0.9721 - recall: 0.5656 - val_loss: 0.5786 - val_acc: 0.8185 - val_top_2_categorical_accuracy: 0.9904 - val_f1_score: 0.6011 - val_precision: 0.9885 - val_recall: 0.5414\n", + "Epoch 6/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.5592 - acc: 0.7795 - top_2_categorical_accuracy: 0.9358 - f1_score: 0.7448 - precision: 0.9040 - recall: 0.6372Epoch 00005: val_loss improved from 0.57862 to 0.44967, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00005: val_acc did not improve\n", + "10/10 [==============================] - 388s - loss: 0.5474 - acc: 0.7820 - top_2_categorical_accuracy: 0.9391 - f1_score: 0.7502 - precision: 0.9046 - recall: 0.6445 - val_loss: 0.4497 - val_acc: 0.8153 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.6574 - val_precision: 0.9775 - val_recall: 0.6146\n", + "Epoch 7/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.4426 - acc: 0.8203 - top_2_categorical_accuracy: 0.9748 - f1_score: 0.7975 - precision: 0.8898 - recall: 0.7248Epoch 00006: val_loss improved from 0.44967 to 0.38214, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00006: val_acc improved from 0.81847 to 0.82166, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 395s - loss: 0.4377 - acc: 0.8180 - top_2_categorical_accuracy: 0.9750 - f1_score: 0.7983 - precision: 0.8847 - recall: 0.7297 - val_loss: 0.3821 - val_acc: 0.8217 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8210 - val_precision: 0.8235 - val_recall: 0.8185\n", + "Epoch 8/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.4695 - acc: 0.7856 - top_2_categorical_accuracy: 0.9583 - f1_score: 0.7655 - precision: 0.8503 - recall: 0.6979Epoch 00007: val_loss did not improve\n", + "Epoch 00007: val_acc did not improve\n", + "10/10 [==============================] - 378s - loss: 0.4623 - acc: 0.7914 - top_2_categorical_accuracy: 0.9617 - f1_score: 0.7686 - precision: 0.8545 - recall: 0.7000 - val_loss: 0.3907 - val_acc: 0.8217 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.6938 - val_precision: 0.9742 - val_recall: 0.6465\n", + "Epoch 9/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.3893 - acc: 0.8316 - top_2_categorical_accuracy: 0.9757 - f1_score: 0.8126 - precision: 0.8807 - recall: 0.7561Epoch 00008: val_loss improved from 0.38214 to 0.33514, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00008: val_acc did not improve\n", + "10/10 [==============================] - 393s - loss: 0.3894 - acc: 0.8313 - top_2_categorical_accuracy: 0.9742 - f1_score: 0.8164 - precision: 0.8809 - recall: 0.7625 - val_loss: 0.3351 - val_acc: 0.8217 - val_top_2_categorical_accuracy: 0.9968 - val_f1_score: 0.8131 - val_precision: 0.8415 - val_recall: 0.7898\n", + "Epoch 10/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.4004 - acc: 0.8212 - top_2_categorical_accuracy: 0.9705 - f1_score: 0.8152 - precision: 0.8494 - recall: 0.7839Epoch 00009: val_loss did not improve\n", + "Epoch 00009: val_acc did not improve\n", + "10/10 [==============================] - 377s - loss: 0.3923 - acc: 0.8227 - top_2_categorical_accuracy: 0.9695 - f1_score: 0.8181 - precision: 0.8532 - recall: 0.7859 - val_loss: 0.3519 - val_acc: 0.8185 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8069 - val_precision: 0.8461 - val_recall: 0.7771\n", + "Epoch 11/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.3791 - acc: 0.8385 - top_2_categorical_accuracy: 0.9748 - f1_score: 0.8228 - precision: 0.8851 - recall: 0.7691Epoch 00010: val_loss did not improve\n", + "Epoch 00010: val_acc improved from 0.82166 to 0.83439, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 387s - loss: 0.3787 - acc: 0.8391 - top_2_categorical_accuracy: 0.9734 - f1_score: 0.8247 - precision: 0.8867 - recall: 0.7711 - val_loss: 0.3396 - val_acc: 0.8344 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.7925 - val_precision: 0.9301 - val_recall: 0.7325\n", + "Epoch 12/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.3155 - acc: 0.8594 - top_2_categorical_accuracy: 0.9835 - f1_score: 0.8521 - precision: 0.8805 - recall: 0.8255Epoch 00011: val_loss improved from 0.33514 to 0.31458, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00011: val_acc did not improve\n", + "10/10 [==============================] - 380s - loss: 0.3219 - acc: 0.8562 - top_2_categorical_accuracy: 0.9828 - f1_score: 0.8472 - precision: 0.8751 - recall: 0.8211 - val_loss: 0.3146 - val_acc: 0.8185 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8218 - val_precision: 0.8287 - val_recall: 0.8153\n", + "Epoch 13/40\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 9/10 [==========================>...] - ETA: 28s - loss: 0.3569 - acc: 0.8464 - top_2_categorical_accuracy: 0.9679 - f1_score: 0.8433 - precision: 0.8726 - recall: 0.8160Epoch 00012: val_loss did not improve\n", + "Epoch 00012: val_acc did not improve\n", + "10/10 [==============================] - 388s - loss: 0.3565 - acc: 0.8469 - top_2_categorical_accuracy: 0.9680 - f1_score: 0.8426 - precision: 0.8755 - recall: 0.8125 - val_loss: 0.3411 - val_acc: 0.8280 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8011 - val_precision: 0.8626 - val_recall: 0.7611\n", + "Epoch 14/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.3400 - acc: 0.8663 - top_2_categorical_accuracy: 0.9774 - f1_score: 0.8487 - precision: 0.9114 - recall: 0.7943Epoch 00013: val_loss did not improve\n", + "Epoch 00013: val_acc did not improve\n", + "10/10 [==============================] - 390s - loss: 0.3349 - acc: 0.8688 - top_2_categorical_accuracy: 0.9773 - f1_score: 0.8521 - precision: 0.9118 - recall: 0.8000 - val_loss: 0.3253 - val_acc: 0.8248 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8120 - val_precision: 0.8298 - val_recall: 0.7962\n", + "Epoch 15/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.3035 - acc: 0.8715 - top_2_categorical_accuracy: 0.9809 - f1_score: 0.8634 - precision: 0.8850 - recall: 0.8429Epoch 00014: val_loss did not improve\n", + "Epoch 00014: val_acc did not improve\n", + "10/10 [==============================] - 393s - loss: 0.3126 - acc: 0.8672 - top_2_categorical_accuracy: 0.9789 - f1_score: 0.8609 - precision: 0.8832 - recall: 0.8398 - val_loss: 0.3184 - val_acc: 0.8248 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8267 - val_precision: 0.8353 - val_recall: 0.8185\n", + "Epoch 16/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.3455 - acc: 0.8611 - top_2_categorical_accuracy: 0.9766 - f1_score: 0.8489 - precision: 0.8912 - recall: 0.8108Epoch 00015: val_loss did not improve\n", + "Epoch 00015: val_acc did not improve\n", + "10/10 [==============================] - 397s - loss: 0.3391 - acc: 0.8664 - top_2_categorical_accuracy: 0.9766 - f1_score: 0.8547 - precision: 0.8962 - recall: 0.8172 - val_loss: 0.3251 - val_acc: 0.8344 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8044 - val_precision: 0.8827 - val_recall: 0.7580\n", + "Epoch 17/40\n", + " 9/10 [==========================>...] - ETA: 30s - loss: 0.2953 - acc: 0.8811 - top_2_categorical_accuracy: 0.9826 - f1_score: 0.8764 - precision: 0.9175 - recall: 0.8394Epoch 00016: val_loss did not improve\n", + "Epoch 00016: val_acc did not improve\n", + "10/10 [==============================] - 402s - loss: 0.2885 - acc: 0.8836 - top_2_categorical_accuracy: 0.9836 - f1_score: 0.8786 - precision: 0.9197 - recall: 0.8414 - val_loss: 0.3191 - val_acc: 0.8344 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8262 - val_precision: 0.8379 - val_recall: 0.8153\n", + "Epoch 18/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.3459 - acc: 0.8628 - top_2_categorical_accuracy: 0.9757 - f1_score: 0.8612 - precision: 0.8824 - recall: 0.8411Epoch 00017: val_loss did not improve\n", + "Epoch 00017: val_acc did not improve\n", + "10/10 [==============================] - 391s - loss: 0.3416 - acc: 0.8617 - top_2_categorical_accuracy: 0.9750 - f1_score: 0.8609 - precision: 0.8832 - recall: 0.8398 - val_loss: 0.3164 - val_acc: 0.8344 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8248 - val_precision: 0.8387 - val_recall: 0.8121\n", + "Epoch 19/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.3054 - acc: 0.8802 - top_2_categorical_accuracy: 0.9809 - f1_score: 0.8737 - precision: 0.9129 - recall: 0.8377Epoch 00018: val_loss did not improve\n", + "Epoch 00018: val_acc improved from 0.83439 to 0.83758, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 385s - loss: 0.2979 - acc: 0.8828 - top_2_categorical_accuracy: 0.9828 - f1_score: 0.8763 - precision: 0.9135 - recall: 0.8422 - val_loss: 0.3300 - val_acc: 0.8376 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8125 - val_precision: 0.8360 - val_recall: 0.7930\n", + "Epoch 20/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2749 - acc: 0.8819 - top_2_categorical_accuracy: 0.9887 - f1_score: 0.8787 - precision: 0.9040 - recall: 0.8550Epoch 00019: val_loss did not improve\n", + "Epoch 00019: val_acc did not improve\n", + "10/10 [==============================] - 388s - loss: 0.2720 - acc: 0.8820 - top_2_categorical_accuracy: 0.9883 - f1_score: 0.8793 - precision: 0.9039 - recall: 0.8562 - val_loss: 0.3200 - val_acc: 0.8280 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8257 - val_precision: 0.8332 - val_recall: 0.8185\n", + "Epoch 21/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2833 - acc: 0.8845 - top_2_categorical_accuracy: 0.9774 - f1_score: 0.8819 - precision: 0.8983 - recall: 0.8663Epoch 00020: val_loss improved from 0.31458 to 0.30989, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00020: val_acc improved from 0.83758 to 0.84076, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 385s - loss: 0.2842 - acc: 0.8836 - top_2_categorical_accuracy: 0.9797 - f1_score: 0.8803 - precision: 0.8964 - recall: 0.8648 - val_loss: 0.3099 - val_acc: 0.8408 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8262 - val_precision: 0.8421 - val_recall: 0.8121\n", + "Epoch 22/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2672 - acc: 0.9010 - top_2_categorical_accuracy: 0.9878 - f1_score: 0.9000 - precision: 0.9227 - recall: 0.8785Epoch 00021: val_loss did not improve\n", + "Epoch 00021: val_acc did not improve\n", + "10/10 [==============================] - 384s - loss: 0.2695 - acc: 0.9016 - top_2_categorical_accuracy: 0.9883 - f1_score: 0.9005 - precision: 0.9217 - recall: 0.8805 - val_loss: 0.3175 - val_acc: 0.8408 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8312 - val_precision: 0.8416 - val_recall: 0.8217\n", + "Epoch 23/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.2544 - acc: 0.8958 - top_2_categorical_accuracy: 0.9861 - f1_score: 0.8916 - precision: 0.9127 - recall: 0.8715Epoch 00022: val_loss improved from 0.30989 to 0.30836, saving model to overlap_multiclass_reg_non_bn_loss.hdf5\n", + "Epoch 00022: val_acc improved from 0.84076 to 0.84395, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 384s - loss: 0.2631 - acc: 0.8922 - top_2_categorical_accuracy: 0.9859 - f1_score: 0.8886 - precision: 0.9086 - recall: 0.8695 - val_loss: 0.3084 - val_acc: 0.8439 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8361 - val_precision: 0.8412 - val_recall: 0.8312\n", + "Epoch 24/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.2546 - acc: 0.9010 - top_2_categorical_accuracy: 0.9852 - f1_score: 0.9007 - precision: 0.9165 - recall: 0.8854Epoch 00023: val_loss did not improve\n", + "Epoch 00023: val_acc did not improve\n", + "10/10 [==============================] - 379s - loss: 0.2471 - acc: 0.9055 - top_2_categorical_accuracy: 0.9859 - f1_score: 0.9050 - precision: 0.9215 - recall: 0.8891 - val_loss: 0.3085 - val_acc: 0.8439 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8322 - val_precision: 0.8438 - val_recall: 0.8217\n", + "Epoch 25/40\n", + " 9/10 [==========================>...] - ETA: 30s - loss: 0.2312 - acc: 0.9123 - top_2_categorical_accuracy: 0.9913 - f1_score: 0.9101 - precision: 0.9288 - recall: 0.8924Epoch 00024: val_loss did not improve\n", + "Epoch 00024: val_acc did not improve\n", + "10/10 [==============================] - 396s - loss: 0.2297 - acc: 0.9102 - top_2_categorical_accuracy: 0.9914 - f1_score: 0.9084 - precision: 0.9263 - recall: 0.8914 - val_loss: 0.3230 - val_acc: 0.8312 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8351 - val_precision: 0.8391 - val_recall: 0.8312\n", + "Epoch 26/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2455 - acc: 0.9028 - top_2_categorical_accuracy: 0.9852 - f1_score: 0.9037 - precision: 0.9209 - recall: 0.8872Epoch 00025: val_loss did not improve\n", + "Epoch 00025: val_acc did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10/10 [==============================] - 387s - loss: 0.2395 - acc: 0.9039 - top_2_categorical_accuracy: 0.9867 - f1_score: 0.9058 - precision: 0.9224 - recall: 0.8898 - val_loss: 0.3220 - val_acc: 0.8344 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8328 - val_precision: 0.8379 - val_recall: 0.8280\n", + "Epoch 27/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2223 - acc: 0.9132 - top_2_categorical_accuracy: 0.9913 - f1_score: 0.9088 - precision: 0.9261 - recall: 0.8924Epoch 00026: val_loss did not improve\n", + "Epoch 00026: val_acc did not improve\n", + "10/10 [==============================] - 393s - loss: 0.2205 - acc: 0.9117 - top_2_categorical_accuracy: 0.9914 - f1_score: 0.9071 - precision: 0.9252 - recall: 0.8898 - val_loss: 0.3141 - val_acc: 0.8408 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8335 - val_precision: 0.8429 - val_recall: 0.8248\n", + "Epoch 28/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2186 - acc: 0.9080 - top_2_categorical_accuracy: 0.9913 - f1_score: 0.9090 - precision: 0.9191 - recall: 0.8993Epoch 00027: val_loss did not improve\n", + "Epoch 00027: val_acc did not improve\n", + "10/10 [==============================] - 392s - loss: 0.2203 - acc: 0.9023 - top_2_categorical_accuracy: 0.9914 - f1_score: 0.9046 - precision: 0.9151 - recall: 0.8945 - val_loss: 0.3196 - val_acc: 0.8344 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8361 - val_precision: 0.8412 - val_recall: 0.8312\n", + "Epoch 29/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2261 - acc: 0.9141 - top_2_categorical_accuracy: 0.9878 - f1_score: 0.9097 - precision: 0.9186 - recall: 0.9010Epoch 00028: val_loss did not improve\n", + "Epoch 00028: val_acc did not improve\n", + "10/10 [==============================] - 397s - loss: 0.2350 - acc: 0.9133 - top_2_categorical_accuracy: 0.9891 - f1_score: 0.9089 - precision: 0.9179 - recall: 0.9000 - val_loss: 0.3173 - val_acc: 0.8408 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8391 - val_precision: 0.8476 - val_recall: 0.8312\n", + "Epoch 30/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2148 - acc: 0.9167 - top_2_categorical_accuracy: 0.9913 - f1_score: 0.9175 - precision: 0.9274 - recall: 0.9080Epoch 00029: val_loss did not improve\n", + "Epoch 00029: val_acc did not improve\n", + "10/10 [==============================] - 390s - loss: 0.2114 - acc: 0.9172 - top_2_categorical_accuracy: 0.9914 - f1_score: 0.9179 - precision: 0.9268 - recall: 0.9094 - val_loss: 0.3139 - val_acc: 0.8439 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8381 - val_precision: 0.8454 - val_recall: 0.8312\n", + "Epoch 31/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2210 - acc: 0.9149 - top_2_categorical_accuracy: 0.9905 - f1_score: 0.9170 - precision: 0.9289 - recall: 0.9054Epoch 00030: val_loss did not improve\n", + "Epoch 00030: val_acc did not improve\n", + "10/10 [==============================] - 382s - loss: 0.2145 - acc: 0.9164 - top_2_categorical_accuracy: 0.9906 - f1_score: 0.9190 - precision: 0.9305 - recall: 0.9078 - val_loss: 0.3309 - val_acc: 0.8376 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8361 - val_precision: 0.8412 - val_recall: 0.8312\n", + "Epoch 32/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.2235 - acc: 0.9210 - top_2_categorical_accuracy: 0.9939 - f1_score: 0.9199 - precision: 0.9377 - recall: 0.9028Epoch 00031: val_loss did not improve\n", + "Epoch 00031: val_acc improved from 0.84395 to 0.85032, saving model to overlap_multiclass_reg_non_bn_acc.hdf5\n", + "10/10 [==============================] - 378s - loss: 0.2180 - acc: 0.9195 - top_2_categorical_accuracy: 0.9945 - f1_score: 0.9184 - precision: 0.9352 - recall: 0.9023 - val_loss: 0.3188 - val_acc: 0.8503 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8434 - val_precision: 0.8532 - val_recall: 0.8344\n", + "Epoch 33/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.1781 - acc: 0.9193 - top_2_categorical_accuracy: 0.9965 - f1_score: 0.9215 - precision: 0.9309 - recall: 0.9123Epoch 00032: val_loss did not improve\n", + "Epoch 00032: val_acc did not improve\n", + "10/10 [==============================] - 389s - loss: 0.1766 - acc: 0.9203 - top_2_categorical_accuracy: 0.9969 - f1_score: 0.9223 - precision: 0.9315 - recall: 0.9133 - val_loss: 0.3491 - val_acc: 0.8344 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8309 - val_precision: 0.8338 - val_recall: 0.8280\n", + "Epoch 34/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.1805 - acc: 0.9332 - top_2_categorical_accuracy: 0.9887 - f1_score: 0.9346 - precision: 0.9459 - recall: 0.9236Epoch 00033: val_loss did not improve\n", + "Epoch 00033: val_acc did not improve\n", + "10/10 [==============================] - 384s - loss: 0.1829 - acc: 0.9320 - top_2_categorical_accuracy: 0.9898 - f1_score: 0.9336 - precision: 0.9456 - recall: 0.9219 - val_loss: 0.3223 - val_acc: 0.8503 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8457 - val_precision: 0.8544 - val_recall: 0.8376\n", + "Epoch 35/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.1979 - acc: 0.9332 - top_2_categorical_accuracy: 0.9957 - f1_score: 0.9292 - precision: 0.9413 - recall: 0.9175Epoch 00034: val_loss did not improve\n", + "Epoch 00034: val_acc did not improve\n", + "10/10 [==============================] - 386s - loss: 0.1970 - acc: 0.9313 - top_2_categorical_accuracy: 0.9961 - f1_score: 0.9273 - precision: 0.9385 - recall: 0.9164 - val_loss: 0.3261 - val_acc: 0.8471 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8391 - val_precision: 0.8476 - val_recall: 0.8312\n", + "Epoch 36/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.1753 - acc: 0.9314 - top_2_categorical_accuracy: 0.9922 - f1_score: 0.9260 - precision: 0.9384 - recall: 0.9141Epoch 00035: val_loss did not improve\n", + "Epoch 00035: val_acc did not improve\n", + "10/10 [==============================] - 384s - loss: 0.1817 - acc: 0.9336 - top_2_categorical_accuracy: 0.9922 - f1_score: 0.9279 - precision: 0.9398 - recall: 0.9164 - val_loss: 0.3396 - val_acc: 0.8376 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8396 - val_precision: 0.8416 - val_recall: 0.8376\n", + "Epoch 37/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.2160 - acc: 0.9314 - top_2_categorical_accuracy: 0.9948 - f1_score: 0.9301 - precision: 0.9366 - recall: 0.9236Epoch 00036: val_loss did not improve\n", + "Epoch 00036: val_acc did not improve\n", + "10/10 [==============================] - 374s - loss: 0.2121 - acc: 0.9336 - top_2_categorical_accuracy: 0.9938 - f1_score: 0.9327 - precision: 0.9405 - recall: 0.9250 - val_loss: 0.3224 - val_acc: 0.8503 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8469 - val_precision: 0.8533 - val_recall: 0.8408\n", + "Epoch 38/40\n", + " 9/10 [==========================>...] - ETA: 28s - loss: 0.1701 - acc: 0.9288 - top_2_categorical_accuracy: 0.9965 - f1_score: 0.9311 - precision: 0.9360 - recall: 0.9262Epoch 00037: val_loss did not improve\n", + "Epoch 00037: val_acc did not improve\n", + "10/10 [==============================] - 386s - loss: 0.1675 - acc: 0.9313 - top_2_categorical_accuracy: 0.9969 - f1_score: 0.9328 - precision: 0.9384 - recall: 0.9273 - val_loss: 0.3369 - val_acc: 0.8503 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8423 - val_precision: 0.8507 - val_recall: 0.8344\n", + "Epoch 39/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.2067 - acc: 0.9201 - top_2_categorical_accuracy: 0.9957 - f1_score: 0.9219 - precision: 0.9263 - recall: 0.9175Epoch 00038: val_loss did not improve\n", + "Epoch 00038: val_acc did not improve\n", + "10/10 [==============================] - 390s - loss: 0.2139 - acc: 0.9219 - top_2_categorical_accuracy: 0.9953 - f1_score: 0.9238 - precision: 0.9282 - recall: 0.9195 - val_loss: 0.3418 - val_acc: 0.8408 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8406 - val_precision: 0.8436 - val_recall: 0.8376\n", + "Epoch 40/40\n", + " 9/10 [==========================>...] - ETA: 29s - loss: 0.1778 - acc: 0.9358 - top_2_categorical_accuracy: 0.9957 - f1_score: 0.9368 - precision: 0.9405 - recall: 0.9332Epoch 00039: val_loss did not improve\n", + "Epoch 00039: val_acc did not improve\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10/10 [==============================] - 394s - loss: 0.1728 - acc: 0.9367 - top_2_categorical_accuracy: 0.9961 - f1_score: 0.9376 - precision: 0.9417 - recall: 0.9336 - val_loss: 0.3367 - val_acc: 0.8471 - val_top_2_categorical_accuracy: 0.9936 - val_f1_score: 0.8460 - val_precision: 0.8481 - val_recall: 0.8439\n" + ] + } + ], + "source": [ + "tensorboard = TensorBoard(log_dir='./Graph', histogram_freq=1, write_grads=True, write_graph=True,\n", + " write_images=True, batch_size=batch_size)\n", + "checkpointer_loss = ModelCheckpoint(filepath= MODEL_NAME + '_loss.hdf5', verbose=1, save_best_only=True, save_weights_only=True)\n", + "checkpointer_acc = ModelCheckpoint(monitor='val_acc', filepath= MODEL_NAME + '_acc.hdf5', verbose=1, save_best_only=True, save_weights_only=True)\n", + "tensorboard.set_model(model)\n", + "\n", + "def generator(features, labels, batch_size):\n", + " index = 0\n", + " while True:\n", + " index += batch_size\n", + " if index >= len(features):\n", + " batch_features = np.append(features[index-batch_size:len(features)], features[0:index-len(features)], axis=0)\n", + " batch_labels = np.append(labels[index-batch_size:len(features)], labels[0:index-len(features)], axis=0)\n", + " index -= len(features)\n", + " yield batch_features, batch_labels\n", + " else:\n", + " yield features[index-batch_size:index], labels[index-batch_size:index]\n", + "\n", + "history = model.fit_generator(generator(x_train, y_train, batch_size),\n", + " epochs=epochs,\n", + " samples_per_epoch=samples_per_epoch,\n", + " verbose=1,\n", + " callbacks=[tensorboard,checkpointer_loss,checkpointer_acc],\n", + " validation_data=(x_val, y_val))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot history accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_keys(['val_loss', 'val_acc', 'val_top_2_categorical_accuracy', 'val_f1_score', 'val_precision', 'val_recall', 'loss', 'acc', 'top_2_categorical_accuracy', 'f1_score', 'precision', 'recall'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX5wPHPk5s9gCQkjAQIyB4KGsAtOFqcoHXhqNta\ntdVu21+H3f7a2mqtG1FbFRx1/SxqRcVqRTbKHrKSECAkZI+b3Dy/P85JuAkZl5CbG3Kf9+uVV+49\n6z73QM5zvvOIqmKMMcYARIQ6AGOMMd2HJQVjjDGNLCkYY4xpZEnBGGNMI0sKxhhjGllSMMYY08iS\nggkrIvKMiPwmwG13iMjZwY7JmO7EkoIxxphGlhSMOQqJSGSoYzA9kyUF0+241TY/EJEvRKRCRJ4S\nkX4i8raIlInIQhFJ9tv+IhFZJyLFIrJIRMb4rZskIivd/V4EYpt91gUistrd91MROTbAGM8XkVUi\nUioiOSJyb7P1p7rHK3bXX+8ujxOR+0Vkp4iUiMgn7rJpIpLbwnk42319r4i8IiLPiUgpcL2ITBGR\nxe5n5IvI30Qk2m//cSLynogUicheEfmJiPQXkUoRSfXb7ngRKRCRqEC+u+nZLCmY7uprwDnASOBC\n4G3gJ0Aazv/bbwOIyEhgHnC3u24B8H8iEu1eIF8H/gGkAC+7x8XddxIwF/gGkAo8DrwpIjEBxFcB\nfB3oA5wPfFNEZrnHHeLG+5Ab00Rgtbvfn4ATgJPdmH4I1Ad4TmYCr7if+TzgA74D9AVOAs4Cbndj\nSAIWAu8AA4HhwPuqugdYBFzud9xrgfmqWhtgHKYHs6RguquHVHWvquYBHwNLVHWVqlYDrwGT3O2u\nAP6lqu+5F7U/AXE4F90TgSjgAVWtVdVXgGV+n3Er8LiqLlFVn6o+C9S4+7VJVRep6hpVrVfVL3AS\n0xnu6quAhao6z/3cQlVdLSIRwI3AXaqa537mp6paE+A5Wayqr7ufWaWqK1T1M1WtU9UdOEmtIYYL\ngD2qer+qVqtqmaoucdc9C1wDICIeYDZO4jTGkoLptvb6va5q4X2i+3ogsLNhharWAzlAhrsuT5vO\n+rjT7/UQ4Htu9UuxiBQDg9z92iQiU0XkQ7fapQS4DeeOHfcYX7awW1+c6quW1gUip1kMI0XkLRHZ\n41Yp/S6AGADeAMaKyFCc0liJqi7tYEymh7GkYI52u3Eu7gCIiOBcEPOAfCDDXdZgsN/rHOC3qtrH\n7ydeVecF8LkvAG8Cg1S1N/AY0PA5OcAxLeyzH6huZV0FEO/3PTw4VU/+mk9p/CiwERihqr1wqtf8\nYxjWUuBuaeslnNLCtVgpwfixpGCOdi8B54vIWW5D6fdwqoA+BRYDdcC3RSRKRC4Bpvjt+yRwm3vX\nLyKS4DYgJwXwuUlAkapWi8gUnCqjBs8DZ4vI5SISKSKpIjLRLcXMBf4sIgNFxCMiJ7ltGJuBWPfz\no4CfAu21bSQBpUC5iIwGvum37i1ggIjcLSIxIpIkIlP91v8duB64CEsKxo8lBXNUU9VNOHe8D+Hc\niV8IXKiqXlX1ApfgXPyKcNofXvXbdzlwC/A34ACw1d02ELcDvxKRMuDnOMmp4bi7gPNwElQRTiPz\nce7q7wNrcNo2ioD/BSJUtcQ95hycUk4F0KQ3Ugu+j5OMynAS3It+MZThVA1dCOwBtgDT/db/F6eB\ne6Wq+lepmTAn9pAdY8KTiHwAvKCqc0Idi+k+LCkYE4ZEZDLwHk6bSFmo4zHdh1UfGRNmRORZnDEM\nd1tCMM1ZScEYY0wjKykYY4xpdNRNqtW3b1/NysoKdRjGGHNUWbFixX5VbT725RBHXVLIyspi+fLl\noQ7DGGOOKiISUNdjqz4yxhjTyJKCMcaYRpYUjDHGNDrq2hRaUltbS25uLtXV1aEOJehiY2PJzMwk\nKsqeh2KM6Xw9Iink5uaSlJREVlYWTSfE7FlUlcLCQnJzcxk6dGiowzHG9EA9ovqourqa1NTUHp0Q\nAESE1NTUsCgRGWNCo0ckBaDHJ4QG4fI9jTGh0WOSgjHG9FT19cpD729hbV5J0D+rR7QphFpxcTEv\nvPACt99++2Htd9555/HCCy/Qp0+fIEVmjOkMvnplb2k1e0qr8dW3Pl9cZIQwsE8caYkxRER0Tqm+\nuNLL3S+uZtGmAiq8PsZn9O6U47bGkkInKC4u5pFHHjkkKdTV1REZ2fopXrBgQbBDM8a4an31zF+6\niy37yomL8hAX7Tnkd2ykh6JKL3kHqsgrriL3QCV5xVXkF1dT10YyaC7aE8GAPrFk9IkjMzmOjD7x\nZCTHMW5gL8YM6BXwcdbklnDbcyvYV1bNr2eN55qpg9vf6QhZUugE99xzD19++SUTJ04kKiqK2NhY\nkpOT2bhxI5s3b2bWrFnk5ORQXV3NXXfdxa233gocnLKjvLycc889l1NPPZVPP/2UjIwM3njjDeLi\n4kL8zYzpGZbvKOKnr69l454ykmIjqamrx1tX3+r2ItAvKZaM5DiOH5xMxrFxZCTHMbB3HFGe1mvd\na+p87C6pbpJUFm0qYF9ZTeM2p49M466zhnPCkJQ2Y56/dBc/f3MdfROieekbJzFpcPLhf/EO6HFJ\n4Zf/t471u0s79ZhjB/biFxeOa3X9fffdx9q1a1m9ejWLFi3i/PPPZ+3atY3dRufOnUtKSgpVVVVM\nnjyZr33ta6SmpjY5xpYtW5g3bx5PPvkkl19+Of/85z+55pprOvV7GBNuiiq83Pf2Bl5ansvA3rE8\nfu0JfGVsP0QEX71SVeujyuujutZHpddHVa2PlPho+veOJTqy85pcq2t95JdU887aPcz5eBtfe3Qx\nJx+TyrfPGsGJw1IP2fZnr6/l5RW5nDaiLw9eOYmUhOhOi6U9PS4pdAdTpkxpMo7gr3/9K6+99hoA\nOTk5bNmy5ZCkMHToUCZOnAjACSecwI4dO7osXmN6mvp65aXlOdz3zkbKq+v4xhnDuOusEcRHH7zk\neSKExJhIEmOCfxmMjfIwtG8C35x2DNedPIQXluzi8f9s48onPmNKVgrfPmsEpwxPJaeoitueW8H6\n/FK+feZw7jp7JJ5OapsIVI9LCm3d0XeVhISExteLFi1i4cKFLF68mPj4eKZNm9biOIOYmJjG1x6P\nh6qqqi6J1ZieZv3uUn76+hpW7ipmytAUfjNrPCP7JYU6rEbx0ZHcfNowrjlxCPOX7uKxj7ZxzVNL\nOG5QH7YXlCMizL0+mzNH9wtJfD0uKYRCUlISZWUtP9WwpKSE5ORk4uPj2bhxI5999lkXR2fM0a+s\nupat+8rZuq+cnKJKKtyqniqv81NZ66Pa66Oyto4N+WX0iYvi/suO45LjM7rt2J7YKA/XnzKU2VMH\n88qKXB5d9CVDUhN45OrjGZQSH7K4LCl0gtTUVE455RTGjx9PXFwc/fodzPAzZszgscceY8yYMYwa\nNYoTTzwxhJEaExqqyp7Saj7PKWF9fim++nq3x0+k+zuCuKhI4qI9REYIOwsr2bKvrDER5JccLF2L\nQHzDvtERxEdFEhvtIT7KQ3pSLCcf05fbpx1Dn/iuq4c/EjGRHq6eOoSrpjg9i0KdxI66ZzRnZ2dr\n84fsbNiwgTFjxoQooq4Xbt/XHH0KympYk1fM5zklrMkr4YvcEvaXOz1wIoTGht62xEV5GJ6eyIj0\nRIb3S2REehIj0hMZlBLf5fXsPYGIrFDV7Pa2s5KCMaaJogov2/dXMGlQn8MegPXpl/v57b82sM7t\nASgCI9ITOWNkGsdm9mZCZm/GDuhFbJQHb139wSqgWh+V3jqqa33U1NUzOCWegb3jOm0AmAmcJQVj\neoj6emVrQTlLthWyKqeYY9ISOW/CAIb2TWh3X1Vlxc4DPPfZThas2YPXV8+ofknceeZwzpswoN07\n8x37K/jdgg38e/1eMvrE8ZPzRjNxUDLjBvYioZXePdGREURHRtA7zqaB704sKRhzlPLVKxv3lLJk\nWxFLtheybMcBiiq8AKQkRPPqyjz++O4mRvdP4tzxAzhvQn9GNOuFU1Zdy+ur8nh+yS5nYFdMJLOn\nDGLMgF489cl2vjVvFX9ZuJk7pw/nouMGEtls4FZpdS0Pf7CVuf/dTpQngh98dRQ3nTqU2ChPl50H\n07mCmhREZAbwIOAB5qjqfc3WJwNzgWOAauBGVV0bzJiMOdoVV3r53YINvLN2D6XVdQBkJscxfVQ6\nU4elcOLQVAalxDUOlnp7bT4PvL+ZvyzczDFpCZw3YQDZWSm8s3YPb6zOo9LrY3xGL+67ZAIXHjew\n8c7+8uxBvLNuDw99sJXvvvQ5D76/hdunHcPFkzLxRAgvLsvh/n9voqjSy6XHZ/KDr44ivVdsKE+N\n6QRBa2gWEQ+wGTgHyAWWAbNVdb3fNn8EylX1lyIyGnhYVc9q67jW0Bx+37cnqq9XCspr6HeYF9GP\ntxTw/Zc/p7Dcy8WTMjh5eCpThqaS0aftKVH2lVbz7ro9vL12D59tK6ReITYqgouOG8jVU4dwbGbv\nVnu9qCoLN+zjr+9vYU1eCRl94kiKjWTjnjImZyXz8wvGMSEzuJO0mSPXHRqapwBbVXWbG9B8YCaw\n3m+bscB9AKq6UUSyRKSfqu4NYlzGhFR1rY87X1jFwg17OWdsP7595oh2L6pVXh/3vb2BZxfvZHh6\nIk9dN/mwZstM7xXLtSdlce1JWRSW17A6p5jsISn0jm+/Pl9EOGdsP84ek86izQU8/MFWiqtqefiq\n4zlvQv+Qd6E0nSuYSSEDyPF7nwtMbbbN58AlwMciMgUYAmQCTZKCiNwK3AoweHDwZwkMtsTERMrL\ny0MdhgmB8po6bnl2OYu3FXLxpAze37CXC9fvZfqoNL511giOb2HSs89zivnOS6vZVlDBjacM5Ycz\nRh1RnX1qYgxnjTn80bIiwvRR6Uwfld7hzzbdX6gbmu8DHhSR1cAaYBXga76Rqj4BPAFO9VGXRmhM\nJymu9HLd08tYm1fCX644josnZVJaXcs/Fu9kzsfbuOSRTzltRF++deYIpgxNodZXz8MfbuWhD7aS\nnhTD8zdP5ZThfUP9NUwPF8ykkAcM8nuf6S5rpKqlwA0A4pRBtwPbghhTUNxzzz0MGjSIO+64A4B7\n772XyMhIPvzwQw4cOEBtbS2/+c1vmDlzZogjNaGyr7Saa59ayvb9FTx69fF8ZVx/AHrFRnHH9OFc\nf3IWz322kyc/3sbljy9m6tAUquvq+TynmFkTB/LLmeOt66bpEsFsaI7EaWg+CycZLAOuUtV1ftv0\nASpV1SsitwCnqerX2zpuuw3Nb98De9Z05leB/hPg3PtaXb1q1SruvvtuPvroIwDGjh3Lu+++S+/e\nvenVqxf79+/nxBNPZMuWLYjIEVcfWUPz0SWnqJJrnlpCQVkNT349u827/Sqvj3lLd/HYR19SU1fP\nby8ezwXHDuzCaE1PFfKGZlWtE5E7gXdxuqTOVdV1InKbu/4xYAzwrIgosA64KVjxBNOkSZPYt28f\nu3fvpqCggOTkZPr37893vvMd/vOf/xAREUFeXh579+6lf//+oQ7XdKGt+8q4Zs5Sqmp9PH/z1HYf\nlBIX7eHGU4fy9ZOGABwyLsCYYAtqm4KqLgAWNFv2mN/rxcDITv3QNu7og+myyy7jlVdeYc+ePVxx\nxRU8//zzFBQUsGLFCqKiosjKympxymzTc63JLeHrc5fgiYjgxW+cyOj+gT+G0ZKBCZVQNzT3GFdc\ncQW33HIL+/fv56OPPuKll14iPT2dqKgoPvzwQ3bu3BnqEMPO80t28s7aPTxwxURSE2Pa36GZBWvy\nWZtXQny0h9goD/HurJwNs3vGRkZQXlNHYYWXogovByq8ja8LK7xs3lNGSkI0z988lawAppowpjuw\npNBJxo0bR1lZGRkZGQwYMICrr76aCy+8kAkTJpCdnc3o0aNDHWLYUFX+9O9NPPzhlwDc9Oxy5t1y\nInHRgXfjnL90F/e8ugYRCLTZLToygtSEaFLcn4uOG8jd54xgQG971rY5elhS6ERr1hxs4O7bty+L\nFy9ucTsboxA8tb56fvzqGl5ZkcvsKYM5fURfbn9hJXfNX8Wj15wQ0JTL/163h5+8toYzRqYx57ps\nVGkym6fzu47q2noSYiJJiY8mJTGahGiPDeQyRz1LCqbHqPTWcfvzK1m0qYC7zx7BXWeNQET4xQVj\nuff/1vPrt9bziwvHtnnhXrq9iG/NW8WEzD48cvXxRLl1+zabpwkXlhRMj1BYXsONzy5nTW4xv79k\nArOnHBz5fv0pQ8k9UMWcT7aTmRzHzacNa/EYG/eUctOzy8hIjuPp6ye3OuWzMT1Zj/lfr6phUXQ/\n2p6U1xV2FVZy3dNL2V1cxePXZnPO2EOncPjJeWPIK67itws2MLBPHOdNGNBkfU5RJV9/aikJ0ZH8\n46appCQcHY9yNKaz9YikEBsbS2FhIampqT06MagqhYWFxMb2jOmJa331/PyNtWzeW05KQnSTRtrU\nxGiS46NJTYghIcbt+RPlIS7aQ5RHGv+d1+aVcP3Ty6irr+eFW6ZywpCUFj8rIkL4yxUT2TdnCXe/\nuJr0pBiys5xtC8truG7uUqprfbx828ntzjhqTE/WI57RXFtbS25ubliMA4iNjSUzM5OoqKO7fltV\n+cErX/DKilwmZyVTWlVHUaXTrbOunWf3eiKE+CgPsdEeSqpqSUuM4dkbJzM8PanN/cB51OTXHv2U\nA5VeXv3myfTrFctVT37Gxj1lPH/z1MZEYUxPE+iI5h6RFMzR54GFm3lg4RbuOmsE3znn4PhFVaW0\nqo7CiprG/v6V3jqqvA3P861zf9dTVVtHZEQEd0wfTv/egZeedhZWcMkjn5IQE8nglHgWbyvk8WtO\n4OwWqp2M6SlCPs2FMa15eXkODyzcwqUnZHL32SOarBMResdH0Ts+imFpwfn8IakJzLkum9lPfsau\nokr+cOmxlhCMcVlSMF3q4y0F/PjVNZw2oi+/v2RCyNqAJg1O5h83TaWgrOaQRmdjwpklBXNE3t+w\nl3+tyee6k7I4blCfNrddv7uUbz63kuHpiU3GAITKZGs/MOYQlhRMhz2/ZCc/e30tCry6Mo8zRqbx\n7bOGt9gDKL+kihufWUZiTCRP3zCZpNiju6HcmJ7KkoI5bKrKXxZu4a/vb2H6qDT+99JjeWVFLnM+\n3s7XHl3MKcNT+daZIzhxWCoApdW13PD0Mspr6nj5tpNsLiDTcd5KKNgIGcd3bP/iHCjLh74jIa7t\nku1hq62CHZ+Ar7b1bXpnwIDjOvdzO5n1PjKHpc5Xz09fX8v8ZTlcekImv79kQmM1UKW3juc/28Xj\n/9nG/vIapmSlcPv0Y5jz8XY+21bI0zdM5rQRQWo9Nj3fzk/h9dvhwHaY8g346u/Acxj3tevfgFe/\nAXVVzvukAZA22vlJHw1pYyBtVMeSxa4l8MbtULi1/W2HTYNpP4bBJx7eZ9R5wVcDMe13vW6JdUk1\nna7K6+Nb81aycMM+7pw+nO99ZWSLDcXVtT7mL93FYx9tY0+pM3bkj5cey2XZgw7Z1ph2eSvg/V/B\nksehz2AYehqseg6GTYfLnoa4th9chCp89AdY9DvInAKn3OVcvAs2uj+boLby4PbDprsX7akBxFYJ\nH/4WFj8MvQfBjN85v1uz4xP47wNQUeAkhzPugSEntb59nRe2LYJ1r8Gmf8GJd8C0H7UfVwssKZhO\ndaDCy03PLmNVTjG/umgc156U1e4+NXU+Xl2ZR5QngktPyAx+kEez+noozYV9Gw9erCoK2t5n6Okw\n9ZuHd7ccCrXVULjl4Hcr3ArpY2DsLOcOvS07/gtv3OGWDm6Fs34BMYmw8h/w1ncgeQjMfhH6Dm/l\ns6uc0sW6V+G42XDhgxDZ7Nka9fVQsstJDnkrYflT7kV7Oky7p/U7+l2fOccu+hKyb4RzfhXYXby3\nEpbPPZgchp7hfM6Qk531dV7Y9iGse91JBNUlENMbRp8Hk66FrFPa/4wWWFIwnSb3QCXXzV1KzoEq\nHrxiIudaF872eSuc6gr/O9Dmasph/2bYt8G9W604uC6xn1O90VqX3dpqKNgAA4+HWY84F9nOoAp7\n18H+TTB0GiSkHt7+tdXw5QeQt/xgEjiwHbTeWS8e6J0JxbsAdapuxs6CcbOafgdvBSz8JSx9HJKz\nYObDkHVq08/a+Sm8eA3U18Flz8Ix05uuL82H+bNh92o4+16nhBBIF2hvhXvRfvDgHb1/dY+3Ej74\nDXz2iFMqmPmQs83h8lbCiqfhkwegYp+T5HtlwMYFUNOQCM53zs2waYcms8NkScF0inW7S7jh6WVU\n1/qYc91kpgwNo26c1aUQFX/4d+L+d7ftSezv1GOnu/XZDfXa8QGc53Wvwb++BzVlzp3myXd1rNSg\nCnvXOnem618/WC8uHqeqZuwsGHMhJPRtef/aati60Nl30zvgLXP2TT2mWZ39aEgd7lzcyvbAhv9z\nPnPnfwGFvqMOJoeF98KBHU7bwdm/gOhWnlx3YAe8cKWTXM/9X5hyi7M8byXMv8r5N/zaHOcu+3C1\ndEd/7BXw8f1O6WDyzU6y6WAdf5PPaUgOvhoYfYFzzodNg8jOm5jRkoI5Yh9s3MudL6yid1wUz9ww\nhVH9j/A/f3dVdcC5Uy/Y2LT6pizfuRM87bsw8Zr2/0D97277DIELH4B+41vfPjIGYnsfWewV+2HB\n950EMXASzHwE+o1tf7/GRPCac2Eu+hIkArJOcy7M/cbD5nf81nmcO/Vxs2DMRc5Feuv7zv6b3wFv\nOcSlwBj3gpZ1auB3tmV7YcObTslq53+dUkVrpYOWVJfCq7c4cWTfBINPgjfvhIR0mD0P+rfxbxCI\n5smhz2AntqGnH9lxm6v3Of8uQaoOtKRgjsgz/93Or95az+y0bfw8+T1izvk5ZLb7/6nr1FbDqn/A\n6hfA5+34cSr2Q/meg++j4p3uiuljnDvdTe84VSHtJYcdn7ilgx3t390Gw7rX3VJDKZzxIzjl7oMX\nF18tFG07WE1VsMGpUjmw3UkEQ09vvTTQUilCIiAyzqnuiktx9hs3y0koniMcf1K+D/JWODEdzvmr\n9zmli0//6rwfdCJc8RwkdmJvN28l7PrUOXZMYucdt4tYUjCN3l6TT0SEcPaYfu0+jtJXr/z6rfU8\n8+kOfpvxGVcVPYxoPXiinbujYy/roqhbUVsNK/8On/zZuZMfOMmph+2omF5Nq296D4YIv5HWqvDl\n+7DoPshdBr0yneQw6RrnTrimHN7/JSx94vDuboOhYj8s+IHTqNr/WCep7XMbdusb+s6L0zibPhZG\nfKXtaqHmGtob1r8OVcVOfXfWad2roXvNK7BvvZMYj7AOvqexpGAAZ0bQ6X9aRL3CkNR4bjxlKJdl\nZxIffegfckVNHd+et4qPNu5m/qDXyS54FUbOcOpqX7/dKdqf9n2Y/j9NL5xtqToA5QWQMvTI7iKb\nJ4PBJzv16ENPD6zx8EipOg2oi+6D3KVOIjrhBqe0UrwLpt4GZ/2sa0sHrVn/Brz7U+ffqKGNoiHp\n9R3ZPWI0Xc6SggHgx69+wT9X5vHrmeOYvyyHVbuK6R0XxdVTB3P9yVmk93KmnM4vqeKmZ5aTv2c3\nCwY+xYDCJXDyt52GtAiP003uX991LoKjL4CLH2+7CF1RCIsfgiVPONUMEVFOI2PjBaqh4fGYtpNF\nqJNBc6pOd8FF90HOEkgZ5pQOGroTGtNNWVIw5JdUcfofPuSKyYP4zawJAKzYWcST/9nOu+v3EBkh\nXHRcBueMTecXb64jrXonL/V6kPiqfLjgAZh0ddMDqsJnj8K//wfSxzmNeH2aDdSp2A+fPgRLn3S6\nY47/Ggw/y+kdUrDJqdc+sANw/99FRLXde6Ou2jnO4JNh+o+d6oru8HQ9VadapncmRNm0Hab7s6TQ\nU5TtgfVvQv5q50J0GFbnFvPlvnJmjO9PQspAvyqEUewsU+Z+sp2XludSVetjVtJG7pcH8ERGw5XP\ntz0Ef8t78MqNEBnrbDtoipsM/gpL5xxMBmf80Pm85mqr3P75bi+fmrLWPyvCA6POC13JwJgewpJC\nd5O3wunW13ckRMe3vW1pvtNFb93rsGsxoGhif8QTeJ9lnyp7SqqIi44kJT7KSS7+jY19BkP6GKr7\njGBbYRVjts1F0se6d/+D2/+Agk3wwhVQmgfjL3UaH2urYMKlcPoPWk4GxpiQsSevdSdLHoe3f+i+\ncXt/NNSpNwzsiUuGze82SQSkjYFpP+aZkok8+Lnwxh2nMji1nYTiuv+djTz60ZcsvPMMUtISD3ZL\nbOyL73RPjN36PmPra5278UueDLyrXdoouOUDeOnr8MV8JzGc/gNIG9n+vsaYbstKCsG26R1nqP3I\nGXDclU0uyOzf4nf37kofe3DYf9oo8kuqOOOPi/DW1TNxUB9evu2kdh9OU1JVy6n3fcDpo9J4+Kp2\nphj21UL5Xqc3TUeqZ+p9UFkIiemHv68xpstYSaE7yP/cqXvvf6wz1D46AcbOPLjeVwtF250kUbYX\nhp1xSLXLgwu3gMKPzx3N79/eyAMLN/ODr7Y9idjfP91BWU0dd0xrZZIwf54op7G0oyI8lhCM6UEs\nKQRLSZ5T5x6XDFe92HLfcE+UU93SSpXL1n3lvLQ8h+tOzuIbZxzDlwXlPLLoS04dnsZJx7Q8UVlF\nTR1z/7uds0anM3Zgr878RsaYMBDah+T2VDVlTkKoKYerX4Kk/h06zP3/3kRclIc7pzt3/L+4cBxD\nUxP4zourOVDR8tQOLyzZxYHKWu44M4BSgjHGNBPUpCAiM0Rkk4hsFZF7WljfW0T+T0Q+F5F1InJD\nMOPpEr46p8po33q4/BnoN65Dh1mdU8zba/dwy+nDSE10husnxETy19mTKKyo4Z5Xv6B5e1B1rY8n\nPt7Gycekcvzgdh48YowxLQhaUhARD/AwcC4wFpgtIs2nb7wDWK+qxwHTgPtFpPPmiu1qqvDOj2DL\nv+H8+2H42R08jPK/b28kNSGam08b1mTd+Ize/PCro3l33V5eWLqrybqXV+RSUFbTWLIwxpjDFcyS\nwhRgq6rT0dmNAAAYiklEQVRuU1UvMB+Y2WwbBZLEeaZjIlAE1AUxpuD67FFYNseZHiK744Wej7fs\nZ/G2Qu48cziJMYc2+9x06lBOG9GXX7+1ni17nYFftb56Hlv0JZMG92m1vcEYY9oTzKSQAeT4vc91\nl/n7GzAG2A2sAe5SbXhE00EicquILBeR5QUF7TyiMFQ2/gve/Ykz1/zZv+zwYerrlT+8u5HM5Diu\nmtryILKICOH+y48jITqSb81bRXWtjzdW7yavuIo7pw9v8bnJxhgTiFA3NH8VWA0MBCYCfxORQ7rM\nqOoTqpqtqtlpaZ04P3pn8VbA6990pnG++PFDZhBVVbYVlOOtOyTfHWLB2nzW5pXy3XNGEhPpaXW7\n9KRY/nTZcWzcU8bvF2zgkUVbGTOgF2eOtu6hxpiOC2aX1DzAf7a0THeZvxuA+9RpMd0qItuB0cDS\nIMbV+da95jxc+6u/bTKFhary/oZ9PPTBFj7PLWF4eiK/njm+1eqdWl89f3p3E6P6JTFzYvvPCJg+\nOp3rT87imU93APC3qyZZKcEYc0SCWVJYBowQkaFu4/GVwJvNttkFnAUgIv2AUcC2IMYUHMufdp4v\nO/gkwKkCemdtPhc89Ak3/305hRVevnvOSKprfcx+8jO+++JqCspqDjnMS8tz2FFYyQ9njGr3YTgN\n7jl3NOMG9mJ0/yTOHT+gU7+WMSb8BK2koKp1InIn8C7gAeaq6joRuc1d/xjwa+AZEVkDCPAjVd0f\nrJiCYs8a53GNX/09PoUFX+zmbx9sZdPeMob2TeCPlx7LrEkZRHkiuOW0Yfztwy088Z9tLNywlx/M\nGM1VUwbjiRCqvD4eXLiF7CHJh1UFFBvl4bXbT6HWVx9wIjHGmNbY3EdH6l/fg5X/4MMLPubXH+Sz\nraCC4emJfOvM4Zw/YQCRLcxTtHVfOT97fS2LtxVyXGZvfjNrAh9vLeAP72zi5dtOYnJWSgi+iDGm\nJ7Ops7uCtwLuH03NMV9hwueXMjg1nu+cPZJzx/cnop27dlXlzc938+u3NlBUUUOUJ4JTh/flqesn\nd1HwxphwYhPidYW1/4SaUt6NPQ+vr55Hrj6ekf3aeIqYHxFh5sQMpo1K58//3sRbX+TzwxltT3Rn\njDHBZknhSKx4Bk0bzQObUzh+cHTACcFf77gofjlzPL+cOT4IARpjzOEJ9TiFo1f+F5C3gl1Zl7Nt\nfyWzpwTwtDJjjOnmLCl01IpnIDKWx0umkBQTyfnHWndQY8zRz5JCR9SUwxcv4R01k3+uL2fmpIHE\nR1tNnDHm6GdJoSPW/hO8ZSyMn0FNXT1XTraqI2NMz2C3tx2x4hk0bQx/3ZzKsZkexmf0DnVExhjT\nKaykcLjyP4fdK8kddjkb95ZbKcEY06NYUjhcy5+GyFjmlE4hPtrDRRMHhjoiY4zpNJYUDkdNOax5\nmdrRs3hpbTkXHjuwxYfgGGPM0cqSwuFY+wp4y/kg8Tyqan3MbuUhOMYYc7Sy29zDseIZSB/L3zan\nMLq/clymNTAbY3oWKykEavdq2L2K3cOvZM3uUmZPGWwPtDHG9DhWUmhNTTkUbIKCjVCwAbZ+AJFx\nPFU6mZjIEmYF8GQ0Y4w52lhSaHBgJyybA/s2OMmgZNfBdZ5o6DuSmnN+y4sLyjj/2AH0jo8KXazG\nGBMklhQaLH0CFj8M/cbBoClw/NchfTSkjYHkLPBE8sbyHMprvrDJ74wxPVZASUFEXgWeAt5W1frg\nhhQiJbmQegx887+tbjJv6S6GpyeSPSS5CwMzxpiuE2hD8yPAVcAWEblPREYFMabQKMuHpNZnOt20\np4xVu4q5cvIga2A2xvRYASUFVV2oqlcDxwM7gIUi8qmI3CAiPaNyvTQferU+Onne0l1EeyK45PjM\nLgzKGGO6VsBdUkUkFbgeuBlYBTyIkyTeC0pkXam+vs2SQnWtj9dW5fHV8f1JSYju4uCMMabrBNqm\n8BowCvgHcKGq5rurXhSR5cEKrstUFkJ9baslhbfX5lNSVcvsyYO6ODBjjOlagfY++quqftjSClXN\n7sR4QqM0z/ndSklh3tIchqTGc+Kw1C4Myhhjul6g1UdjRaRPwxsRSRaR24MUU9crcws+LZQUviwo\nZ+n2Iq6cPJiICGtgNsb0bIEmhVtUtbjhjaoeAG4JTkghULrb+d1CSeHFZTlERgiXnmANzMaYni/Q\npOARv36YIuIBek6La1k+SAQk9muyuKbOxysrcjl7TD/SkmJCFJwxxnSdQNsU3sFpVH7cff8Nd1nP\nUJoPCengaXo63lu/l6IKL1dOsQZmY0x4CDQp/AgnEXzTff8eMCcoEYVC2W7odWjV0fylOWT0ieO0\nEWkhCMoYY7peQEnBndriUfen5ynNh5RhTRbtKqzkk637+e45I/FYA7MxJkwE1KYgIiNE5BURWS8i\n2xp+gh1cl2mhpPDi8l1ECFyWbQ3MxpjwEWhD89M4pYQ6YDrwd+C5YAXVpbyVUF3SpOdRra+el5bn\nMn1UOgN6x4UwOGOM6VqBJoU4VX0fEFXdqar3AucHL6wu1MIYhQ827qOgrIYrbYpsY0yYCTQp1IhI\nBM4sqXeKyMVAYns7icgMEdkkIltF5J4W1v9ARFa7P2tFxCciKYf5HY5MC2MU5i/dRb9eMUwfZQ3M\nxpjwEmhSuAuIB74NnABcA1zX1g7uWIaHgXOBscBsERnrv42q/lFVJ6rqRODHwEeqWnR4X+EINSsp\n5BVX8dHmAi7PHkSkxx5hbYwJL+32PnIv7leo6veBcuCGAI89Bdiqqtvc48wHZgLrW9l+NjAvwGN3\nnmYlhZeW5aDA5dk2NsEYE37avRVWVR9wageOnQHk+L3PdZcdQkTigRnAP1tZf6uILBeR5QUFBR0I\npQ1l+RCdCLG98NUrLy/P4dThfRmUEt+5n2OMMUeBQAevrRKRN4GXgYqGhar6aifFcSHw39aqjlT1\nCeAJgOzsbO2kz3SU7m4sJfxncwG7S6r56QVj29nJGGN6pkCTQixQCJzpt0yBtpJCHuBfB5PpLmvJ\nlYSi6gickoI7RmHe0l2kJkRz9ph+7exkjDE9U6AjmgNtR/C3DBghIkNxksGVOM95bkJEegNn4DRe\nd73SfMg6lX2l1by/cR83nzaU6EhrYDbGhKdAn7z2NE7JoAlVvbG1fVS1TkTuBN4FPMBcVV0nIre5\n6x9zN70Y+LeqVrRyqOCpr4fyPdBrAG+s3o2vXrlyso1NMMaEr0Crj97yex2LcyHf3d5OqroAWNBs\n2WPN3j8DPBNgHJ2rogDq6yBpIDt2V5CSEM3QvgkhCcUYY7qDQKuPmvQKEpF5wCdBiagrlbl5rdcA\nirZ4SUnoOY+IMMaYjuho5fkIIL0zAwmJUnfgWtJACissKRhjTKBtCmU0bVPYg/OMhaObX0nhQMUW\nhqe3O3OHMcb0aIFWHyUFO5CQKHUfw5mQTlHFOispGGPCXqDPU7jY7Tra8L6PiMwKXlhdpCwfEvtR\nLx4OVFr1kTHGBNqm8AtVLWl4o6rFwC+CE1IXckczF1fVUq9YUjDGhL1Ak0JL2wXanbX7KsuHXgMp\nqqgBLCkYY0ygSWG5iPxZRI5xf/4MrAhmYF2iNB+SBlBUUQtAakJMiAMyxpjQCjQpfAvwAi8C84Fq\n4I5gBdUlvBVQU+KMUXBLCskJUSEOyhhjQivQ3kcVwCFPTjuqNRujAFZSMMaYQHsfvSciffzeJ4vI\nu8ELqwv4j2Yud5KClRSMMeEu0Oqjvm6PIwBU9QBH+4hmv5JCUaWXpJhIYiI9oY3JGGNCLNCkUC8i\njdOHikgWLcyaelTxLylUeElJtJ5HxhgTaLfS/wE+EZGPAAFOA24NWlRdoTQfopMgJomiCi/J8ZYU\njDEmoJKCqr4DZAObcJ6Q9j2gKohxBV/Z7sYnrhWWe0m1MQrGGBPwhHg3A3fhPFJzNXAisJimj+c8\nurhjFACKKryMG9grxAEZY0zoBdqmcBcwGdipqtOBSUBx27t0c+5oZlWlqNLaFIwxBgJPCtWqWg0g\nIjGquhEYFbywgqzeB2V7oNdAKrw+vHX1pFibgjHGBNzQnOuOU3gdeE9EDgA7gxdWkFUUgPqcKS7c\nMQo275ExxgQ+ovli9+W9IvIh0Bt4J2hRBVtpQ3fUgRS6U1ykWvWRMcYc/kynqvpRMALpUmUNA9cG\nUFTaUFKwKS6MMaajz2g+uvmVFIoa5z2ykoIxxoRnUijLB/FAQlpjUki2pGCMMWGaFErzIak/RHgo\nqvASHRlBQrTNe2SMMeGZFMp2Nw5cK6xwRjOLSIiDMsaY0AvPpFCa3zjFRVGF17qjGmOMKzyTQlk+\nJA0ELCkYY4y/8EsKNeVQU2olBWOMaUH4JYWygw/XAUsKxhjjL/ySQunBh+vU1Pkor6mzMQrGGOMK\nv6TgV1I4UFEL2GhmY4xpENSkICIzRGSTiGwVkXta2WaaiKwWkXXuk92Cy6+k0DDvUUpCVNA/1hhj\njgaHPfdRoETEAzwMnAPkAstE5E1VXe+3TR/gEWCGqu4SkfRgxdOoLB9iekN0AkUVBYCVFIwxpkEw\nSwpTgK2quk1VvcB8YGazba4CXlXVXQCqui+I8ThKdzfpeQQ2bbYxxjQIZlLIAHL83ue6y/yNBJJF\nZJGIrBCRr7d0IBG5VUSWi8jygoKCI4uq7OBjOAvLbTI8Y4zxF+qG5kjgBOB84KvAz0RkZPONVPUJ\nVc1W1ey0tLQj+8RS5zGcAAcqvUQI9I6zNgVjjIEgtikAecAgv/eZ7jJ/uUChqlYAFSLyH+A4YHNQ\nIqr3QfneJvMeJcdHExFh8x4ZYwwEt6SwDBghIkNFJBq4Eniz2TZvAKeKSKSIxANTgQ1Bi6h8n/MY\nzoY2hXIbuGaMMf6CVlJQ1ToRuRN4F/AAc1V1nYjc5q5/TFU3iMg7wBdAPTBHVdcGKybK3O6oNprZ\nGGNaFMzqI1R1AbCg2bLHmr3/I/DHYMbRqNQduNarofqohlH9k7rko40x5mgQ6obmrtVs3qMDlbUk\nx1tJwRhjGoRXUijdDRGRkJCGr145UOm17qjGGOMnvJJCWT4k9oeICIorvajawDVjjPEXXkmhpdHM\niTbFhTHGNAivpOA/mrnCRjMbY0xz4ZUU/Eczu0nBGpqNMeag8EkKNWXgLTu0pJBoScEYYxqET1Jo\nHKNwcOAaWEnBGGP8hU9SaBzNfLChOSk2kujI8DkFxhjTnvC5IlYdAPE0KSlYI7MxxjQV1GkuupVx\nF8OYiwBnRtSiCi/JlhSMMaaJ8CkpAER4IML5yoVWUjDGmEOEV1LwU1RRY6OZjTGmmbBMCqrqTptt\no5mNMcZfWCaF8po6an1KSoI9htMYY/yFZVJonPfISgrGGNNEWCYFm/fIGGNaFpZJoai8oaRgScEY\nY/yFZ1KosKRgjDEtCc+kUGlJwRhjWhKeSaHCS0xkBPHRnlCHYowx3UpYJoXCcmc0s4iEOhRjjOlW\nwjIpFFXUkGLPUTDGmEOEaVLw2nMUjDGmBeGZFCptMjxjjGlJeCaFcpv3yBhjWhJ2SaG61keF12fP\nZjbGmBaEXVKwgWvGGNO6sE0K1tBsjDGHCtukYNVHxhhzqLBNClZ9ZIwxhwq7pGDTZhtjTOuCmhRE\nZIaIbBKRrSJyTwvrp4lIiYisdn9+Hsx4wBnN7IkQesXaU9eMMaa5yGAdWEQ8wMPAOUAusExE3lTV\n9c02/VhVLwhWHM0VVdSSHB9FRITNe2SMMc0Fs6QwBdiqqttU1QvMB2YG8fMCUlRRY+0JxhjTimAm\nhQwgx+99rrusuZNF5AsReVtExrV0IBG5VUSWi8jygoKCIwqqqMJrScEYY1oR6obmlcBgVT0WeAh4\nvaWNVPUJVc1W1ey0tLQj+sDCCi+pNsWFMca0KJhJIQ8Y5Pc+013WSFVLVbXcfb0AiBKRvkGMyZkh\nNcEamY0xpiXBTArLgBEiMlREooErgTf9NxCR/uI+6UZEprjxFAYroDpfPSVVtTYZnjHGtCJovY9U\ntU5E7gTeBTzAXFVdJyK3uesfAy4FvikidUAVcKWqarBiKq6qRdXGKBhjTGuClhSgsUpoQbNlj/m9\n/hvwt2DG4M9GMxtjTNtC3dDcpQrLbTSzMca0JaySQuMMqZYUjDGmReGVFCqtpGCMMW0Jr6RQbiUF\nY4xpS3glhYoaesVGEuUJq69tjDEBC6urY6FNcWGMMW0Kq6RwoNKSgjHGtCWskkJhuddGMxtjTBvC\nKikUVXit55ExxrQhbJKCqjrVR4mWFIwxpjVhkxRKq+uo9Skp8ZYUjDGmNWGTFA7YvEfGGNOusEkK\nhQ1JwaqPjDGmVWGTFBrmPbKGZmOMaV3YJIXk+CjOHd+f/r1iQx2KMcZ0W0F9nkJ3kp2VQnZWSqjD\nMMaYbi1sSgrGGGPaZ0nBGGNMI0sKxhhjGllSMMYY08iSgjHGmEaWFIwxxjSypGCMMaaRJQVjjDGN\nRFVDHcNhEZECYGcbm/QF9ndROIfLYusYi61jLLaO6amxDVHVtPY2OuqSQntEZLmqZoc6jpZYbB1j\nsXWMxdYx4R6bVR8ZY4xpZEnBGGNMo56YFJ4IdQBtsNg6xmLrGIutY8I6th7XpmCMMabjemJJwRhj\nTAdZUjDGGNOoxyQFEZkhIptEZKuI3BPqePyJyA4RWSMiq0VkeYhjmSsi+0Rkrd+yFBF5T0S2uL+T\nu1Fs94pInnvuVovIeSGKbZCIfCgi60VknYjc5S4P+blrI7aQnzsRiRWRpSLyuRvbL93l3eG8tRZb\nyM+bX4weEVklIm+574N+3npEm4KIeIDNwDlALrAMmK2q60MamEtEdgDZqhryATEicjpQDvxdVce7\ny/4AFKnqfW5CTVbVH3WT2O4FylX1T10dT7PYBgADVHWliCQBK4BZwPWE+Ny1EdvlhPjciYgACapa\nLiJRwCfAXcAlhP68tRbbDLrB/zkAEfkukA30UtULuuJvtaeUFKYAW1V1m6p6gfnAzBDH1C2p6n+A\nomaLZwLPuq+fxbmgdLlWYusWVDVfVVe6r8uADUAG3eDctRFbyKmj3H0b5f4o3eO8tRZbtyAimcD5\nwBy/xUE/bz0lKWQAOX7vc+kmfxQuBRaKyAoRuTXUwbSgn6rmu6/3AP1CGUwLviUiX7jVSyGp2vIn\nIlnAJGAJ3ezcNYsNusG5c6tAVgP7gPdUtduct1Zig25w3oAHgB8C9X7Lgn7eekpS6O5OVdWJwLnA\nHW41SbekTn1it7lbAh4FhgETgXzg/lAGIyKJwD+Bu1W11H9dqM9dC7F1i3Onqj73/38mMEVExjdb\nH7Lz1kpsIT9vInIBsE9VV7S2TbDOW09JCnnAIL/3me6ybkFV89zf+4DXcKq7upO9br10Q/30vhDH\n00hV97p/uPXAk4Tw3Ln1zv8EnlfVV93F3eLctRRbdzp3bjzFwIc4dfbd4ry1FFs3OW+nABe57ZHz\ngTNF5Dm64Lz1lKSwDBghIkNFJBq4EngzxDEBICIJbuMfIpIAfAVY2/ZeXe5N4Dr39XXAGyGMpYmG\nPwDXxYTo3LmNkk8BG1T1z36rQn7uWoutO5w7EUkTkT7u6zicziAb6R7nrcXYusN5U9Ufq2qmqmbh\nXM8+UNVr6Irzpqo94gc4D6cH0pfA/4Q6Hr+4hgGfuz/rQh0bMA+nSFyL0/ZyE5AKvA9sARYCKd0o\ntn8Aa4Av3D+IASGK7VScovoXwGr357zucO7aiC3k5w44FljlxrAW+Lm7vDuct9ZiC/l5axbnNOCt\nrjpvPaJLqjHGmM7RU6qPjDHGdAJLCsYYYxpZUjDGGNPIkoIxxphGlhSMMcY0sqRgTBcSkWkNM14a\n0x1ZUjDGGNPIkoIxLRCRa9y59leLyOPuxGnlIvIXd+7990Ukzd12ooh85k6g9lrDBGoiMlxEFrrz\n9a8UkWPcwyeKyCsislFEnndHJBvTLVhSMKYZERkDXAGcos5kaT7gaiABWK6q44CPgF+4u/wd+JGq\nHoszErZh+fPAw6p6HHAyzmhtcGYxvRsYizPi/ZSgfyljAhQZ6gCM6YbOAk4Alrk38XE4E4/VAy+6\n2zwHvCoivYE+qvqRu/xZ4GV3vqsMVX0NQFWrAdzjLVXVXPf9aiAL5wEvxoScJQVjDiXAs6r64yYL\nRX7WbLuOzhFT4/fah/0dmm7Eqo+MOdT7wKUikg6Nz8UdgvP3cqm7zVXAJ6paAhwQkdPc5dcCH6nz\nBLRcEZnlHiNGROK79FsY0wF2h2JMM6q6XkR+CvxbRCJwZm29A6jAeRDLT3Gqk65wd7kOeMy96G8D\nbnCXXws8LiK/co9xWRd+DWM6xGZJNSZAIlKuqomhjsOYYLLqI2OMMY2spGCMMaaRlRSMMcY0sqRg\njDGmkSUFY4wxjSwpGGOMaWRJwRhjTKP/B2l0xxYyRiT4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pickle\n", + "\n", + "with open(MODEL_NAME + \"_accuracy.pkl\", 'wb') as output:\n", + " pickle.dump(history.history, output, pickle.HIGHEST_PROTOCOL)\n", + "\n", + "# list all data in history\n", + "print(history.history.keys())\n", + "x = np.asarray(range(1,epochs + 1))\n", + "# summarize history for accuracy\n", + "plt.figure()\n", + "plt.plot(x, history.history['acc'])\n", + "plt.plot(x, history.history['val_acc'])\n", + "plt.title('model accuracy')\n", + "plt.ylabel('accuracy')\n", + "plt.xlabel('epoch')\n", + "plt.legend(['train', 'val'], loc='upper left')\n", + "plt.savefig(MODEL_NAME + \" accuracy history\", bbox_inches='tight', pad_inches=1)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Confusion Matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "314/314 [==============================] - 29s \n" + ] + } + ], + "source": [ + "y_val_prediction = model.predict_classes(x_val, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4 4 4 4 4 4 4 4 4 4]\n" + ] + } + ], + "source": [ + "print(y_val_prediction[:10])" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Confusion matrix, without normalization\n", + "[[59 0 2 0 0]\n", + " [ 0 69 0 0 1]\n", + " [ 0 0 63 0 0]\n", + " [ 0 0 0 14 40]\n", + " [ 0 0 0 5 61]]\n", + "Normalized confusion matrix\n", + "[[ 0.97 0. 0.03 0. 0. ]\n", + " [ 0. 0.99 0. 0. 0.01]\n", + " [ 0. 0. 1. 0. 0. ]\n", + " [ 0. 0. 0. 0.26 0.74]\n", + " [ 0. 0. 0. 0.08 0.92]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVIAAAEmCAYAAAAwZhg4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNX5x/HPNwSUTUBRhICigKCgooC7FUVxw6XWfQM3\n3KpVa62ttkXbWqvWWsXqT1vrWkVcquCKu+ICgijuqKAQUAEBUVAgPr8/zgkOIclMMpPcG/K8fc3L\nucvc+8xMeOacc889R2aGc8652itKOgDnnGvoPJE651yePJE651yePJE651yePJE651yePJE651ye\nPJHWIUnNJY2RtEjS6DyOc4ykJwsZW1Ik7Srpg7ScT1JXSSapuL5iaigkzZC0Z3z+W0n/qoNz3Cjp\nd4U+bn2T9yMFSUcD5wG9gMXAFODPZvZSnsc9DjgL2MnMVuQdaMpJMqCHmX2UdCxVkTQDONnMnorL\nXYHpQNNCf0eSbgVmmdnFhTxufan4WRXgeMPi8XYpxPHSpNGXSCWdB1wDXAZ0ADYCrgcOLMDhNwY+\nbAxJNBde6qs7/tkmzMwa7QNoA3wDHFbNPmsREu3s+LgGWCtuGwjMAn4JfAnMAU6I2y4BlgHL4zlO\nAkYAd2YcuytgQHFcHgZ8QigVTweOyVj/UsbrdgImAovi/3fK2PYc8EdgfDzOk0D7Kt5befwXZMR/\nMLAf8CHwFfDbjP23A14BFsZ9RwLN4rYX4nv5Nr7fIzKO/2vgc+CO8nXxNd3iObaNy52AucDAHL67\n24Bfxucl8dxnVjhuUYXz3QH8ACyNMV6Q8R0MBT4D5gEX5fj9r/K9xHUGdAeGx+9+WTzXmCrehwGn\nAdPi53o9P9YUi4CLgU/j93M70KbC385JMe4XMtadAMwEFsRjDwDeiscfmXHubsAzwPz4vu8C2mZs\nnwHsGZ+PIP7txu/9m4zHCmBE3HYh8DHhb+9d4Kdx/ebAd0BZfM3CuP5W4E8Z5zwF+Ch+fw8DnXL5\nrJJ+JB5Aom8e9ol/BMXV7HMp8CqwAbA+8DLwx7htYHz9pUBTQgJaArSr+MdXxXL5H34x0BL4GugZ\nt3UEesfnw4j/YIF14z+Q4+LrjorL68Xtz8U/5M2A5nH58ireW3n8v4/xn0JIZP8FWgO9CUlnk7h/\nP2CHeN6uwHvAORX+0LtXcvy/EhJSczISW8Y/nHeBFsATwFU5fncnEpMTcHR8z6Mytj2UEUPm+WYQ\nk0OF7+DmGN/WwPfA5jl8/yu/l8o+AyokiSrehwFjgbaE2tBcYJ+M9/ERsCnQCngAuKNC3LcT/naa\nZ6y7EVgbGExIXv+L8ZcQEvJu8Rjdgb3id7M+IRlfU9lnRYW/3Yx9+saYt4nLhxF+EIsIP6bfAh2r\n+bxWfkbAHoSEvm2M6TrghVw+q6Qfjb1qvx4wz6qveh8DXGpmX5rZXEJJ87iM7cvj9uVm9ijh17Zn\nLeP5AegjqbmZzTGzdyrZZ39gmpndYWYrzOxu4H3ggIx9/mNmH5rZUuBewh97VZYT2oOXA/cA7YF/\nmNnieP53CckFM5tkZq/G884A/g/YLYf39Acz+z7Gswozu5mQLF4j/HhclOV45Z4HdpFUBPwEuALY\nOW7bLW6viUvMbKmZvQm8SXzPZP/+C+FyM1toZp8Bz/Lj93UMcLWZfWJm3wC/AY6sUI0fYWbfVvhs\n/2hm35nZk4REdneMvxR4EdgGwMw+MrNx8buZC1xN9u9zJUnrE5L0WWb2RjzmaDObbWY/mNkoQulx\nuxwPeQxwi5lNNrPv4/vdMbZjl6vqs0pUY0+k84H2WdqXOhGqVuU+jetWHqNCIl5CKD3UiJl9S/gF\nPw2YI+kRSb1yiKc8ppKM5c9rEM98MyuLz8v/MX6RsX1p+eslbSZprKTPJX1NaFduX82xAeaa2XdZ\n9rkZ6ANcF/8BZWVmHxOSRF9gV0JJZbakntQukVb1mWX7/guhJucuJrTll5tZyfEqfn9VfZ8dJN0j\nqTR+n3eS/fskvrYpcB/wXzO7J2P98ZKmSFooaSHhe83pmFR4v/HHYz61/9uuN409kb5CqMYdXM0+\nswkXjcptFNfVxreEKmy5DTM3mtkTZrYXoWT2PiHBZIunPKbSWsZUEzcQ4uphZusAvwWU5TXVdguR\n1IrQ7vhvYISkdWsQz/PAoYR22tK4PBRoR+h5UeN4KlHd97/K9ylple+zFufK5dwrWDUx5nOOy+Lr\nt4zf57Fk/z7LXUdoilrZI0HSxoS/2Z8TmpraAm9nHDNbrKu8X0ktCbXG+vjbzkujTqRmtojQPni9\npIMltZDUVNK+kq6Iu90NXCxpfUnt4/531vKUU4CfSNpIUhtC1QVYWTo4KP7xfE9oIvihkmM8Cmwm\n6WhJxZKOALYglMjqWmvCP55vYmn59ArbvyC059XEP4DXzexk4BFC+x4AkkZIeq6a1z5P+Ef7Qlx+\nLi6/lFHKrqimMVb3/b8J9JbUV9LahHbEfM5V2bnPlbRJ/MG5jNAOXKheIK0Jf2eLJJUAv8rlRZJO\nJZT6jzGzzL/RloRkOTfudwKhRFruC6CzpGZVHPpu4IT4ea5FeL+vxWakVGvUiRTAzP5G6EN6MeEP\nYCbhH+P/4i5/Al4nXPWcCkyO62pzrnHAqHisSaya/IpiHLMJVyx3Y/VEhZnNB4YQegrMJ1x5HmJm\n82oTUw2dT7iws5hQ8hhVYfsI4LZYrTs828EkHUS44Ff+Ps8DtpV0TFzuQuh9UJXnCcmgPJG+RCgh\nvlDlK+AvhMS4UNL52WKkmu/fzD4kXIx6itAWWLHf8b+BLeK5/kfN3ULoafACoRfHd4R+yYVyCeHC\nziLCj9gDOb7uKMIPxGxJ38THb83sXeBvhJreF8CWrPr9PQO8A3wuabW/Vwv9VX8H3E/oFdINOLI2\nb6y+eYd8l1qSpgCD4o+Hc6nlidQ55/LU6Kv2zjmXL0+kzjmXJ0+kzjmXJx/ooI5ordZW1DLXfsj1\nq+8m6yUdQpUq6++VJl7yqJ3JkyfNM7P1C3GsJutsbLZitZvkVmNL5z5hZvsU4pzZeCKtI0Ut29Ni\nrxFJh1Gp8XcNTTqEKi1bke5U2qzYU2ltNG+qinfj1ZqtWMpaPbP2ruO7KdfXW0nGE6lzrmGRoKhJ\n0lGswhOpc67hUbpqBp5InXMNj3IdEqB+eCJ1zjUwXrV3zrn8CK/aO+dcfuRVe+ecy5uXSJ1zLh/e\nRuqcc/kRXrV3zrm8edXeOefyIWiSrqp9utK6A+Dt637Gq1ceyPi/HsDzl+0PQJ+N2/H0H/fl1SsP\n5N4L9qB186YJRwlPPvE4W/XuSe9e3bnyisuTDmcVs2bOZMjeg9humz5sv+2W3DDy2qRDWinNnxuk\nP76V3Z+yPeqRl0hTav9Ln2D+4h9nJh556k5cdMfrjH/vC44b2J1fHNCbP91b1USZda+srIxzzj6T\nRx4bR0nnzuyywwCGDDmQzbfYIrGYMhUXF/Ony6+k7zbbsnjxYnbbaQC7D9qTXpsnG1/aP7e0x7dS\nytpIvUTaQHTvuA7j3wuz8D4zdTYHbV9xRub6NXHCBLp1684mm25Ks2bNOOyIIxk75qFEY8q0YceO\n9N1mWwBat25Nz169mD07+Vl90/65pT2+IF61z/aoR55IU8gwHr54MC/8ZQgnDOoBwPszFzKkfxcA\nfrpDV0rWa5lkiMyeXUrnzl1WLpeUdKa0NPlEVZlPP53BW1Om0H/A9kmHkvrPLe3xreRV+4ZBUifg\nWjM7tL7PPfj3jzNnwRLar7M2D1+8Fx/O/pozbhzPFcO254Kfbc2jk2ayfEVV07a7TN988w3HHXUY\nf7nyatZZZ52kw3GFIL+zqcEws9lAvSdRgDkLlgAw7+vvGDPhM/p1a8+1Y9/h4MvGAaGav/c2nZMI\nbaVOnUqYNWvmyuXS0lmUlJQkGNHqli9fznFHHcrhRxzNgQcfknQ4QPo/t7THt1LKOuQ3qqq9pMsl\nnZmxPELSryRdKeltSVMlHRG3dZX0dnw+TNJDkp6TNE3SH+oqxhZrFdNq7eKVzwdt1Yl3Zy6g/Tpr\nx5jhV4dsxS3jPqirEHLSf8AAPvpoGjOmT2fZsmWMHnUP+w85MNGYMpkZPz/tZHr23Jyf/+LcpMNZ\nKe2fW9rjC+RV+4SNAq4Bro/LhwN/BQYDWwPtgYmSXqjktdsBfYAlcZ9HzOz1zB0kDQeGA6hF7eZF\n2qDN2vz3/N0BKC4q4t7xn/DUm7M5fd/NGT64JwAPT/iMO577qFbHL5Ti4mL+/o+RHLD/3pSVlTF0\n2Ils0bt3ojFlevXl8dzz3zvp3WdLdtk+XHT6/SV/YvA++yUaV9o/t7THt1LKqvYys6RjqFeS3gMG\nAesD/wQmAFPN7Ja4/Q5gNPAWMNbM+kgaBuxhZsfHfS4FvjKza6o6T5N1N7G0ztk01+dsqjWfs6l2\nmjfVJDPrX4hjFbXd2Nba9ddZ9/tu7JkFO2c2ja1ECiFJHgpsSCihbpLj6yr+4jSuXyDn0iRlJdLG\n+PM6CjiSkExHAy8CR0hqIml94CeEUmpFe0laV1Jz4GBgfH0F7JyroEBtpJLaSrpP0vuS3pO0Y/x3\nPi5eDxknqV224zS6RGpm7wCtgVIzmwM8SKjGvwk8A1xgZp9X8tIJwP1x3/srto865+pReReo6h65\n+QfwuJn1IlwneQ+4EHjazHoAT8flajXGqj1mtmXGcwN+FR+Z+8wgXFwqN8vMDq6XAJ1zVSvQdMyS\n2hBqoMMAzGwZsEzSQcDAuNttwHNAtY2yja5E6pxr+CRlfQDtJb2e8Rhe4TCbAHOB/0h6Q9K/JLUE\nOsTaKsDnQIds8TTKEmlNmdmtwK0Jh+Gco3xc55yq7vOyXLUvBrYFzjKz1yT9gwrVeDMzSVkvLHuJ\n1DnXsEioKPsjB7MITXavxeX7CIn1C0kdw6nUEfgy24E8kTrnGpwcq/bViheVZ0rqGVcNAt4FHgbK\nO1sPBbIOf+VVe+dcg5Nj1T4XZwF3SWoGfAKcQChg3ivpJOBTwh2Q1fJE6pxrWESuVfeszGwKUFk7\n6qCaHMcTqXOuQRG5Vd3rkydS51yD44nUOefyVFSUruvknkidcw2L4iNFPJE65xocr9o751wehLxq\n75xzeUtXgdQTaV3pu8l6jE/pSPTtBvw86RCqtGDiyKRDaLDKfmgkY43Lq/bOOZc3T6TOOZcHbyN1\nzrlCSFeB1BOpc66B8TZS55zLn1ftnXMuX+kqkHoidc41PF61d865PEh+1d455/LmJVLnnMtXuvKo\nJ1LnXAMjv2rvnHN5CfPaF+hY0gxgMVAGrDCz/pLWBUYBXYEZwOFmtqC646QrrbvVPPnE42zVuye9\ne3XnyisuTzoc2rRqzn+vPIkpD1zMG/dfzPZbbcKWm5Xw3G2/ZOK9v+W+a06ldcu1kw4zdZ9bpjTH\ndvrwE+nauQMDttky6VCqkX0q5hq2oe5uZn3NrHwSvAuBp82sB/B0XK6WJ9IUKysr45yzz+ShMY/x\nxlvvMvqeu3nv3XcTjemqCw7lyZffpe8hf2K7I/7C+598zg2/P5qLr32IAYdfxsPPvsm5Q2s0AWPB\npfFzK5fm2ACOOW4Y/xvzWNJhZFVUpKyPPBwE3Baf3wYcnDWefM7m6tbECRPo1q07m2y6Kc2aNeOw\nI45k7JiHEotnnVZrs8u23bj1wVcAWL6ijEXfLKX7Rhvw0qSPAHjm1fc5eFDfxGKE9H1umdIcG8Au\nu/6Edu3WTTqM6ilU7bM9gPaSXs94DK/kaAY8JWlSxvYOZjYnPv8c6JAtJG8jTbHZs0vp3LnLyuWS\nks5MmPBaYvF07bQe8xZ8w02XHMuWm5XwxnszOf+K+3jvkzkcMHArxjz3FofstS2dO7RLLEZI3+eW\nKc2xNRSCXEuc8zKq61XZxcxKJW0AjJP0fuZGMzNJWQd6bRQlUkmdJN1XxbbnJGX7sB1QXNyEvr26\ncPPoF9nxqL+yZOn3nH/iXpw64i6GH74r4++6gFYt1mLZ8rKkQ3VruBxLpFmZWWn8/5fAg8B2wBeS\nOobzqCPwZbbjNIpEamazzezQpOOoqU6dSpg1a+bK5dLSWZSUlCQWT+kXCyj9ciET3/4UgAefmkLf\nXl34cMYXHHDG9ex8zBXc+/gkps+am1iMkL7PLVOaY2swVJg2UkktJbUufw4MBt4GHgbKp7cYCmRt\ne1njEqmkyyWdmbE8QtL5kt6Oy80l3SPpPUkPAs0z9h0s6RVJkyWNltQqrh8k6Q1JUyXdImmt+ngv\n/QcM4KOPpjFj+nSWLVvG6FH3sP+QA+vj1JX6Yv5iZn2+gB4bbwDAwO168v4nn7N+u1ZAuNvkwlP2\n5ub7XkosRkjf55YpzbE1FKH7U0Gu2ncAXpL0JjABeMTMHgcuB/aSNA3YMy5Xa01sIx0FXANcH5cP\nB04FhsXl04ElZra5pK2AyQCS2gMXA3ua2beSfg2cJ+kK4FZgkJl9KOn2eIxrKp44NlYPB+iy0UZ5\nv5Hi4mL+/o+RHLD/3pSVlTF02Ils0bt33sfNx3l/Hc1/LhtGs+ImzCidx/A/3MkxQ7bn1CN+AsBD\nz0zh9odeTTTGNH5u5dIcG8Cw447mxReeY/68eWy2aRcu+t0Ihp5wUtJhVVDj7k2VMrNPgK0rWT8f\nqFHXE5mteRNmSXqP8EGsD/wTOAYYa2Z9JP0PuNbMnon7TiYkvw0JCXNWPEwz4BXgWuA6M/tJ3H8Q\ncKaZHVJdDP369bfxr71e6LdWED753ZopzZPftVqraFIOF35y0qJTT+t56g1Z95syYlDBzpnNmlgi\nBRgNHEpIjqNyfI2AcWZ21CorpdV+sZxzCarBxaT6ssa1kUajgCMJyXR0hW0vAEcDSOoDbBXXvwrs\nLKl73NZS0mbAB0DX8vXAccDzdRu+c64qBWwjLZg1MpGa2TtAa6A0o2NtuRuAVrH6fykwKb5mLqEd\n9W5JbxGq9b3M7DvgBGC0pKnAD8CN9fJGnHOVquM7m2psTa3aY2ZbZjyfAfSJz5cSSquVveYZYEAl\n658GtqmTQJ1zNZa2qv0am0idc2son0XUOefyI+q/6p6NJ1LnXIOTsgKpJ1LnXMPjVXvnnMtHCvuR\neiJ1zjUoYRi9dPXc9ETqnGtwvETqnHN58jZS55zLg+Tdn5xzLm8pK5BWnUglrVPdC83s68KH45xz\n2RWlLJNWVyJ9hzDDXmbE5csG5D9ysXPO1ZCU8+R39abKRGpmXara5pxzSUpZHs2tjVTSkcCmZnaZ\npM6EeZ8n1W1orq6keRT6dvv/LekQqrXgkV8mHUKVmqQtu9ShtF21z9qrVdJIYHfCgMYAS/DxOJ1z\nCRGhjTTbI+fjSU3i5JZj4/K6ksZJmhb/3y7bMXK5PWAnMzsV+A7AzL4izGfknHOJKFL2Rw38Angv\nY/lC4Gkz6wE8HZerjyeHkyyXVES4wISk9QijxDvnXP3LYZqRXKv+salyf+BfGasPAm6Lz28DDs52\nnFzaSK8H7gfWl3QJYXrjS3KK0jnnCkzk3B7cXlLmVL43mdlNFfa5BriAMDVRuQ4ZUxR9DnTIdqKs\nidTMbpc0CdgzrjrMzN7O9jrnnKsrORY451U3HbOkIcCXZjZJ0sDK9jEzk5R1nutc72xqAiwnVO/T\nNeyKc67RKdBV+52BAyXtB6wNrCPpTuALSR3NbI6kjsCX2Q6Uy1X7i4C7gU5AZ+C/kn6TV/jOOVdL\nUm6PbMzsN2bW2cy6EibEfMbMjgUeBobG3YYCD2U7Vi4l0uOBbcxsSXgT+jPwBvCXHF7rnHMF16Ru\n+5FeDtwr6STgU8J1oWrlkkjnVNivOK5zzrlEFLpDvpk9BzwXn88HBtXk9dUNWvJ3QpvoV8A7kp6I\ny4OBibUL1znn8hM65CcdxaqqK5GWX5l/B3gkY/2rdReOc85l0ZDGIzWzf9dnIM45l6uGeK99N0n3\nSHpL0oflj/oIzsGTTzzOVr170rtXd6684vKkw1lF2mJr03It/nvxAUz51wm8cfMwtt+8I78/ficm\n3HA8r/7zOMZc9jM6rtsy6TBT97lVlPb4yqv2BbxFNG+59Am9FfgPIf59gXuBUXUYk4vKyso45+wz\neWjMY7zx1ruMvudu3nv33aTDAtIZ21Wn786Tr8+g78n/YbvTb+f9z77i7/e9znan384OZ9zBY699\nwm+O3THRGNP4uWVKe3zlCjloSUHiyWGfFmb2BICZfWxmFxMSqqtjEydMoFu37myy6aY0a9aMw444\nkrFjsnZpqxdpi22dFs3YZcvO3Pr4VACWr/iBRd9+z+Ily1bu02LtpphlvUmlTqXtc6so7fFBHNi5\nASbS7+OgJR9LOk3SAax6X6qrI7Nnl9K584/ja5eUdKa0tDTBiH6Utti6btiGeYuWcNMv9+aV64/j\nn+cMpsVa4RLAiGE7M+3O4Ry5x+b88faXE4sR0ve5VZT2+MoVokN+IeWSSM8FWgJnE26pOgU4MduL\nJJ0t6T1Jd0k6UNKFcf0ISefnGqCkgZJ2ynX/2pLUS9KUOC5ht7o+nyus4iZF9O3egZvHvsmOZ97B\nku+Wc/4R2wEw4tbx9Dj2Ju555j1OO3CbhCN1hVBUpKyPeo0n2w5m9pqZLTazz8zsODM70MzG53Ds\nM4C9zOwYM3vYzGrbaj0QqDSRSirkLKgHA/eZ2TZm9nEuL5DUpIDnX02nTiXMmjVz5XJp6SxKSkrq\n8pQ5S1tspfMWUzp3MRM/+ByAB1/6kL7dVx20Z9Qz73HwLj2SCG+ltH1uFaU9PgCRvVqfmqq9pAcl\nPVDVo7qDSroR2BR4TNK5kobFkfYr7tdN0uOSJkl6UVKvCtu7AqcB58bS4q6SbpV0o6TXgCskbSfp\nlViSfFlSz/jaYTHWx+NI11fE9U3iMd6WNDXGtx9wDnC6pGfjfsdKmhDP+3/lSVPSN5L+JulNoE6v\nXPQfMICPPprGjOnTWbZsGaNH3cP+Qw6sy1PmLG2xfbFgCbPmLaZH5zCY+cC+G/H+Z/Pp1qntyn2G\n7NidD2d+lVSIQPo+t4rSHh8ABbrXvpCqK9HVemIfMztN0j7A7mY2T9KwKna9CTjNzKZJ2h74J7BH\nxnFmxKT8jZldBRDvf+1MGLm/LE4bvauZrZC0J3AZ8LN4iL7ANsD3wAeSrgM2AErMrE88XlszW5h5\nHkmbA0cAO5vZckn/BI4Bbic0c7xmZqtN3iNpODAcoMtG+U+yWlxczN//MZID9t+bsrIyhg47kS16\n9877uIWQxtjOu/4Z/vPr/WhW3IQZny9i+N8e54ZzB9Oj87r88IPx2Zdfc/a1TyUaYxo/t0xpj69c\nHd9rX2PVdch/ui5PLKkVoco+OqNz7Vo5vny0mZXF522A2yT1INzC2jRjv6fNbFE837vAxoQ7tTaN\nSfUR4MlKjj8I6AdMjLE158ehtMoIA12vJg4aexNAv379C3J5eJ9992OfffcrxKEKLm2xvfXJXHY5\n665V1h31xzEJRVO1tH1uFaU9PpG+DvmFbGOsqSJgoZn1rcVrv814/kfgWTP7aWwKeC5j2/cZz8uA\nYjNbIGlrYG9Cs8HhrH7xTMBtZlbZcIHfZSRx51wCUnaHaHKDNJvZ18B0SYcBKNi6kl0XU313qzZA\nef+MYdnOK6k9UGRm9wMXA9tWstvTwKGSNoivWVfSxtmO7ZyrHw3xziYAJOVa7a6JY4CT4oWbdwiT\nTlU0Bvhp+cWmSrZfAfxF0hvkVsIuAZ6TNAW4E1it1Glm7xKS7JOS3gLGAR1zeUPOubolhTmbsj3q\nU9bEI2k74N+Ekt9GsdR4spmdVd3r4qjT5c9vJdxqipmNyFg/Hdgny3E+BLbKWPVihe2vAJtlrLq4\n4jnj8pCMfVYrhWbGFZdHUcmtsGbWqrp4nXN1L2VNpDmVSK8FhgDzAczsTWD3ugzKOeeqEgYtSVc/\n0lyqwkVm9mmFq2R+scU5l5gmKSuR5pJIZ8bqvcVO6WcBPoyecy4RSqDEmU0uVfvTgfOAjYAvgB3i\nOuecS0Qh7myStHa8e/FNSe9IuiSuX1fSuHhH5DhJ7bIdK2uJ1My+JExV6pxziRNQXJir8t8De5jZ\nN5KaAi9Jegw4hHAzz+VxsKULgV9Xd6BcrtrfTLhjaBVmNrxWoTvnXJ4KUbO3MDjtN3GxaXwYoRvm\nwLj+NsJNPvklUiDz5uS1gZ8CM6vY1znn6lYBO9zH6z6TgO7A9Wb2mqQOZlY+5fznQIcqDxDlUrVf\npS+lpDuAl2oesnPO5U/kPGhJe0mvZyzfFMfDWCne7t1XUlvgQUl9Kmw3SVnHzajNvfabkEOGds65\nupJjiXSemfXPZcc4AtyzhBuEvpDU0czmSOrIjwMWVR1Pth0kLZD0VXwsJNwuWdlgHs45Vy8kZX3k\ncIz1Y0kUSc2BvYD3gYeBoXG3oUDWSauqLZEqRLM1Pw4K8oMlPXuYc65RC/faF+RQHQlDcDYhFCrv\nNbOxkl4B7o1jH39KGCGuWtUm0tg+8Gj5IMjOOZcGheiQb2ZvEQZ+r7h+PmFM4tzjyWGfKZJ8xjDn\nXCqEe+3TNYxelSVSScVmtoKQsSdK+pgwoLIIhdXKxvF0zrk6l7I7RKut2k8gDDeXspmv3JpswSOr\nTYWVKu/PXpx0CFW65MkPkg6hXgg1nDmbCCVPcp2a2Dnn6kUCVfdsqkuk60s6r6qNZnZ1HcTjnHNZ\npW30p+oSaROgFbFk6pxzaSCo96lEsqkukc4xs0vrLRLnnMtRygqk2dtInXMuTUSC0x9XobpEWqMO\nqc45Vy/UgNpIzeyr+gzEOedyUT75XZrUZvQn55xLVLrSqCdS51yDI4oa0FV755xLnYZ2sck551Ip\nl/FG61PaErur4MknHmer3j3p3as7V15xedLhrMJjy92I889gj2035dC9tl9t2+03Xcc2G6/Dgq/m\nJxBZUCT428FbcNHg7gC0WqsJf9h3M64/rA9/2HczWjZrklhsq4lX7bM96pMn0hQrKyvjnLPP5KEx\nj/HGW+8y+p67ee/dd5MOC/DYauqAw47h+tseWG3957Nn8eqLT7NhSZcEovrRkN4dmLVw6crlQ7bu\nyNTSrzlDWkXDAAAdp0lEQVRz9NtMLf2aQ7beMMHoVlVetc/2qE+eSFNs4oQJdOvWnU023ZRmzZpx\n2BFHMnZM1lkP6oXHVjP9tt+ZNm3brbb+qkt/wy9+88dEq6rrtWhKvy5teOqDeSvXbbdRW56dFkrI\nz06bz/Ybrx57kgox1UgheSJNsdmzS+nc+ceSSklJZ0pLS6t5Rf3x2PL37JOPsMGGHem5xZaJxnHi\njl24bcIsfshY17Z5MQuWLgdgwdLltG2ersspyuFRnxp1IpV0q6RDa7B/W0ln1GVMrnFYunQJt1x/\nFaefd1GicfTv0oZFS1fwyfwl1e6XponayqdjzvaoT+n6mUm/tsAZwD/r42SdOpUwa9bMlculpbMo\nKSmpj1Nn5bHlZ9an0ymd+SlH7LszAF/OKeXo/Xfljoeepf0G9Tfbea8OrRiwcVv6dWlD0yZFtGhW\nxDkDN2Hh0hW0a96UBUuX0655UxYtXVFvMeUiZRftG1eJVNLxkt6S9KakO+Lqn0h6WdIn5aVTSa0k\nPS1psqSpkg6K+14OdJM0RdKVdR1v/wED+OijacyYPp1ly5YxetQ97D8kHRMWeGz56dGrN89M/oRH\nx7/No+PfZoOOJfz3kRfrNYkC3Pl6Kafc/RanjprK3579hKmzF3PNc9OZ+NlCdu+xHgC791iPCZ8t\nrNe4qqec/st6FKmLpGclvSvpHUm/iOvXlTRO0rT4/6wNxI2mRCqpN3AxsJOZzZO0LnA1YUrWXYBe\nhPms7wO+A35qZl9Lag+8Kulh4EKgj5n1reIcw4HhAF022ijvmIuLi/n7P0ZywP57U1ZWxtBhJ7JF\n7955H7cQPLaaufCsE5j0ykssXDCfvbfvxWnn/pafHnl8ojFV54E353D+Ht0Y1LM9c79ZxlXPpGei\njPKqfQGsAH5pZpMltQYmSRoHDAOeNrPLJV1I+Hf/62pjaizT1Es6C9jQzC7KWHcrMM7M7orLi82s\ntaSmwN+BnwA/AD2BTYC1gbG5TE/dr19/G//a64V/Iy5RPmdT7fzvlAGTzKx/IY61WZ++dt2947Lu\nt0/vDWp0TkkPASPjY6CZzZHUEXjOzHpW99pGUyKtxvcZz8t/5o4B1gf6mdlySTMISdQ5lwI5Fkjb\nS8oszdxkZjdVfjx1JcyY/BrQwczmxE2fA1nbWxpTIn0GeFDS1WY2P1btq9IG+DIm0d2BjeP6xUDr\nug7UOVe1GlTt5+VSIpXUCrgfOCc2563cZmYmKWu1vdEkUjN7R9KfgecllQFvVLP7XcAYSVOB14H3\n4zHmSxov6W3gMTP7VZ0H7pxbTS4Xk3I6TmjGux+4y8zKbz37QlLHjKr9l9mO02gSKYCZ3QbcVs32\nVvH/84Adq9jn6LqJzjmXq0Jca1Ioev4beK/CrMgPA0MJvXSGAllvi2tUidQ51/AV8Kr9zsBxwFRJ\nU+K63xIS6L2STgI+BQ7PdiBPpM65Bia3fqLZmNlLVH03aY3mrPNE6pxrWJS+O5s8kTrnGpQCVu0L\nxhOpc67BSVca9UTqnGuIUpZJPZE65xqcQvUjLRRPpM65BidlszF7InXONUCeSJ1zrvbCVCLpyqSe\nSJ1zDYu8au+cc/nzROqcc/kozC2iheSJ1DnXoAiv2jvXoHVsm96JEh4f04imtvFE6pxz+fGqvXPO\n5cmr9s45lw/hVXvnnMuXV+2dcy4PftXeOecKIWWJtCjpAJxzrqaUw39ZjyHdIunLOL16+bp1JY2T\nNC3+v10u8Xgidc41OFL2Rw5uBfapsO5C4Gkz6wE8HZez8kTqnGtwCpFIzewF4KsKqw8CbovPbwMO\nziUebyN1zjUoNRhGr72kzNu9bjKzm7K8poOZzYnPPwc65HIiT6TOuYYl96r7PDPrX9vTmJlJslz2\n9ap9yj35xONs1bsnvXt158orLk86nFV4bLXXf8seDNxxGwbt0p/Bu+2QaCxtWjbjv7/eiynXH8Eb\nI49g+54dOGSnTZl03eF8++CpbNt9/UTjq0yB2kgr84WkjuEc6gh8mcuLvESaYmVlZZxz9pk88tg4\nSjp3ZpcdBjBkyIFsvsUWSYfmsRXA/WPHsd567ZMOg6tO3pknJ8/k6L+Oo2lxES3WKmbht99z5OVP\nMPL03ZIOrxJ1Oozew8BQ4PL4/4dyeZGXSFNs4oQJdOvWnU023ZRmzZpx2BFHMnZMTt9rnfPY1gzr\ntGjGLr07cuu49wFYvuIHFn27jA9mLWRa6aKEo6taIUqkku4GXgF6Spol6SRCAt1L0jRgz7iclZdI\nU2z27FI6d+6ycrmkpDMTJryWYEQ/8tjyI8ThB+1Dk6ImHHfCKRx3wsmJxNG1Q2vmLfqOm87enS03\nWY83Pp7L+TePZ8n3KxKJJxcir6r7SmZ2VBWbBtX0WKkqkUrqmtk5tp7O2V/StfV5TucefuJZnn7p\nde66fwz/+dcNvDL+xUTiKG5SRN9u7bn58XfY8dz7WPLdCs7/2TaJxFITheiQX0ipSqS5kNSkkMcz\ns9fN7OxCHrNQOnUqYdasmSuXS0tnUVJSkmBEP/LY8tOxU4hn/fU3YN8hB/HGpImJxFE67xtK533L\nxA/DNZUHX/6Yvt2Sb7fNpg4vNtVKGhNpsaS7JL0n6T5JLSTNkPRXSZOBwyT1lfSqpLckPSipnaQN\nJE0CkLS1JJO0UVz+OB7nMElvS3pT0gtx20BJY+PzEfG2seckfSJpZYKV9DtJH0h6SdLdks6v6w+i\n/4ABfPTRNGZMn86yZcsYPeoe9h9yYF2fNiceW+19++23fLN48crnzz/zFL226J1ILF8sXMqsed/Q\no6QNAAO36sz7MxckEkvO4iyi2R71KY1tpD2Bk8xsvKRbgDPi+vlmti2ApLeAs8zseUmXAn8ws3Mk\nrS1pHWBX4HVgV0kvAV+a2RJJvwf2NrNSSW2rOH8vYHegNfCBpBuAvsDPgK2BpsBkYFLFF0oaDgwH\n6LLRRnl/EMXFxfz9HyM5YP+9KSsrY+iwE9midzL/4Cry2Gpv3pdfcMKxhwGwYsUKDjn0SPbYc+/E\n4jnv5pf4z3mDaFbchBmff83wa5/lwB26cvUpu9C+TXMe+N2+vDV9PgeOeCSxGFeXrlFLZJZTf9N6\nIakr8IKZlZck9wDOJiSy3czsU0ltgKkZ+3QDRpvZtpJuBh4ATgDuJtxH+yKwlZldIOlGoBtwL/CA\nmc2XNBA438yGSBoBLDezP8djvwfsBRwKtDOzP8T1VwOzzeyqqt5Lv379bfxrjWgOnUZi0ZLlSYdQ\npa7H/TvpEKr03cOnT8qnc3ymrbfpZ48++0rW/Tq3W6tg58wmjVX7ipm9fPnbHF77AqE0ujGh/9fW\nwC6EZIqZnQZcDHQBJklar5JjfJ/xvIx0ltqda9SUw6M+pTGRbiRpx/j8aOClzI1mtghYIGnXuOo4\n4Pn4/EXgWGCamf1AGJBgv/JjSOpmZq+Z2e+BuYSEmovxwAGx6aAVMKR2b805VwhFUtZHvcZTr2fL\nzQfAmbFa3Q64oZJ9hgJXxrbSvsClAGY2g/Bj9ELc7yVgoZmVt55fKWlq7GL1MvBmLgGZ2UTCHQ9v\nAY8BU4H09lZ2bk2XsiJpqqqtMRH2qmRT1wr7TQEqvUHZzLpkPL8MuCxj+ZBKXvJcfGBmIyocq0/G\n4lVmNkJSC0KiXu1ik3OufqTrUlPKEmnK3SRpC2Bt4DYzm5x0QM41RhL1XnXPxhNpjszs6KRjcM5F\n6cqjnkidcw1PyvKoJ1LnXENT/1fls/FE6pxrUAo1+lMhpbH7k3PONSheInXONThetXfOuXwkMExe\nNp5InXMNShL30mfjidQ51+AoZUVSv9jknGtwCjVCvqR94oDtH0m6sLbxeCJ1zjU4hRizJE5bdD2w\nL7AFcFS8DbzGPJE65xqewoz+tB3wkZl9YmbLgHuAg2oTjreROucaFFGw7k8lwMyM5VnA9rU5kCfS\nOjJ58qR5zZvq0wIesj0wr4DHKySPrXYaU2wbF+pAkydPeqJ5U+Uy1enakjLn+7nJzG4qVByZPJHW\nETNbv5DHk/R6fc0/U1MeW+14bLVjZvsU6FClrDpLRue4rsa8jdQ511hNBHpI2kRSM+BIwkwYNeYl\nUudco2RmKyT9HHgCaALcYmbv1OZYnkgbjjpp2ykQj612PLaEmdmjwKP5HidV89o751xD5G2kzjmX\nJ0+kzjmXJ0+kzuVA0npJx+DSyxOpKyilbVieWsp8H5JOAS6S1LQOzrOBpK3j870kdS70OeqDlFMH\n+TWWX7VvICTJzEzSpsBawIdmVpa5LdkIV41DUm/gCwAzS+vdO1XKeB/HEQa0GGlmy+vgVC2BKyQt\nANYBjquDc9SJjL/JLYDhksaa2VNJx5UET6QNRPyD3Q/4K/A98IqkZ8zswTQkUVgl+fwCOJyQSBdI\nus3MXkg0uBxlJIciM/sBOBHYBrg0bi82sxWFOp+ZTZc0CTgT+KOZzY+jEv2Qlu+1KvFzGgL8gnAL\n6AaSmprZYwmHVu+8at9ASNoSOBc4BNgd+BDYUVKfRAOrQFJf4ARgCHAx8BxwrqSeScaVi5g8y5PX\n+gBmtjvwMnBfXF4hKa8CSCXNH2OA0wjDuJ1sZmUxSa2Tz3nqmqRNgD8BpwN7AO8DgyXtkWhgCfBE\nmlKSNpQ0UlKRpFbAsUAfoImZLSYM+bUxsHfCcSrz/4Rmh1IzW2Bm7wLjgLlA12QizF0sgSLpDOAG\nSX+RdIiZ7QcUSXo07lfrEmmF5o9DJB0JfGNmdwO/BX4u6XBJewMX1kW7bAE1J9SO5prZLODfQE/g\nNEm7JhpZPfNEml5fAdcRBlVYDowEHif8Q9vUzObG5Y3yLSHVVoW22Q3i/ycBTSVdBGBmnwMrgB4J\nhJgTST0krRWfH0m45/osYDdgIKwsma4v6YF8zpWRRM8Efg2sC7wsaT8zewI4B7iQUNK7s47aZWsl\n40ezJUD8oZwAHC9pAzMrBe4HmgJ7JRZoAvzOppST9C9gM8IfZmdCFXAX4E7gFOC38Ta3xEg6nVCV\nn0poF32RUK3/FhgPnAEcZGYfJxZkFSTtA1wL9DOzxZJOIzSbdCbUAvY3s+WS2pnZAkkbm1lewyNK\nGgD8DdgfOJ5QNW4B/MbMRklaFyhK40U6SQcSLogVE9qPdyBU67sATxF+CH5PeE9DzWx2QqHWKy+R\npkwlVeXhwJvAg4SBZ/8BfATsQ7g48Wi8OJEISYcTSnCnAb0JJc9JwMnADKA1cEQak2i0FTCK0Lb3\nE8IwarcAJ5rZ4JhEzwLOiSXwGifRim2iZjYROAIYDPzMzPoQahx3S9rbzL5KaRLdhlBavh5YCNxF\naBe9GXgV2JLwwzCL8MOwNJlI658n0pSJFxn2Bi6V9HdCyeh3wDRgNGGw3RGEZDVIUpfyblD1QVI/\nSbtmJO9mhBLInsDawDmx+trSzC4ys7/WdkSdevIKoUR1JaE0/QzwJKG6vYWkYwkXz+6tzVV0SWtn\nVOe3kdQPwMzmEJpDpsZdZwEPAB/k+X4KRlIXSTvG592As4FJZvacmZ1AiPV6Qg+DawgXQzcg/Cic\naWYLEgq93nkiTRlJ2wM3EhJlCaEdrR9wAbAIeCiW7p4CZgPL6jnE3YC/EKp0xJjuB04ws73MbFms\n6g+PYzymToUS4jxCG/SLwObx+Y3AYkKV/2BCFbXGPwaxp8VxkprHNtFRwNWS/hd3eRPoIGkUcBFw\nvpnNqN27Kqz4GW0NLJG0NuGC4TzC+J27A5jZuYRax38kNY8X6xYBR5vZlGQiT4a3kaaIpK6EKvFy\nM7skrrsA2NHMfhqv4G5uZm/FbWub2Xf1FFt5v0okXUuowv8VeJ2QBDoBVxAmFDsbOM7M3q6P2Gqi\nwlXzAwADnie08e5K6Op0b/xBaAmsMLPva3muIYR2xOeBHYHTzGyhpNeA6WZ2ZEy2uwFPmdn7+b6/\nQop/b62Buwk/nq8BvyHUQh4zs+fjfpub2XuJBZoCXiJNCUkbENoZZwOdJXUHMLMrgLaSepvZcjN7\nS1JR3FbnSbS89JaRRE8nJM1mwP8RSi23E6qoVxHablOZRGGVq+bnEZtMYney0YQLYzsAJ8YS1re1\nSaIZ38/YeMytgXaEeZAws+2BrpIeM7OpZjYyTUm0PH6g2My+IrTPn0e4MeFvhLbPQ8pLpoR20jXm\n9uDa8ESaHvMI/UIPIHR92k1Sf0m9gPUIV8CBH5NaPVl577dC5//TgNPNbBDwL+DPwPpmdhWhVHdM\nWpNoOUnbAocSSokfSxoIHGZmdwGTgU0IPxS1kvGjcxqwLaEZ5mtgV0ld4j47AM3Kl9Milth/ULiL\nbrSk5oQmiQcJPTF6A9cQmj7mwI8/Tmm/E6su+S2iCZPUCWhhZh8pTHtwDWHG2a6EK7vNgBFJtJ3F\nbjhXSDrVzL4mXBD5COhI6IR9paTNgVGSDjaz1+o7xlxU6O8KYQreucAdwHzC+9lQYYSnfwKtzWxR\nnuc8kHDb5/5m9pmkrwnfpyQ9a2bT449RqsSLnfsQLr6dbWZLJX1HqHWUAZcRmnL+UJ8XOdPOE2mC\nYhvcbwid6v9HaIuaShiQ5H8KI+o0N7OZlSSDOherdUcpjErUzcxulDQf2EXSvNhH8AlCIppZ7cES\nUqFNdFtgmZm9LekyYChwc2wuORFYL+OCSb46AXfHJFpsZmMllRHaTJdKmgmUpaUUV+HvawChP+jb\nko4ATiVcnR9L+GFf5kl0VZ5IE2Rm3yrcAbQ1oe1pQ8KdNKdK+iCzAT+pf3AK987vARwUk+gIQveW\nfrEL1NbAoWnteJ2RRM8iXMhrKWkkIYGeEbedTCg9HlvAU38KHCzpfjMr79JURCgBP2sFHPikEGJJ\ndBdCSX0Gob17LqEr2FOEDvbPm9m/EgsyxTyRJixWmV+UdDBhuLaOwM6E+5gTFS8eDAbaAMcQOl5f\nFp/vRGgv+7Olt7M9AJIGA3uZ2daStiL8GBRJGk0Yxm4IcHyB+7uOJ3xGwySNB9oSejMcaeG22VSo\npCR6HOGC27vAl7E2VEJou29NaMt3FXj3pxSStJmZfZhwDC3MbInCffzPAbcRmh1GAv82sxuSjC9X\nCgMl/56Q1Ha0cBtoP0I730TgVmCRmS2pg3N3BA4CDiQ0F/ylvOtamigMMPKJmZVK+iWhS9g/zew7\nhTvXLiK00z+YaKAp5ok0RTL7asblRAZsjt1aBgITY9veYEIi+iPhDqaLCAliYVra+MpV9pkp3Np4\nPvAxcI2ZfaVw48MvgJ/HtuC6jKkZgJnV980T1Yo1DhF+UJoTbo2FkEj/a2ZzJA0ljOb1VFJ/jw2B\nJ1K3GoVR+Pcg9B28mXD31GHAr83stfLSapIxVqbChaVTCPd7/2Bm10nqT6i2LgKuNbN5ktaqbWf7\nNYHCKGKfxB/Oo4FHCD84JYQO92ckGmAD4v1I3WrM7JN4UeFgoBWh3fYnwHmxqp/KwSgqdLY/ltAU\ncZqkG8zsdULzRAnhYl4R9X97bSoojHHbAvi3pKsJF8bWJfQNPYJwe/LeCsMLNtpO9jXhJVJXLYVx\nOkUoqdybdNttZSqURDsTpgX5OaHqvj1hMJU5ZnZC7IUwx8y+SCzghJR/TpJamdk3CiPwXw18Qkik\nuxCmiPkaaGN5DhfYmPhVe5fNspik/pR0IJWpkESPJQwifQGhTfcAM9tJYXi8sZK+M7PTEww3UTGJ\nDiYMCfgJ8JGZnSxpT8IYCdsRRrq61MwWJhlrQ+OJ1FUr7RcXMpLoIEI/0SGxtGVA+YR7XQndtkYl\nEmRKxHbi64FfEpo1hkvqGX9cnpK0gnCBMdXfeRp5InUNkjJm84zdd84G3jezb+IuS4AdFGYY2A/Y\nzcymJxNtcjKq8y0ITRz3mtnDse3zNcIQeIPM7GkLA+SkZnrvhsQvNrkGR1JbQudxJO1G6K4zjTCn\n0vYxEbxCaCO9BdjFzKYlFnCCMqrzvyEMujxUUg8LFgCfA00qviaBUBs0L5G6hmgDwkhKvwa2MLPN\nJL1BaMc9DEDSBDN7M8kg0yCOL3AAoST6osJI92Ni9zAIF+NuTSq+NYUnUtfgmNmHsWq6J/D32B/0\nW0mXEm4WGEoYqej1JONMiqQmZlYWP6N/EdpD/xFL6ldK+h74Vdz9D2b2amLBriG8+5NrUDLa/NoQ\nBpHekjAR270WRlrajDDC0tVm9mWSsdY3Sa0tDFJN7KnQkjAQzm8JNyFcl7HvWgBm9r23iebPE6lr\n0BSmCxlE6AvZljDM21/M7NtqX7iGiReTHifMMvsOYSDmyYQxZHcFuhO6NY1MLMg1mFftXapVVVqS\n1MzMlpnZGIVxPvsB+wKnNrYkChAHmPk7Ybrkb4GTzOxlhSlrPiP0q/2tpPXN7A9Jxrom8hKpS60K\nne1PJvzwr2tml1XcHpdbNsYkmil2rr8fuNLM/qQwgd1+hB+a/wAlZvZSkjGuibz7k0utjCT6c8K9\n828Q7vc/s3y7fpyojcaeRAHM7ClgGGEc1KPMbDmhDXkI8JWZveT3zxeeV+1d6ihMS73CzGYpTL7W\nl1BtPx14BbhRcSpqq9+JABsEM3sw3qV0m6Qjge8IV+cXxe1eDS0wr9q7VIlX4/9EmKHyDgsjtN8N\n/AA0BYZamJDtDMK94k8mGG6qSTqEMIDLKWb2il+drzueSF1qSOoBTAf2JoyHOocwIv8hhBk/+5rZ\nVElHE+7UOcASmF21IZG0rtXxwNXOE6lLCUkbEeaHGmVhOpAdCXNDzQD+j9BG+kvCtCdbASea2dvJ\nROvcqjyRusRJGgL8DDgX6AwcD/wO6A8cRUim1xBGcQJYamal9R6oc1XwROoSJWk94F7gNEI76A7x\n8TlwJWFwksMJs1fe4gnUpZFftXdJWwYsBy4hjEJ0OuFunJ8SOpdfTvg73Y+UTnHinPcjdYmK94Y/\nQ5iyeFq8MPISMAZoQ7jq/AphOmC/aOJSyROpS4NRhOmdfybpl2ZWRkiu4wjV/XXMzEujLrW8jdSl\nhsL886OAkWZ2bbwDp7mlcOpn5zJ5G6lLDTN7Q9KhwDOSlpvZDYQpQ5xLNS+RutSR1IfQxenjpGNx\nLheeSJ1zLk9+sck55/LkidQ55/LkidQ55/LkidQ55/LkidQ55/LkidQVlKQySVMkvS1pdJzdsrbH\nGihpbHx+oKQLq9m3bRzsuabnGCHp/FzXV9jn1tjvNddzdZXkQ/+tgTyRukJbamZ9zawPYUCS0zI3\nKqjx352ZPWxml1ezS1ugxonUuULwROrq0otA91gS+0DS7cDbQBdJgyW9ImlyLLm2ApC0j6T3JU0m\njIxPXD9M0sj4vIOkByW9GR87EUaJ6hZLw1fG/X4laaKktyRdknGsiyR9KOkloGe2NyHplHicNyXd\nX6GUvaek1+PxhsT9m0i6MuPcp+b7Qbp080Tq6oSkYsKEdVPjqh7AP82sN2He9YuBPc1sW+B1wuyg\nawM3AwcQpg/esIrDXws8b2ZbA9sC7xCG3Ps4loZ/JWlwPOd2hMnz+kn6iaR+wJFx3X6E8U6zecDM\nBsTzvQeclLGtazzH/sRJ+eL2RWY2IB7/FEmb5HAe10D5vfau0JpLmhKfvwj8G+gEfGpmr8b1OwBb\nAOPjzMDNCEPl9QKmm9k0AEl3AsMrOccehFH0iSNFLZLUrsI+g+PjjbjcipBYWwMPlg+EIunhHN5T\nH0l/IjQftAKeyNh2b5zJdJqkT+J7GAxsldF+2iae+8MczuUaIE+krtCWmlnfzBUxWWbOOS9gnJkd\nVWG/VV6XJwF/MbP/q3COc2pxrFuBg83sTUnDgIEZ2yreY23x3GeZWWbCLZ9m2q2BvGrvkvAqsLOk\n7gCSWkraDHgf6CqpW9zvqCpe/zRhJP3y9sg2wGJCabPcE8CJGW2vJZI2AF4ADpbUXFJrQjNCNq2B\nOZKaEibky3SYpKIY86bAB/Hcp8f9kbSZpJY5nMc1UF4idfXOzObGkt3dktaKqy82sw8lDQcekbSE\n0DTQupJD/AK4SdJJQBlwepy3fXzsXvRYbCfdHHglloi/AY41s8mSRgFvAl8CE3MI+XfAa8Dc+P/M\nmD4DJgDrAKeZ2XeS/kVoO50cx1SdCxyc26fjGiIf/ck55/LkVXvnnMuTJ1LnnMuTJ1LnnMuTJ1Ln\nnMuTJ1LnnMuTJ1LnnMuTJ1LnnMvT/wO6peUv6hqhcwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVUAAAEmCAYAAADSugNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcTfX/wPHXexbLJFQoRrKTkSV7hBZFiGQXSZEiaZNS\nESmlVUIqpa+ylsZMRMtPpOwVIcZWzQyh0DK2Ge/fH+fMuDNm5t4Zd9w7eT97nEdn+ZzPed874z2f\ns30+oqoYY4zxj5BAB2CMMf8lllSNMcaPLKkaY4wfWVI1xhg/sqRqjDF+ZEnVGGP8yJKq8YmIjBKR\nGe58ORH5R0RC/XyM3SJyvT/r9OGY94jI7+7nuegM6vlHRCr6M7ZAEZFNItIy0HHkV5ZUg4SbUPaJ\nyHke6+4SkaUBDCtTqvqrqhZR1ZRAx3ImRCQceBm4wf08f+S2Lnf/nf6Lzv9E5D0RecZbOVWNUtWl\nZyGk/yRLqsElFLj/TCsRh/1svbsYKARsCnQgwUBEwgIdw3+B/cMLLuOBh0WkeGYbReQqEVkjIofd\n/1/lsW2piIwVkRVAElDRXfeMiHzrnp7GiMhFIvKBiPzl1lHeo47XROQ3d9s6Ebk6izjKi4iKSJiI\nNHHrTp2Oishut1yIiAwXkR0i8oeIzBGRCz3q6S0iv7jbRmT3xYhIYRF5yS1/WES+EZHC7rab3VPW\nQ+5nvtxjv90i8rCIbHD3my0ihUSkKrDVLXZIRL7y/FwZvte73PnKIvK1W88BEZntUU5FpLI7X0xE\n3heR/W68T6T+kRORvm7sL4rIQRHZJSJtsvncu0XkETf+f0XkHRG5WEQWicjfIvKFiFzgUX6uiOx1\nY1wmIlHu+gFAL2BY6u+CR/2PisgG4F/3Z5p2GUZEForISx71zxKRadn9rM55qmpTEEzAbuB64GPg\nGXfdXcBSd/5C4CDQGwgDerjLF7nblwK/AlHu9nB33XagElAM2Axsc48TBrwPvOsRw23ARe62h4C9\nQCF32yhghjtfHlAgLMNnCAe+Bp5zl+8HVgJlgYLAm8BMd1sN4B+gubvtZSAZuD6L7+cN9/NE4rTo\nr3L3qwr8C7Ryjz/M/cwFPL7X1UAZ9zvcAgzM7HNk9rncY97lzs8ERuA0RgoBzTzKKVDZnX8fiAbO\nd+vcBtzpbusLnAD6u5/jHiARkGx+L1bitKojgX3AeqCuG8NXwEiP8v3c4xYEXgV+8Nj2Hu7vVob6\nfwAuBQp7/i6685e4x7wWJynvBM4P9L+XYJ4CHoBN7g/iVFKtCRwGSpI+qfYGVmfY5zugrzu/FBid\nYftSYITH8kvAIo/l9p7/6DKJ6SBQ250fhfekOhmIBULc5S3AdR7bS7sJJQx4Cpjlse084DiZJFU3\niR1JjSXDtieBORnKJgAtPb7X2zy2vwBMyexzZPa5SJ9U3wemAmUziUOByjiJ8jhQw2Pb3R4/x77A\ndo9tEe6+l2Tze9HLY/kjYLLH8n3AJ1nsW9ytu5i7/B6ZJ9V+mf0ueizfCvwGHMDjD4lNmU92+h9k\nVPUnnMQ0PMOmMsAvGdb9gtN6SfVbJlX+7jF/JJPlIqkL7mnyFvfU8RBO67aEL3GLyN1AS6Cnqp50\nV18GzHdPyw/hJNkUnFZXGc94VfVfIKsbRSVwWmU7MtmW7ntxj/0b6b+XvR7zSXh85hwaBgiw2r3c\n0C+LWMNJ/7PK+HNKi0dVk9zZ7GLy6WcoIqEiMs693PIXTnJMjSk7mf3eeIrB+WOxVVW/8VL2nGdJ\nNTiNxDk99PyHmIiTpDyVw2mVpcp1l2Pu9dNhQFfgAlUtjtNiFh/3HQN0UNW/PDb9BrRR1eIeUyFV\nTQD24JxyptYRgXPpITMHgKM4lzEySve9iIi49SZkUtabf93/R3isuyR1RlX3qmp/VS2D0/qclHod\nNUOsJ0j/s8r4c8orPYEOOGc8xXBa3nDqZ5jV74e335uxOH8QS4tIjzOM8T/PkmoQUtXtwGxgiMfq\nhUBVEenp3kzohnNdMtZPhz0f55rmfiBMRJ4CinrbSUQuBeYAfVR1W4bNU4CxInKZW7akiHRwt80D\n2olIMxEpAIwmi99Ht/U5DXhZRMq4LbImIlLQPXZbEblOnEekHgKOAd/m6NM7x9mPk/xuc4/RD49E\nLiJdRKSsu3gQJxmdzFBHihvTWBE53/3sDwIzchpPLpyP89n/wPnD8GyG7b8DOXqWVkSaA3cAfYDb\ngddFJDL7vc5tllSD12ic64wAqPMMZTucpPEHTquynaoe8NPxFgOf4dxU+QWnZejttBDgOpzT+Xly\n6gmA1EeUXgMWAEtE5G+cGy6N3M+zCRgEfIjTaj0IxGdznIeBjcAa4E/geZxrt1txbrC9jtNKbA+0\nV9XjPn7ujPoDj+B8x1GkT84NgFUi8o/7ue7XzJ9NvQ+n1bsT+Mb9jGfjjvn7OD+7BJybkiszbH8H\nqOFejvnEW2UiUtStc7CqJqjqcreOd90zApMJcS9EG2OM8QNrqRpjjB9ZUjXGnJNEZJo4r4b/lMV2\nEZEJIrLdffniSl/qtaRqjDlXvQe0zmZ7G6CKOw3AeQ7bK0uqxphzkqouw7npmZUOwPvqWAkUF5HS\n3uq1DhTyiIRHqBQsFugwMlW3WvA+EXMyyO+bhtg971xZv37dAVUt6Y+6Qoteppp8xGs5PbJ/E85T\nLKmmqurUHBwqkvRPwMS76/Zkt5Ml1TwiBYtR8IrbAx1GplYsHxfoELJ07ERw9yZYMNyvXcieMwqH\nS8a3AXNNk49QsFpXr+WO/vDGUVWt76/j+sqSqjEmfxGBkLPyxy0Bj7f+cDoG8vpmnF1TNcbkPxLi\nfTpzC4A+7lMAjYHDqprtqT9YS9UYkx/54YUuEZmJ0wlQCRGJx+lzIxxAVafgvBp+E05Xkkk4r+t6\nZUnVGJPP+Of0X1Wz7RxGnddNB+W0Xkuqxpj8RfDX6X2esKRqjMlnxC+n/3nFkqoxJv+xlqoxxvjL\nWXukKlcsqRpj8hfBTv+NMcav7PTfGGP8RSA0eE//gzfd/0cN6tqUtTOGsu6DBxjcrWna+ns6X8UP\nsx5k3QcPMHZQm9P2q1KuBCunD0mbfv9iVNr+z9zbmtX/u5+3nzr1PnT3G+ukqz+nliz+jFpR1Yiq\nXpnxL5zeV4Cq8uDQIURVr0yDurX4fv16APbv38+1LZpRr05NFkSfGrGjS6cOJCYm5jqeVEePHuXa\nqxvTtNGVNK5Xi2fHjDqtzKcxC7iqYV2aNapHy6aN+O5bZwDQA/v30/q65jSpX5vYBdFp5Xt0uYU9\nfogNgvd7C/bYciT1kaq8f6MqVyypnkU1Kl7MHTc34Oo736Bhn9do07Q6FcteRPMrK9Ku+eU07P0a\n9Xq9wqsfLjtt37hfD9D49gk0vn0CV93xOklHT7Dg600UPa8gdapF0rD3axw/kUJUpYspVDCMPu3q\nM2Xed7mKMyUlhaFDBhEds4jvN2xm7qyZbNm8OV2ZxZ8tYsf2OH7aEsfEyVMZMvgeAObMmkn/AQNZ\n/u1qJk54FYBPY2OoXacuZcqUyVU8ngoWLMiCRV+wYtV6lq9cx5efL2bN6vRDMbW45lpWrFrPN6vW\nMXHKWwy5924A5s2dxR133c2Xy75j8huvAbDo0xhq1a5DaT/EFszfWzDHlisi3qcAsdP/s6h6+VKs\n2fwbR46dAGD597vo2CKKKy8vy4v/+5rjbg9N+w/+m101XFO/MrsS/uDXvYcoElGA8DDnVCiiUDgn\nkk8ytGdzJs/9luSUk9nWk5U1q1dTqVJlKlR0Bt7s0q07sTHRXF6jRlqZ2AXR9LytDyJCo8aNOXz4\nEHv27CE8PJykpCSOHTtGaGgoycnJTJzwKh99EpOrWDISEYoUKQLAiRMnOHEiGckwinbqdoCkpH9J\nHaMuPCycI0lJHPeIbfIbE5g1Lxp/CObvLZhjy7ngvvtvLdWzaNOOvTStXZ4Li0ZQuGA4rZtUo+zF\nxal8aQma1i7PsrfvZcmkAdS7vGy29XRpVZs5n/8IwD9Jx1n87c+snD6EvQf+5q9/jtIg6lJilm3O\nto7sJCYmULbsqc55IiPLkpCQ4LVMYkIC3Xr0JDYmmnatWzFs+OO8OXkSPXv1JiIiItfxZJSSkkKz\nRvWocllprrnuOuo3bHRamZjoT2hQJ4qunW5m4pS3AOjcrQcLYxfQsV1rHnpkOG9PnUy3Hrf5LbZg\n/t6CObZcsdP//McdX36eP+vc+st+XprxNTGv9WPBK/34MW4PKSdPEhYawoVFI2h+1yQen7iQGc/0\nzLKO8LBQ2ja7nI+/3Ji27uUPltH49gkMf/1TnhpwA2Omfk7f9g2Y8UxPHu17rT8/glfFihVj/oJP\nWbFqLXXqXsnCT2O45dbO3Ht3f3p068zK73J3ScJTaGgo36xax6a4X1i3dg2bN50+xFD7Dh1Z88Mm\nPpj9EWNHj0yLbc78GJauWEXtOlfy2cJYOtxyK0PuvZs+PbuyetWZx5ZbZ+N7+8/E5supfwBP/y2p\nZkFVE1W1s7/rnR6zlqZ3TKTVvW9y6O8jxP16gIT9h/lkqZMY1m6O5+RJpUTx8zLd/8Ym1fhhawL7\nDv5z2rbaVcsgAtt+3U+na6/gtic+pGLkhVQqe1GOYixTJpL4+FMdnickxBMZGem1TJkMZZ4bO4ZH\nHxvBnFkzuappM96eNp2xmdxYyq3ixYtzdfOWfPn54izLNG3WnN27dvHHgQPp1r8w7hkeGvYYH82Z\nReOrmjL5rXcZN3b0GcUTzN9bMMeWKyGh3qcAOaeSqoiME5FBHsujROQRERkvIj+JyEYR6eZuK586\nyqKI9BWRaBFZKiJxIjIytzGUvMBJlpdeXIwOLaOYveQHYpZtpkW9SgBUvrQEBcJDOXAo8+uqXT1O\n/TN6akArRk9dQnhYKKGhzl/qk6pEFCqQoxjrN2jA9u1x7N61i+PHjzN39izatrs5XZm27W/mwxnv\no6qsWrmSokWLUbr0qeF7tsfFkZAQT/MWLUlKSiIkJAQR4cgR78NgZOfA/v0cOnQIgCNHjrD0qy+o\nUrVaujI7d2zH6WAIfvh+PcePHePCi079YdmxPY7EhASubt6SpCP+iy2Yv7dgji3nJKhP/8+1G1Wz\ngVeBN9zlrsDzwA1AbaAEsEZETr/9Dg2Bmjj9Kq4RkU9Vda1nAREZgDPqIhQommkAM5+9jQuLRTg3\nlF6M5vA/R5kes5Y3R3Rm7YyhHE9O4a4xcwEoXeJ8Jj12K7c89B7g3Ii6tmFlBj//8Wn1tm9eg/Vb\nEthz4G8ANsTtYc2Mofy0fQ8bt3vtVzedsLAwXnltIu3b3khKSgq39+1Hjago3npzCgD97x5I6zY3\nsXjRQqKqVyaicARvvv1uujpGPjWCp0ePBaBr9x50vbUjL44fx5Mjz6w1uHfvHu7p34+UkynoyZN0\n7NSZ1je1Y9pbbwLQr//dLPjkY2Z9OIOwsHAKFy7EtP99mHazCmDMqCd5ctQYADp36U6vbp149aUX\neOzJUWcUWzB/b8EcW64E8RtVkvoX/VwhIluA64CSwCRgNbBRVae52/8HzAU2ALGqWlNE+gLXqmof\nt8xo4E9VfTWr44QUKa3BOkbVQRujKtdsjKrcKRwu6/w1XlRI8cu04NWPei13NHaQ346ZE+daSxWc\nhNkZuASn5VrBx/0y/vU5t/4aGRNMgrilek5dU3XNBrrjJNa5wHKgm4iEikhJoDlO6zWjViJyoYgU\nBjoCK85WwMaYDOyaavBQ1U0icj6QoKp7RGQ+0AT4Eaf1OUxV94pI+Qy7rgY+whlRcUbG66nGmLMo\niFuq51xSBVDVKzzmFXjEnTzL7Ma5MZUqXlU7npUAjTFZO3tDVOfKOZlUjTH5m1hLNX9T1feA9wIc\nhjGG1D6qLakaY4x/iCAhllSNMcZvrKVqjDF+ZEnVGGP8RbDTf2OM8RdBrKVqjDH+ZEnVGGP8KCQk\neN+wt6RqjMlfxJ2CVPCme2OMyYKIeJ18rKe1iGwVke0iMjyT7cVEJEZEfhSRTSJyh7c6raVqjMlX\nBPHL6b+IhOJ0WN8KiMfpfH6BqnqOmjkI2Kyq7d1e7LaKyAeqejyreq2laozJf8SHybuGwHZV3ekm\nyVlAhwxlFDhfnKZvEeBPIDm7Sq2lmkfqVotkRZD2sH9B46GBDiFLB1dmOZiC8SLl5DnSb7r4fPe/\nhIh4dtE5VVWneixHAr95LMcDGcc7nwgsABKB84Fuqnoyu4NaUjXG5Ds+JtUDfhhO5UbgB+BaoBLw\nuYgsV9W/strBTv+NMflK6jVVb5MPEoBLPZbLuus83QF8rI7twC6genaVWlI1xuQ//rmmugaoIiIV\nRKQAzjBLCzKU+RVnoFBE5GKgGrAzu0rt9N8Yk7/4fk01W6qaLCKDgcVAKDDNHW5poLt9CjAGeE9E\nNjpH5lFVPZBdvZZUjTH5jr/eqFLVhcDCDOumeMwnAjfkpE5LqsaY/CeI36iypGqMyXesQxVjjPET\nEf+8UZVXLKkaY/Ida6kaY4w/BW9OtaRqjMlnxPpTNcYYvxEgiM/+7Y2qQFqy+DNqRVUjqnplxr9w\neucrqsqDQ4cQVb0yDerW4vv16wHYv38/17ZoRr06NVkQ/Ula+S6dOpCYmJjreAZ1b87a2Y+ybvaj\nDO7RAoBaVSP5+t2hrPzgEb55/0HqR5XLdN9iRQrz4fN9+WHeY3w/9zEaXVEegGfua8/qmcN4++le\naWW7t6mXVn9uBNv3ll9iu2dAP8qXvZgGda/Itty6tWsoFhHO/I/npcXW6pqraVD3CmI8Yut2a0f2\n+Cm2nPHel2ogr7laUg2QlJQUhg4ZRHTMIr7fsJm5s2ayZfPmdGUWf7aIHdvj+GlLHBMnT2XI4HsA\nmDNrJv0HDGT5t6uZOMHp1enT2Bhq16lLmTJlchVPjUqXcMctTbi6z8s07DmeNs1qULFsCcYOac/Y\ntxbTuNd4xry5iLFDbs50/xcfvoUl3/5Mnc7P0bDHC/y863eKnleIOtXL0rDHCxw/kUxUpdIUKhhO\nn/aNmDJnea7iDLbvLb/EBtCrd18+iVnk9TM8OWI4111/6nn3ubNncmf/u/l6xSremPgaAAtjY6hV\npw6l/RRbToWEiNcpUCypBsia1aupVKkyFSpWpECBAnTp1p3YmOh0ZWIXRNPztj6ICI0aN+bw4UPs\n2bOH8PBwkpKSOHbsGKGhoSQnJzNxwqs8+PCwXMdTvfzFrPnpF44cO0FKykmWr99Bx2troQpFzysE\nOK3RPfsPn7Zv0fMK0axuJd6LXgnAieQUDv9zhJOqhIeFAhBRqAAnklMYets1TJ69nOSUbHtPy1Kw\nfW/5JTaAZlc354ILLsy2zJQ3XqdDx06ULFUqbV262EKc2N54/TUeeMh/seWIOKf/3qZAsaQaIImJ\nCZQte6qDnMjIsiQkJHgtk5iQQLcePYmNiaZd61YMG/44b06eRM9evYmIiMh1PJt27KVpnYpcWCyC\nwgXDad20BmUvLs4jL83n2ftvJi52JM/dfzNPTYw9bd/ykRdx4NA/TB3Zk+8+eJhJT3QjolAB/kk6\nxuIVm1n5wSPsPfAXf/1zlAY1LyPm6425jjPYvrf8EptP8ScksGDBJ/S/+55067t278mnMQu4+aYb\nePjRx5g6ZRI9et12VmPzJFhLNeBEpIyIzMti21IROdM+F8+qYsWKMX/Bp6xYtZY6da9k4acx3HJr\nZ+69uz89unVm5Xff5bjOrbt/56X3vyRm4j0seH0gP25LICVFGdC5KcNenk+Vdk8z7OVPmPxk99P2\nDQsNoU61srw1bwVNer1I0pHjPNz3OgBefv8rGvcaz/BXo3nqnjaMmbKIvh0aM+O523n0zlZn/F3k\nRF58b/+l2IY9/ABjxo477c56sWLF+Cg6luXfraFO3StZ9GksHTt1ZvA9/enVvQurVp79781aqgGm\nqomq2jnQcXgqUyaS+PhTnY4nJMQTGRnptUyZDGWeGzuGRx8bwZxZM7mqaTPenjadsWNG5Sqm6dGr\naNr7JVoNeJ1DfyUR9+s+erVrwCdfbQDgoy9+oH7UZaftl7DvEAn7DrNm0y8AzP/yR+pUL5uuTO1q\nkYgI237ZR6fr63DbY9OpGFmCSpeWyFGMwfi95YfYfPH9urX07d2DGlUr8MnH83hgyKB0N6YAnn92\nDI8Mf5y5s2fS5KpmTH3nPZ4d83Sex5aOWEv1rBKRcSIyyGN5lIg8LCI/ucuFRWSWiGwRkflAYY+y\nN4jIdyKyXkTmikgRd/11IvK9iGwUkWkiUvBM46zfoAHbt8exe9cujh8/ztzZs2jbLv1NoLbtb+bD\nGe+jqqxauZKiRYtRunTptO3b4+JISIineYuWJCUlERISgohw5MiRXMVU8oIiAFx6cXE6XFuL2Z+t\nZ8/+v7i6XmUAWjaowvbf9p+23+9//E387wepcplzHa5lw6r8vPP3dGWeGngToycvJDwslFD3F/6k\nKhGFCuQoxmD83vJDbL7YtG0nm7ftYvO2XXTs1JlXJrxB+w4dM8SWcHpsR/M+Nk/OI1XBe/f/v/ic\n6mzgVZxREgG6AncDfd3le4AkVb1cRGoB6wFEpATwBHC9qv4rIo8CD4rIC8B7wHWquk1E3nfrOG0w\nJREZAAwAuLRc5o8epQoLC+OV1ybSvu2NpKSkcHvfftSIiuKtN51ex/rfPZDWbW5i8aKFRFWvTETh\nCN58+910dYx8agRPjx7rfMjuPeh6a0deHD+OJ0eO9v3b8jDzhTu4sNh5zg2l5+dx+J8jDHpmFuMf\n7kRYaAjHjiczeOxsAEqXKMqkJ7tzy/3OkD8Pjv+Yd8fcRoHwMHYn/MGApz9Mq7d9iytYv+U39hxw\nRqDYsC2BNbOG8VNcIhvjcvZITjB+b/khNoC+vXuyfNlS/jhwgKoVL2XEk6M4ceIEAHcNGOh1/6dH\nPsHIp58BoEu3HvTocgsvjX+eJ0ae5ZYqgU2a3ojqf2+wMBHZgtNbd0lgEtALiFXVmiLyCTBBVb9y\ny67HSYSX4CTPeLeaAsB3wATgdVVt7pa/Dhikqp2yi6Fevfq6YtXa7IoEjA38998UzAP/FSkYss4P\n40UBEFGmmla7e7LXcj+Mus5vx8yJ/2JLFWAu0BknUc72cR8BPlfVHulWitT2c2zGmDMR4BtR3vzn\nrqm6ZuOMN9MZJ8F6Wgb0BBCRmkAtd/1KoKmIVHa3nSciVYGtQPnU9UBv4Ou8Dd8Yk5Vgv6b6n0yq\nqroJZ4zuBFXdk2HzZKCIe4lgNLDO3Wc/znXXmSKyAefUv7qqHsUZUXGuO07NSWAKxpiACea7///V\n039U9QqP+d1ATXf+CE4rNrN9vgIaZLL+S6BungRqjMmxYD79/88mVWPMf5SfRlPNK5ZUjTH5ihDY\n03tvLKkaY/KdIG6oWlI1xuQ/dvpvjDH+EuTPqVpSNcbkK07Xf8H7NKglVWNMvmMtVWOM8SO7pmqM\nMX4iYo9UGWOMXwVxQzXrd/9FpGh209kM0hhjPIWIeJ18ISKtRWSriGwXkeFZlGkpIj+IyCYR8dqZ\nUnYt1U2A4txsS5W6rED2vTAbY0weEHc4lTOvR0JxOrNvhdOP8hoRWaCqmz3KFMfpk7m1qv4qIqUy\nr+2ULJOqql6a1TZjjAkkP11SbQhsV9WdACIyC+gAbPYo0xP4WFV/BVDVfd4q9emaqoh0Byqq6rMi\nUha4WFXX5fADmCARzL3rX9BgcKBDyNbBNRMDHUKWQoP45o2/+Xj3v4SIeA6/MVVVp3osRwK/eSzH\nA40y1FEVCBeRpTjdib6mqu9nd1CvSVVEJgLhQHPgWSAJpz/R07rIM8aYvCbg6zXTA34YTiUMqIcz\nPFNh4DsRWamq27LbwZurVPVKEfkeQFX/FJGcDYFpjDF+5KdGeQLgeZmzrLvOUzzwh6r+C/wrIsuA\n2kCWSdWXd71OiEgIzs0pROQinN7vjTHm7PNhKBUfLw+sAaqISAW3odgdWJChTDTQTETCRCQC5/LA\nluwq9aWl+gbwEVBSRJ7GGfL5bI9Ja4wxgHP674/rx6qaLCKDgcVAKDBNVTeJyEB3+xRV3SIinwEb\ncBqTb6vqT9nV6zWpqur7IrIOuN5d1cVbpcYYk5f89fC/qi4EFmZYNyXD8nhgvK91+vpGVShwAucS\nQPB2D2OMOScE87v/XhOkiIwAZgJlcC7kfigij+V1YMYYkxkR36ZA8aWl2geoq6pJACIyFvgeeC4v\nAzPGmKyEBnFL1ZekuidDuTB3nTHGBEQwn/5nmVRF5BWca6h/AptEZLG7fAPOowjGGHPWOQ//BzqK\nrGXXUk29w78J+NRj/cq8C8cYY7zIr/2pquo7ZzMQY4zxVTCf/vty97+SiMwSkQ0isi11OhvB/dct\nWfwZtaKqEVW9MuNfGHfadlXlwaFDiKpemQZ1a/H9+vUA7N+/n2tbNKNenZosiP4krXyXTh1ITEz8\nT8Q2ZWQvfvnyOdbOfTxt3QVFI4idPJiN0U8RO3kwxc8vnLbt4X438FP0SH6c/yTXN7k80zqz2r9J\n7Yqsnv0Y33wwjErlSgJQrEhhYiYNyvE/3kB/b/k1tpxIPf33NgWKL8+cvge8i/NZ2gBzgNl5GNM5\nISUlhaFDBhEds4jvN2xm7qyZbNm8OV2ZxZ8tYsf2OH7aEsfEyVMZMvgeAObMmkn/AQNZ/u1qJk5w\nepz6NDaG2nXqUqZMmf9EbP+LWUmHQW+kW/fwHa1YunorV3QYzdLVW3n4jhsAqF7xErrceCVXdh7L\nzYMm8dpjXTM9Pcxq//t7X8st901m2Ph59O/cDIDh/VvzwjtLUFWfYw6G7y0/xpYb/uqkOk9i86FM\nhKouBlDVHar6BE5yNWdgzerVVKpUmQoVK1KgQAG6dOtObEx0ujKxC6LpeVsfRIRGjRtz+PAh9uzZ\nQ3h4OElJSRw7dozQ0FCSk5OZOOFVHnx42H8mthXrd/Dn4aR069q1rMWMmFUAzIhZRftraqWtn7t4\nPcdPJPNL4h/s+O0ADWqWP63OrPY/kZxC4UIFKFyoACeSU6hQtgRlLy7O8nVxOYo5GL63/BhbTonk\n/6R6zO1f154SAAAgAElEQVRQZYeIDBSR9jj9CpozkJiYQNmypzrIiYwsS0JCgtcyiQkJdOvRk9iY\naNq1bsWw4Y/z5uRJ9OzVm4iIiP90bKUuOp+9B/4CYO+Bvyh1kfNrGFmyGPF7D6aVS9h3kDKlivm8\n//hpS3hnTG8e6XcDU2Yt4+nB7Rk1KTbH8QXr9xbsseVGfn/4/wHgPGAIMBYoBvTztpOIDAHuAdbj\nXC6ooarjRGQU8I+qvuhLgCLSEjiuqt/6Uj63RKQ6MAvnsbHOqrojL493JooVK8b8Bc4DGQcPHuTF\nF8Yxe9587r27PwcPHeT+oQ/RuEmT/3xsOTgzz3b/DdsSaHH7SwA0vbISe/cfRhD+N+4OTiSnMPzl\n+ez78+8zjDZ79jPNmWC++++1paqqq1T1b1X9VVV7q+rNqrrCh7rvBVqpai9VXaCqp18Z901L4KrM\nNoiIP0eD7QjMU9W6viZUd4ybXClTJpL4+FOdjickxBMZGem1TJkMZZ4bO4ZHHxvBnFkzuappM96e\nNp2xY0blNqygjm3fH39zSQlnzMlLShRlv5voEvYfpuwlF6SViyx1AYn7Dvu8v6fhd7Xmubc+Y8Td\nbRjx2idMm/8t9/Zo6VN8wfq9BXtsOSV4P/UPytN/EZkvIh9nNWVXqYhMASoCi0TkARHp644gkLFc\nJRH5TETWichyt7Xoub08MBB4wB3N8GoReU9EpojIKuAFEWkoIt+JyPci8q2IVHP37evG+pmIxInI\nC+76ULeOn0RkoxvfTcBQ4B4R+T+33G0isto97pupCVRE/hGRl0TkRyDXf57rN2jA9u1x7N61i+PH\njzN39izatrs5XZm27W/mwxnvo6qsWrmSokWLUbp06bTt2+PiSEiIp3mLliQlJRESEoKIcOTIkdyG\nFdSxffr1Rm5r74x2cVv7RsQu3eCsX7qBLjdeSYHwMC4rcxGVy5VkzU+7fd4/Va/2jVj8zSYO/pVE\nRKECnDyp6EklolC4T/EF6/cW7LHlWJC/+4+qZjrhDB+Q5ZTVfh777wZKuPN9gYnu/CjgYXf+S6CK\nO98I+CqTetLKu8vvAbFAqLtcFAhz568HPvI45k6cyxWFgF9wevmuB3zuUV/xTOK6HIgBwt3lSUAf\nd16Brll85gHAWmDtpeXK6ZETmu00f8GnWrlKFa1QsaKOGv2MHjmhOmHiZJ0wcbIeOaGadPyk3j3w\nXq1QsaJGRdXUb75bk27/Tp276MbN2/TICdVfEn7XRo2b6OU1auiHs+d5PXawxlaoziAtVGeQzl60\nRhP3HdLjx5M1fu+feveoGVqmxTD9auXPGvfL7/rlyi1auvkjaeWfen2B7vh1n27dtVdvHvRG2vpp\nH6/Qq3o+r4XqDMp2/wsaD9Wlq7dqkfr3aaE6g/S6O17WjdsSdN2mX/SKDk+nlQvW7y2Yf6ZHTqgC\na73lDF+nkpWidPDHm71O/jxmTibJySMjOSEiu4H6qnpARPq684NTr6nijHO1H9jqsVtBVb08Qz2j\n8LgGKyLvAf+nqtPd5UuBCUAVnIQXrqrV3WM2VdX+brlFONeEN+EkvoU4b4otUdWTnsdxO659HEgd\nObEwMFNVR4lIshtnSnafv169+rpi1drsiphM2MB//02Fw2Wdnvl4UQBcXLmmdntxntdyr99yud+O\nmRP+vCaZUyHAIVWtk4t9//WYH4OTZG9xLxcs9dh2zGM+BadFe1BEagM34lxa6MrpN94EmK6qmXVx\neNRbQjXG5K0gvk8VuA6nVfUvYJeIdAEQR+1Miv5N9o9wFePUYF19vR1XREoAIar6EfAEcGUmxb4E\nOotIKXefC0XkMm91G2POjvz+RhUAIlIwD47fC7jTvemzCeiQSZkY4JbUG1WZbH8BeE6c0V59aXlH\nAktF5AdgBnBaa1RVN+Mk3CUisgH4HCidsZwx5uwTccao8jYFitckJCINgXdwWoTl3NbkXap6X3b7\nqWp5j/n3cG4woaqjPNbvAlp7qWcbUMtj1fIM278DqnqseiLjMd3ldh5lTmudesblLs8mk9dxVbVI\ndvEaY/JeEPen4lNLdQLQDvgDQFV/BK7Jy6CMMSYrTocqwfucqi+nyyGq+kuG3nrsRo0xJmBCg7il\n6ktS/c29BKDuA/D3Adb1nzEmICTALVFvfEmq9+BcAigH/A584a4zxpiACOKc6j2pquo+oPtZiMUY\nY7wSICyIH1T15e7/WzhvKqWjqgPyJCJjjPEiX7dUcU73UxUCbgF+y6KsMcbkrQA/3O+NL6f/6Z7V\nFJH/Ad/kWUTGGJMNAUKDuKmam3f/KwAX+zsQY4zxVb5uqYrIQU5dUw0B/gSG52VQxhiTnXw7RLU4\nkdcGSrrTBapaUVXnnI3gjDEmI+fdf++Tb3VJaxHZKiLbRSTLxqKINBCRZBHp7K3ObA+tTmerC1U1\nxZ3ypvNVY4zJAX+8puq+zPQGzujQNYAeIlIji3LPA0t8is2HMj+ISF1fKjPGmLzmvPvvl67/GgLb\nVXWnqh7HGfgzs57y7gM+4lSn9dnK8pqqiISpajJQF1gjIjtwOocWnEZsZv2QGmNMnvPxkmoJEfEc\nfmOqqk71WI4k/eOh8TjDOnkcRyJxHiO9Bmjgy0Gzu1G1GqeLvJuzKWOMXwX7cCVrdx4MdAhZ6jt1\nZaBDOCsE8fWRqgN+GE7lVeBRd8gln3bILqkKgPo4XLMxxpwV/nv4PwFnMNBUZTk1ikiq+sAsN6GW\nAG4SkWRV/SSrSrNLqiVF5MGsNqrqy15DNsaYPOCnXqrWAFVEpAJOMu0O9PQsoKoVUufdQUdjs0uo\nkH1SDQWK4LZYjTEmGAj4ZbgUVU12R05ejJPvpqnqJhEZ6G6fkpt6s0uqe1R1dG4qNcaYvOSvZ/9V\ndSHOcPWe6zJNpqra15c6vV5TNcaYYCIEcBhoH2SXVK87a1EYY4yvxG/XVPNElklVVf88m4EYY4wv\nUgf+C1a56aXKGGMCKnhTqiVVY0y+I4QEcd9/llSNMflKfr5RZYwxQSnf9qdq8taSxZ9RK6oaUdUr\nM/6FcadtV1UeHDqEqOqVaVC3Ft+vXw/A/v37ubZFM+rVqcmC6FMvd3Tp1IHExESL7SzG9vueeIb0\nvpnbbmpM77ZNmDvdecRx2uvjuOXqKO7o0Jw7OjTnu68/z3T/udOn0KfdVfRu24Q5701OWz95/Chu\nb9+MZ4adGg1+cfScdGW8qVDyPBY80DRt+uGZVvS9unza9jtblGf7i224ICI80/2f63oFq0Zdy8KH\nm6Vb/0jbasQ+2JTx3WulretwZZl0decp8U/Xf3nFkmqApKSkMHTIIKJjFvH9hs3MnTWTLZs3pyuz\n+LNF7Ngex09b4pg4eSpDBjv/wObMmkn/AQNZ/u1qJk54FYBPY2OoXacuZcqUsdjOYmyhoWEMGj6G\nGQtX8ubsJXz84Tvs2v4zAF37DuTd6GW8G72MJi1anbbvzm2biZn7PlPnfsG70cv5dukS4n/ZyT9/\n/8W2zT8yPeYbwsLD2bF1M8eOHmHhxx/SqdddPse2a/+/3PzKCm5+ZQUdX13BkeMpLPlpLwClixWi\nWdUSJBw8kuX+H6+Np99ba9OtK1IojKjIorR7eQUnUk5S9ZIiFAwL4dYGkcxY8YvPsZ2J1NN/b1Og\nWFINkDWrV1OpUmUqVKxIgQIF6NKtO7Ex0enKxC6IpudtfRARGjVuzOHDh9izZw/h4eEkJSVx7Ngx\nQkNDSU5OZuKEV3nw4WEW21mOrUSpS6gWVRuAiCLnU75iVQ78vsenfX/ZsY0atepRqHAEYWFh1Glw\nFV8viSVEhOTkZFSVY0ePEBYWxsx3JnJr7/6EhWfeqvTmqiol+PWPJBIPHgVgRIfLeT52K9n1O79m\n50EOJZ1It05VCQ91WoGFwkNJTlHualmB97/5heSTZ68PexHxOgWKJdUASUxMoGzZUx3kREaWJSEh\nwWuZxIQEuvXoSWxMNO1at2LY8Md5c/IkevbqTUREhMUWwNj2xP/Kti0bqFG7HgAfzXiL29s347nH\nBvP34UOnla9Q9XJ+XLeSwwf/5OiRJFYu+5x9exOIKHI+jZu3ol/HFlxU8mLOO78omzeso/n1bXMd\nW9s6pYn9wbnEcX1UKfYePsrPe/7OcT3/Hkth6Zb9LHigKfv/PsbfR5OpXa44X2zyqf9mvxEfpkA5\np29UefQ6M8/H8sWBnqo6KU8D86JYsWLMX/ApAAcPHuTFF8Yxe9587r27PwcPHeT+oQ/RuEkTi+0s\nxpb07z88MeR2hjz+LOcVKUrHHv24/d5HEBHefu1ZJo57gseeS99XbPlK1eh11xAevPNWCheOoHL1\nKwgNcdo5vfoPoVf/IQCMGzGEO4c8Rszc91nzzf9RqVoUt9/7sM+xhYcK10WV4sWFWykUHsLA6yrR\nd+qaXH1OgLeW7uKtpbsAeLZLTV5bHEfXhmVpVq0EPyf+zaQv87a30GAfotpaqjlTHLjXHxWVKRNJ\nfPypTscTEuKJjIz0WqZMhjLPjR3Do4+NYM6smVzVtBlvT5vO2DGjLLazGFvyiRM8MeR2WrXvTIsb\n2gNwYYlShIaGEhISQvsufdiycX2m+7br0pt3Pv4/Jn7wKecXK86l5Sun275t8wZQpVyFyvzfZ9GM\nfu1dEn7bxW+7fU9cLaqXZHP8X/zxz3HKXRTBpRcWJvbBpix9vAWXFCtE9ANNKXF+gRx/7hpliiLA\nzv3/0qb2JQz53w+UKxHBZSX80/LPjoj3KVDOqaQqIn1EZIOI/Cgi/3NXNxeRb0VkZ+pIiSJSRES+\nFJH1IrJRRFLHrRkHVBKRH0Rk/JnEUr9BA7Zvj2P3rl0cP36cubNn0bZd+kEW2ra/mQ9nvI+qsmrl\nSooWLUbp0qXTtm+PiyMhIZ7mLVqSlJRESEgIIsKRI1nffLDY/BubqjJuxBDKV6xK9zsGpa0/sG9v\n2vyyL2KpUOXyTPc/+Md+AH5PjGfZkliub59+sM63X3uWu+5/nOTkZE6mnAQgREI4dtT3WNvVKU2M\ne+q/be8/NBr1FS2f/ZqWz37N3sNH6fDKCg78fdzn+lINbV2FVxbHERZy6m67nlQKh4fmuK6cEZ/+\nC5Rz5vRfRKKAJ4CrVPWAiFwIvAyUBpoB1YEFwDzgKHCLqv4lIiWAlSKyABgO1FTVOlkcYwAwAODS\ncuWyjScsLIxXXptI+7Y3kpKSwu19+1EjKoq33nQeyel/90Bat7mJxYsWElW9MhGFI3jz7XfT1THy\nqRE8PXosAF2796DrrR15cfw4nhx5Zj02Wmy+27huFYujZ1Oxag3u6NAcgAEPPskXsR+x/eeNgFA6\nshwPj3b6dD/w+x6ef+J+xr/ljPL+xH23c/jQn4SFhfPAyBc4v2ixtLqXffEp1WvWocTFzh+EKpfX\n5Pb2TalUNYrK1Wv6FF/hAqE0rVqCJz7a5LVsqaIFebZLTe56Zx0Ar/SqTaNKF3LBeQX45olreG1J\nHHNXxwPOddmf4g+z769jAGxJ/ItPH2rGz3v+ztW12pwI9tN/OVdGnRaR+4BLVHWEx7r3gM9V9QN3\n+W9VPV9EwoFXgObASaAaUAEohHMN1utvdL169XXFqrXeipl8xsaoyp0dL920zg/jRQFQtWYdfX1O\n5s/9emodVcpvx8yJc6almo1jHvOpf/56ASWBeqp6QkR24yRUY0wQCOKG6jl1TfUroIuIXATgnv5n\npRiwz02o1wCXuev/Bs7P2zCNMdlJPf33NgXKOdNSdceeGQt8LSIpwPfZFP8AiBGRjcBa4Ge3jj9E\nZIWI/AQsUtVH8jxwY8xpAnkjyptzJqkCqOp0YHo224u4/z8AZPrAoqr2zGy9MebsCebT/3MqqRpj\n8r9gv/tvSdUYk88E9jlUbyypGmPylwC/MeWNJVVjTL5ip//GGONnwZtSLakaY/KjIM6qllSNMfmO\n3agyxhg/CuIRqi2pGmPyIUuqxhjjH85wKcGbVc+lDlWMMf8F4pz+e5t8qkqktYhsFZHtIjI8k+29\n3I7tN7qd2df2Vqe1VI0x+Y8fGqoiEgq8AbQC4oE1IrJAVT3HPN8FtFDVgyLSBpgKNMquXmupGmPy\nGb8Np9IQ2K6qO1X1ODAL6OBZQFW/VdXUnslXAmW9VWpJ1RiTrwh+O/2PBH7zWI5312XlTmCRt0rt\n9N+YHKhySZFAh5ClhB82BDqEs8e3pFlCRDzHNJqqqlNzdTins/o7ccazy5YlVWNMvuPj6f0BL2NU\nJQCXeiyXddelP5ZILeBtoI2q/uHtoHb6b4zJd/x0+r8GqCIiFUSkANAdZ0TlNCJSDvgY6K2q23yp\n1Fqqxpj8RfDL3X9VTRaRwcBiIBSY5g67NNDdPgV4CrgImCROz1jJ3kZotaRqjMl3/PXwv6ouBBZm\nWDfFY/4u4K6c1GlJ1RiTr6Te/Q9WllSNMfmPJVVjjPGfYH7335KqMSbfCeLRVCypGmPyH0uqxhjj\nJ8He9Z8lVWNM/hLkQ1TbG1UBtGTxZ9SKqkZU9cqMf2HcadtVlQeHDiGqemUa1K3F9+vXA7B//36u\nbdGMenVqsiD6k7TyXTp1IDEx0WILUGzb47ZyXbP6aVPlshcxddKE08qtWP411zWrT/NGtel403UA\nHDiwn5tvbEmLxnVYFBudVvb2Hp3Yuyf3sQ26pR5r3+rHurfvZHAn55n1Zwe05Idpd7F66h3MHnUL\nxc4rmOX+ISHCd1P68tEzt6ate+auFqyeegdvP9o2bV3362qk1X82iHifAsWSaoCkpKQwdMggomMW\n8f2GzcydNZMtmzenK7P4s0Xs2B7HT1vimDh5KkMG3wPAnFkz6T9gIMu/Xc3ECa8C8GlsDLXr1KVM\nmTIWW4Biq1ylGl9+s5Yvv1nLkq9XUbhwBG3apetJjsOHDjH8ofuYPvNjlq36kbemzwTgk3mz6dOv\nP4u++papk18HYMmiWGrWqsMlpXMXW43yJbjjptpcPfh9Gg6YRpvGlahYpjhfrttNvbveoeGAd4mL\n/5NHejTOso7Bt9Rn66+nXncvel4B6lS5hIYD3uX4iRSiKpSgUIEw+tx4BVOi1+cqzpzzW9d/ecKS\naoCsWb2aSpUqU6FiRQoUKECXbt2JjYlOVyZ2QTQ9b+uDiNCocWMOHz7Enj17CA8PJykpiWPHjhEa\nGkpycjITJ7zKgw8Ps9gCGJun5Uu/onyFilxa7rJ06z+eO4u27TtS9tJyAJQsWQqAsLBwjiQd4fix\nY4SGOLFNnfQ6g+5/ONcxVC93EWt+3sORY8mknFSW//gbHZtV5ct1u0k5qQCs3pJIZMnzM90/ssT5\ntG5UkXcX/pi27uRJCA9z0kZEoXBOJJ9kaJeGTP5kPckpJ3Mda05ZS9WcJjExgbJlT3WQExlZloSE\nBK9lEhMS6NajJ7Ex0bRr3Yphwx/nzcmT6NmrNxERERZbAGPz9MnHc+jYudtp63fuiOPQoUPc0vZ6\nbmjeiDkz/wdApy7d+WxhDF07tuH+hx7lvben0Ll7rzOKbdPuAzS9oiwXFi1E4YJhtG5UkbKliqYr\n06d1LRav3pnp/uPvvY4Rby3lpGraun+OHGfxqh2snNKXvX/8w1//HqPB5aWJ+TYu13HmlBDcSTWo\nblSJSHkgVlVrnsVj1gf6qOqQs3XMM1WsWDHmL/gUgIMHD/LiC+OYPW8+997dn4OHDnL/0Ido3KSJ\nxRag2I4fP86ShbGMGPnMaduSk5PZ8MN65i5YzNGjR2h3fXPqNWhEpcpV+WCu0+I+dPAgr78ynnc/\nmMtD9w3k0KGD3HPfA9RvmPVpema2/voHL81aRcy4biQdPcGPO/aRknIqQQ7r2YSUlJPM+nLzafu2\naVSJfYf+5fu437m69qXptr08ZzUvz1kNwKQHWzPmvW/o26YW19evwMad+3j+g+9yFGduBPPd/3zX\nUnXHlfEbVV0biIRapkwk8fGnOh1PSIgnMjLSa5kyGco8N3YMjz42gjmzZnJV02a8PW06Y8eMstgC\nEFuqrz7/jCtq16VkqYszjb/lda0477zzuOiiEjS+qhmbNqbvXPqV8c9y/8PDmT9vNg2bXMWEKdN4\n8bkxuYpl+mcbaHrvdFo9+CGH/j5KXMKfANx2Q01ualyJvs/FZLpfk5qRtGtShZ9nDOT9ETfTss5l\nTBveLl2Z2pVLISJsi/+TTi2qc9uYaCqWvoBKkRfkKtacCOaWajAm1TAR+UBEtojIPBGJEJHdIvK8\niKwHuohIHRFZ6Y5yOF9ELhCRUiKyDkBEaouIun0hIiI73Hq6iMhPIvKjiCxzt7UUkVh3fpSITBOR\npSKyU0TSkq2IPOmOuviNiMwUkdxf7ALqN2jA9u1x7N61i+PHjzN39izatrs5XZm27W/mwxnvo6qs\nWrmSokWLUbp06bTt2+PiSEiIp3mLliQlJRESEoKIcOTIkTMJzWI7Q/Pnzc701B/gxrbtWf3dtyQn\nJ5OUlMT6daupUq162vadO+JITIin6dUtOHLkVGxHj+YutpLFncsHl5Y6nw7NqjL7y820alCBB7s1\novOTH3HkWHKm+z31zjIq95hE9dum0GfsApb+8Av9xsWmL9P3aka/t5zw0BBC3R5OTqoSUTCPT4D9\nOJpqXgiq039XNeBOVV0hItOAe931f6jqlQAisgG4T1W/FpHRwEhVHSoihUSkKHA1sBa4WkS+Afap\napKIPAXcqKoJIlI8i+NXB64Bzge2ishkoA5wK1AbCAfWA+sy7igiA4ABAJeWK5fthwwLC+OV1ybS\nvu2NpKSkcHvfftSIiuKtN51ex/rfPZDWbW5i8aKFRFWvTEThCN58+910dYx8agRPjx4LQNfuPeh6\na0deHD+OJ0eOzvbY3lhsuffvv/+y7P++ZPyrk9LWTX/HGcHj9jsHULXa5Vxz/Q1cc9WVhISE0KtP\nPy6vcepq13Ojn+Kxp5w4Onbuxh09O/P6K+MZ9vjIXMUzc2RHLixa2Lmh9PrnHP73GK8MbkXB8FBi\nn3cS/+otiQx5bQmlLyrCpAdbc8uIeV7rbX9VFdZv28ueP/4BYMP2fax5qx8/7dzHxp37cxVrzgTv\n6b+ox0XoQHOvqS5T1dQW5rXAEJyk1kJVfxGRYsBGjzKVgLmqeqWIvIXTS/cdwEygNbAcqKWqw0Rk\nClAJmAN8rKp/iEhL4GFVbScio4ATqjrWrXsLzvC1nYELVHWku/5lIFFVX8zqs9SrV19XrFqb1WaT\nTx1OOhHoELJUvtPLgQ4hS0e/HL7OW+fOvqpdt54u/D/v123LXlDQb8fMiWA8/c+Y5VOX//Vh32U4\nrdTLgGiclmUznMSKqg4EnsAZl2adiFyUSR3HPOZTCM7WvDHnNPFhCpRgTKrlRCT1FmxP4BvPjap6\nGDgoIle7q3oDX7vzy4HbgDhVPQn8CdyUWoeIVFLVVar6FLCf9IN+ZWcF0N69vFAEaOdtB2NM3gkR\n8ToFLLaAHTlrW4FB7qn3BcDkTMrcDox3r63WAUYDqOpunD9Sy9xy3wCHVPWguzxeRDaKyE/At8CP\n+EBV1+AMCLYBZ9zvjcDhnH80Y4xfBHFTNahObd2kWD2TTeUzlPsByPShPVW91GP+WeBZj+VOmeyy\n1J1Q1VEZ6vJ8XvZFVR0lIhE4Sfu0G1XGmLMjeG9TBVlSDXJTRaQGUAiYrqpn60VnY4wHEQJ6eu+N\nJVUfqWrPQMdgjHEFb061pGqMyX+COKdaUjXG5DeBvbvvjSVVY0y+ktpLVbAKxkeqjDEm37KWqjEm\n37HTf2OM8ZcgH/jPkqoxJl8J9Lv93lhSNcbkOxLETVW7UWWMyXf81fO/iLR2O5/fLiLDM9kuIjLB\n3b5BRK70VqclVWNMvuOP/lTcoZneANoANYAe7qvontoAVdxpAJl38JSOJVVjTP7jn16qGgLbVXWn\nqh4HZgEdMpTpALyvjpVAcREpnbEiT5ZUjTH5iuC3/lQjgd88luPddTktk47dqMoj69evO1A4XH7x\nY5UlgAN+rM+fLLbcOZdiu8xfFa1fv25x4XAp4UPRQiLiOabRVFWd6q84smJJNY+oakl/1iciawMx\n3o4vLLbcsdhyR1Vb+6mqBNKP/lHWXZfTMunY6b8x5ly1BqgiIhVEpADQHWeED08LgD7uUwCNgcOq\nuie7Sq2laow5J6lqsogMBhYDocA0Vd0kIgPd7VOAhTjj3G0HknBGas6WJdX8I8+vBZ0Biy13LLYA\nU9WFOInTc90Uj3kFBuWkTnH2McYY4w92TdUYY/zIkqoxxviRJVVjfCAiFwU6BpM/WFI1fiXB3H1Q\nDnh+DhHpD4wQkfA8OE4pEantzrcSkbL+PsbZIOLTw/jnBLv7n0+IiKiqikhFoCCwTVVTPLcFNsL0\ncYhIFPA7gKoG61tDWfL4HL1xOtuYqKon8uBQ5wEviMhBoCjQOw+OkSc8fidrAANEJFZVvwh0XIFm\nSTWfcH95bwKeB44B34nIV6o6PxgSKqRLRPcDXXGS6kERma6qywIanI88EkWIqp4E+gF1gdHu9jBV\nTfbX8VR1l4isw3lsZ4yq/uH2nnQyWH6uWXG/p3bA/TivoZYSkXBVXRTg0ALKTv/zCRG5AngA6ARc\nA2wDmohIzYAGloGI1MF5QLod8ASwFHhARKoFMi5fuIk0NZGVBFDVa4BvgXnucrKInFFjJJNLJDHA\nQJyu5+5S1RQ3YRU9k+PkNRGpADwD3ANcC/wM3CAi1wY0sACzpBqkROQSEZkoIiEiUgS4DagJhKrq\n3zjdlF0G3BjgOMXz/ziXJhJU9aCqbgY+B/YD5QMToe/clikici8wWUSeE5FOqnoTECIiC91yuW6p\nZrhE0klEugP/qOpM4HFgsIh0FZEbgeF5cR3XjwrjnDXtV9V44B2gGjBQRK4OaGQBZEk1eP0JvI7T\nmcMJYCLwGc4/uoqqut9dLnemLafcynAtt5T7/3VAuIiMAFDVvUAyTie/QUlEqohIQXe+O8474PcB\nLVHqEDwAAA+FSURBVICWkNZiLSkiH5/JsTwS6iDgUeBC4FsRuUlVFwNDgeE4LcAZeXQdN1c8/oCe\nB+D+0VyN8258KVVNAD7i/9s793A75yuPf75BiCSNy1NFmEkHaV0qCBXqNi5hSEhd6tIQd4mi6tZB\n1WWUVlrSNG7jUr2NJ/FoDDpGm2pNmEhpCDElIZRWOiiCSCTiO3+s3xnbaRInyc5533Osz/Ocxz77\nfc9+197Zvu/6rbV+a8EqwF6VGVoxuaOq5ki6EehLfEk3IJaJOwE/BU4Azitb7SpD0ghiuf8EEUed\nSCz95wAPAicDB9h+tjIjF4OkfYDRQH/bb5V939OJz3oosJ/tBZLWtP26pL+3vVwtHSVtB3wP2A84\nilg+rw6ca3uspLWALnVM8Enan0imrUzEmwcQS/8NgQnETeGbxHsaZvulikytjPRUa8YiltMnAlOB\n8USD3O8TzR32IRIb/1ESG5Ug6UuEZzcc2JzwSH8PHA88D/QEDq2joBa2BMYSscBdiLZuNwPH2h5Y\nBPVU4PTimS+1oLaOodp+GDgUGAgcZHsLYiVyq6S9bb9WU0HdmvCirwbeAH5GxFFvAB4CPkfcJP5E\n3CTmVmNptaSo1oySoNgbuETSVYTHdAEwA7iNaBx8ESFce0jasKW0qj2Q1F/Szg1C3pXwTPYEVgNO\nL0vc7rbPt/0d20+2l33LwCTC0xpJeNn3Ab8kluSbSRpKJN7GLUs2XtJqDUv+rSX1Byjt49YhvHsI\nIfo58PRyvp+mIWlDSTuUxxsBpwG/t/1b28cQtl5NVCqMIhKp6xA3iK/Yfr0i0yslRbVmSNoeuI4Q\nzd5E3K0/cA4wG/j34vVNAF4C5rezibsClxPLPopNtwPH2N7L9vwSDjhR0aOydrTyHF8lYtYTgU3L\n4+uAt4iwwBBiGbvUN4ZSsXGkpG4lhjoWuFLSHeWUqcCnJI0FzgfOsv38sr2r5lI+o37AO5JWI5KN\nrxL9R/8RwPbXiNXIDyV1K4m+2cARth+rxvLqyZhqjZDUh1g2L7B9cXnuHGAH218smeBNbT9ejq1m\ne1472dZSt4mk0cQy/zvAI4QgrA9cQQxTOw040va09rBtaWiVfR8MGLifiAnvTJRPjSs3h+7Ae7bf\nXcZrDSLijvcDOwDDbb8haTLwnO3DivDuCkyw/dTyvr9mUr5vPYFbiRvpZOBcYnVyj+37y3mb2v5D\nZYbWjPRUa4KkdYi45EvABpI2BrB9BTHBcXPbC2w/LqlLObbCBbXFq2sQ1BGEgHYFrie8mR8Ty9jv\nErHeWgoqfCj7fgYlrFJK1G4jkmoDgGOL5zVnWQS14d/n7vKa/YA1iblP2N4e6CPpHttP2B5TJ0Ft\nsR9Y2fZrRDz/DGITxPeIWOmBLR4rEVftNFuUl5cU1frwKlF3Opgop9pV0raSPgusTWTSgQ8Erp34\n/73oio0Gw4ERtvcAbgS+BXzS9ncJb+/LdRXUFiRtAxxMeI/PStoNOMT2z4ApwKeJm8Yy0XADGg5s\nQ4Rq3gR2lrRhOWcA0LXl97pQPPn3Fbv3bpPUjQhbjCcqOjYHRhHhkVnwwY2q7jvA2ovcploxktYH\nVrf9jGK0wyhiCm8fIkPcFbioilhbKe25QtJJtt8kkinPAOsRBd8jJW0KjJU0xPbk9raxLbSqp4UY\nOfwK8BPgr8T7WVfRieoaoKft2ct5zf2Jraf72X5B0pvEv6ck/cb2c+XGVCtKonQfInF3mu25kuYR\nq5GFwGVEuOfC9kyQdiRSVCukxOzOJQr47yBiV08QzVLuUHT+6Wb7xUUIwwqnLP0OV3RP2sj2dZL+\nCuwk6dVSg3gvIUovLvHFKqJVDHUbYL7taZIuA4YBN5SQyrHA2g3JluVlfeDWIqgr275b0kIixjpX\n0ovAwrp4d62+X9sR9abTJB0KnERk+e8mbvLzU1AXT4pqhdieo9h51I+IVa1L7OA5SdLTjcH/qv7n\nU+zl3x04oAjqRUTJTP9SVtUPOLiuRd4NgnoqkQTsLmkMIaYnl2PHE17l0CZe+o/AEEm3224pk+pC\neMa/cRObsjSD4qHuRHjwzxPx8VeI8rIJRDH//bZvrMzIDkKKasWUZfVESUOIFnPrAV8g9lVXSkk8\nDAR6AV8mirwvK493JOJr33J9C/sBkDQQ2Mt2P0lbEjeGLpJuI1rvDQKOanI97YPEZ3S0pAeBNYiq\niMMcW3drwSI81COJZN3/AC+XVVJvItbfk4j9J0sgS6pqiKS+tqdXbMPqtt9R9BX4LfAjIjQxBrjJ\n9rVV2tdWFE2fv0kI3A6Oraj9ibjgw8AtxCz3d1bAtdcDDgD2J0IKl7eUw9UJRfOTmbb/LOlMoszs\nGtvzFDvmzifi+uMrNbSDkKJaIxprQcvvlTSfLqUyuwEPl1jgQEKU/oXYOXU+IRZv1CUm2MKiPjPF\n9sqzgGeBUbZfU2yy+CpwSokdr0ibugLYbu+NGkukrERE3Fy6EdtzIUT132zPkjSM6Do2oarvY0cj\nRTX5GxTTBXYnahNvIHZtHQJ83fbkFi+2ShsXRauk1AnE/vP3bf9A0rbE0nY2MNr2q5JWXdbC/s6A\notvZzHITPQL4BXHz6U0U959cqYEdlKxTTf4G2zNLQmII0IOI8+4CnFHCAbVslNGqsH8oEa4YLula\n248QIYzeRCKwC+2/xbcWKHr0rg7cJOlKIqm2FlF7eiixRXpvRUvELOhfStJTTZaIos+oCA9mXNWx\n3kXRykPdgBh9cgqxvN+eaPQyy/YxpZphlu3/rczgimj5nCT1sP22YrLAlcBMQlR3IsbgvAn08nK2\nOPy4ktn/5KOYXwTr0qoNWRStBHUo0RD7HCIGPNj2joqWfndLmmd7RIXmVkoR1IFEG8OZwDO2j5e0\nJ9Gz4fNER65LbL9Rpa0dmRTVZInUPTHRIKh7EHWog4oXZqBl2GAfohRsbCVG1oQSV74aOJMIfZwo\n6TPlRjNB0ntEcrLW/+Z1J0U16ZCoYappKQk6DXjK9tvllHeAAYrJCfsCu9p+rhprq6Nhyb86EQYZ\nZ/vOEiudTLTt28P2rx3Ne2oz8ryjkomqpMMhaQ2iUB1JuxIlQDOIGVLbF1GYRMRUbwZ2sj2jMoMr\npGHJfy7RQHqYpE0cvA78BVip9d9UYGqnIT3VpCOyDtHx6evAZrb7SnqUiPseAiDpd7anVmlkHSj9\nDgYTHupERQf/u0rJGUQi75aq7OuMpKgmHQ7b08vydU/gqlJvOkfSJcTGhGFER6VHqrSzKiStZHth\n+YxuJOKn3y8e/EhJ7wJnl9MvtP1QZcZ2QrKkKulQNMQIexENsT9HDKEb5+gI1ZfoBHWl7ZertLW9\nkdTT0XCbUvHQnWjScx6x4eEHDeeuCmD73YyhNpcU1aRDoxiJsgdRa7kG0ZructtzlviHnYySiPpP\nYtruk0RT6SlED9ydgY2JUqkxlRn5MSGX/0mtWZwXJamr7fm271L0Ke0P/BNw0sdNUAFK85uriBHS\nc4DjbP+3YizPC0Td7nmSPmn7wipt7eykp5rUllaF/ccTTsBati9rfbz83v3jKKiNlEL+24GRti9V\nDO/bl7jp/BDobfuBKm3s7GRJVVJbGgT1FGIv/6NE/4GvtBzXB0Pq+LgLKoDtCcDRRB/Xw20vIGLO\ng4DXbD+Q+/lXLLn8T2qHYlT3e7b/pBg8txWxtB8BTAKuUxnP7fYdgtghsD2+7I76kaTDgHlEln92\nOZ7L0xVILv+TWlGy+pcSkzp/4ug8fyvwPrAKMMwxjO5kYu/6Lys0t9ZIOpBoLnOC7UmZ5W8fUlST\n2iBpE+A5YG+in+ssYtLAgcTk061sPyHpCGKH0GBXMGW2IyFpLa/gJtzJh0lRTWqBpL8j5mGNdYw8\n2YGYhfU8cD0RUz2TGO2yJXCs7WnVWJskiydFNakcSYOAg4CvARsARwEXANsChxPCOoroNgUw1/af\n293QJGkDKapJpUhaGxgHDCfipgPKz1+AkUTjlC8RUzxvTjFN6k5m/5OqmQ8sAC4muiWNIHYBfZEo\nZP828T3dl5qOcUmSRrJONamUslf9PmKM84ySVHkAuAvoRWSvJxEjkjPhktSeFNWkDowlRl4fJOlM\n2wsJof0VERL4hO30UpMOQcZUk9ogaWtCYMfYHl12/nRzDcdhJ8niyJhqUhtsPyrpYOA+SQtsX0uM\nRUmSDkN6qkntkLQFUTb1bNW2JMnSkqKaJEnSRDJRlSRJ0kRSVJMkSZpIimqSJEkTSVFNkiRpIimq\nSZIkTSRFNWkqkhZKekzSNEm3lSmfy/pau0m6uzzeX9I/L+HcNUrj6qW9xkWSzmrr863OuaXU1bb1\nWn0kZbvCTk6KatJs5treyvYWRLOU4Y0HFSz19872nba/vYRT1gCWWlSTpNmkqCYrkonAxsVDe1rS\nj4FpwIaSBkqaJGlK8Wh7AEjaR9JTkqYQHf8pzx8taUx5/ClJ4yVNLT87Et2sNipe8shy3tmSHpb0\nuKSLG17rfEnTJT0AfOaj3oSkE8rrTJV0eyvve09Jj5TXG1TOX0nSyIZrn7S8H2TScUhRTVYIklYm\nhvU9UZ7aBLjG9ubEXPpvAHva3gZ4hJiSuhpwAzCYGKm87mJefjRwv+1+wDbAk0SbwGeLl3y2pIHl\nmp8nBgf2l7SLpP7AYeW5fYl+rR/Fz21vV673B+C4hmN9yjX2owwkLMdn296uvP4Jkj7dhusknYDc\n+580m26SHiuPJwI3AesDf7T9UHl+ALAZ8GCZltyVaO/3WeA52zMAJP0UOHER19idmA5A6Wg1W9Ka\nrc4ZWH4eLb/3IES2JzC+pUmLpDvb8J62kHQpEWLoAdzbcGxcmeg6Q9LM8h4GAls2xFt7lWtPb8O1\nkg5OimrSbOba3qrxiSKccxqfAn5l+/BW533o75YTAZfbvr7VNU5fhte6BRhie6qko4HdGo613uft\ncu1TbTeKb8vo7aSTk8v/pAoeAr4gaWMASd0l9QWeAvpI2qicd/hi/v7XxISAlvhlL+Atwgtt4V7g\n2IZYbW9J6wD/BQyR1E1STyLU8FH0BGZJWoUYRtjIIZK6FJv/AXi6XHtEOR9JfSV1b8N1kk5AeqpJ\nu2P7leLx3Spp1fL0N2xPl3Qi8AtJ7xDhg56LeImvAv8q6ThgITCizLV/sJQs3VPiqpsCk4qn/DYw\n1PYUSWOBqcDLwMNtMPkCYDLwSvlvo00vAL8DPgEMtz1P0o1ErHVK6Qn7CjCkbZ9O0tHJLlVJkiRN\nJJf/SZIkTSRFNUmSpImkqCZJkjSRFNUkSZImkqKaJEnSRFJUkyRJmkiKapIkSRP5P3OnUZ0ty40V\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "import itertools\n", + "\n", + "def plot_confusion_matrix(cm, classes,\n", + " normalize=False,\n", + " title='Confusion matrix',\n", + " fname='Confusion matrix',\n", + " cmap=plt.cm.Blues):\n", + " \"\"\"\n", + " This function prints and plots the confusion matrix.\n", + " Normalization can be applied by setting `normalize=True`.\n", + " \"\"\"\n", + " if normalize:\n", + " cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n", + " print(\"Normalized confusion matrix\")\n", + " else:\n", + " print('Confusion matrix, without normalization')\n", + "\n", + " print(cm)\n", + "\n", + " plt.imshow(cm, interpolation='nearest', cmap=cmap)\n", + " plt.title(title)\n", + " plt.colorbar()\n", + " tick_marks = np.arange(len(classes))\n", + " plt.xticks(tick_marks, classes, rotation=45)\n", + " plt.yticks(tick_marks, classes)\n", + "\n", + " fmt = '.1f' if normalize else 'd'\n", + " thresh = cm.max() / 2.\n", + " for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n", + " if normalize:\n", + " plt.text(j, i, format(cm[i, j]*100, fmt) + '%',\n", + " horizontalalignment=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\")\n", + " else:\n", + " plt.text(j, i, format(cm[i, j], fmt),\n", + " horizontalalignment=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\") \n", + " \n", + " plt.tight_layout()\n", + " plt.ylabel('True label')\n", + " plt.xlabel('Predicted label')\n", + " plt.savefig(fname, bbox_inches='tight', pad_inches=1)\n", + "\n", + "# Compute confusion matrix\n", + "cnf_matrix = confusion_matrix(y_val_true, y_val_prediction)\n", + "np.set_printoptions(precision=2)\n", + "\n", + "# Plot non-normalized confusion matrix\n", + "plt.figure()\n", + "plot_confusion_matrix(cnf_matrix, classes=class_names,\n", + " title='Confusion matrix, without normalization',\n", + " fname=MODEL_NAME + \"_\" + 'Confusion_matrix_without_normalization')\n", + "\n", + "# Plot normalized confusion matrix\n", + "plt.figure()\n", + "plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,\n", + " title='Normalized confusion matrix',\n", + " fname=MODEL_NAME + \"_\" + 'Normalized_confusion_matrix')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def stats(y_true, y_pred):\n", + " correct = sum([1 for i,pred in enumerate(y_pred) if y_true[i][pred]==1])\n", + " print(y_true.shape[0], correct, correct*1.0/len(y_true))\n", + " \n", + " for class_ind in range(y_true.shape[1]):\n", + " total_ind = len([1 for val in y_true if val[class_ind]==1])\n", + " correct_ind = sum([1 for i,pred in enumerate(y_pred) if (pred == class_ind and y_true[i][pred]==1)])\n", + " print(class_ind, total_ind, correct_ind, correct_ind*1.0/total_ind)\n", + "\n", + "stats(y_val, y_val_prediction)\n", + "# stats(y_test_vpn, y_test_vpn_prediction)\n", + "# stats(y_test_tor, y_test_tor_prediction)\n", + "# correct_1 = sum([1 for i,pred in enumerate(y_test_prediction) if (pred == 1 and y_test[i][pred]==1)])\n", + "# print correct_1, correct_1*1.0/len([1 for val in y_test if val[1]==1])" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0.0 1.00 0.97 0.98 61\n", + " 1.0 1.00 0.99 0.99 70\n", + " 2.0 0.97 1.00 0.98 63\n", + " 3.0 0.74 0.26 0.38 54\n", + " 4.0 0.60 0.92 0.73 66\n", + "\n", + "avg / total 0.86 0.85 0.83 314\n", + "\n" + ] + } + ], + "source": [ + "from sklearn.metrics import classification_report\n", + "print(classification_report(y_val_true, y_val_prediction))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 0 0]\n", + " ..., \n", + " [0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 0 0]\n", + " [0 0 0 ..., 0 5 4]]\n", + "1.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAM9CAYAAADaQo01AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X2MZfd5H/bvU8pWZDiOpZJhCb6ARMAmpdQIMTeM2gSt\nUrYR5QahChTCqk3MuIoJwXTrFgFsMgWqPwICLtyXxKgpYWGrolBDBOu4FVtQsQW2rloktEQmtiVS\nobUQK3FpSqRsJCocRA7lp3/MZXSfq52XnZnl3Nnz+QCDuffcc8/97czcnf3y+Z7D6u4AAADAa/6l\nk14AAAAA20VQBAAAYBAUAQAAGARFAAAABkERAACAQVAEAABgEBQBAABOsar6SFW9XFWf3+Xxqqqf\nqarzVfWbVfUD+x1TUAQAADjdPprkrj0ef3eSW1cf9yb50H4HFBQBAABOse7+dJLf3WOXu5N8rHc8\nmeT7q+q6vY4pKAIAAFzZrk/ywtr9C6ttu3rDZV3OMbj66qv75ptvvuhjTz/9dG6//fYjv8bTTz+d\nJONYRz325vMvdrzXtq1/3lzHtthtra95bc0X+7Pstu9+r7fbvrt9vTZfc/3zXq+x17rW99nre7Tb\n93uv7+02f7+P22HeT7s951K/zxyvzffNay72Xr/YPq+Hi71v93vtJb0f2S4HfU/t9jt48/fv62X9\n9TZvr69r/fG9fqfu9XVgd5fyd/JB//211/fqYse62M/CYV77KPb6/bPXWru7XnusqvoyLvE4PJPk\nn63dP9fd5y7nC259ULz55pvz1FNPnfQyAACAK8SZM2dOegmX6p9191EW/WKSG9fu37DativVUwAA\ngCvbY0l+aHX103ck+Sfd/dJeT9j6iSIAAAC7q6qPJ3lnkqur6kKSDyb5riTp7g8neTzJDyY5n+Sf\nJvnh/Y4pKAIAAItXVfvvdEK69z6Fsrvft8/jneS+S3lN1VMAAAAGQREAAIBB9RQAAFi801w9vRxM\nFAEAABgERQAAAAbVUzgGVXUilQDYNqf5vXCa184y+BmFy2ubq6cnwUQRjoFf3LDjNL8XTvPaWQY/\no8DrSVAEAABgUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIBFqyrV0w0migAAAAyCIgAAAIPqKQAA\nsHiqp5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAA\nDKqnAAC87qoq3X3Sy4B/QfV0MlEEAOB1JyTCdhMUAQAAGARFAAAABucoAgAAi1ZVzlHcYKIIAADA\nICgCAAAwqJ4CAACLp3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALB4qqeT\niSIAAACDoAgAAMCgegoAACye6ulkoggAAMAgKAIAADCongIAAItWVaqnG0wUAQAAGPYNilX1kap6\nuao+f5HH/npVdVVdvbbtgao6X1XPVdW71rbfXlWfWz32MyWyAwAAbKWDTBQ/muSuzY1VdWOSv5Dk\nK2vbbktyNslbV895qKquWj38oSQ/kuTW1cd3HBMAAOAkvFY/3caPk7BvUOzuTyf53Ys89N8n+Ykk\nvbbt7iSPdPc3u/v5JOeT3FFV1yX5vu5+srs7yceSvOfIqwcAAODYHeocxaq6O8mL3f0bGw9dn+SF\ntfsXVtuuX93e3A4AAMCWueSrnlbV9yT5G9mpnV4WVXVvknuT5KabbrpcLwMAAJAkrnq64TATxT+W\n5JYkv1FV/2+SG5L8g6r6V5K8mOTGtX1vWG17cXV7c/tFdfe57j7T3WeuueaaQywRAACAw7rkoNjd\nn+vuP9rdN3f3zdmpkf5Ad381yWNJzlbVG6vqluxctOYz3f1Skm9U1TtWVzv9oSSfOL4/BgAAAMdl\n3+ppVX08yTuTXF1VF5J8sLt//mL7dvczVfVokmeTvJrkvu7+1urhH83OFVTflOSTqw8AAIATp3o6\n7RsUu/t9+zx+88b9B5M8eJH9nkrytktcHwAAAK+zQ131FAAAgCvXJV/1FAAA4EqjejqZKAIAADAI\nigAAAAyCIgAAAINzFAEAgEWrKucobjBRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVT\nAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXTyUQRAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQB\nAAAYVE8BAIBFqyrV0w0migAAAAyCIgAAAIPqKQAAsHiqp5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSi\nCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAADKqnAADA4qmeTiaKAAAADIIiAAAAg6AIAADA\n4BxFAABg0arKOYobTBQBAAAYBEUAAAAG1VMAAGDxVE8nE0UAAAAGQREAAIBB9RQAAFg81dPJRBEA\nAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEAgMVTPZ1MFAEAABgERQAAAAbVUwAAYNGq\nSvV0g4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAwqJ4CAACLp3o6mSgCAAAwCIoAAAAM\nqqcAAMDiqZ5OJooAAAAMgiIAAACDoAgAAMDgHEUAAGDxnKM4mSgCAAAwCIoAAAAMqqcAAMCiVZXq\n6QYTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAAgEFQBAAAYFA9BQAAFk/1dDJRBAAAYBAUAQAAGFRP\nAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYtKpSPd1goggAAMAg\nKAIAADCongIAAIunejqZKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAAAIPqKQAAsHiqp5OJ\nIgAAAIOgCAAAwCAoAgAAMDhHEQAAWDznKE4migAAAAz7BsWq+khVvVxVn1/b9tNV9Y+q6jer6n+p\nqu9fe+yBqjpfVc9V1bvWtt9eVZ9bPfYzJbIDAMBl55/dV76qumuVv85X1f0XefyPVNX/VlW/UVXP\nVNUP73fMg0wUP5rkro1tn0rytu7+k0l+K8kDqwXcluRskreunvNQVV21es6HkvxIkltXH5vHBAAA\njll3n/QStl5VbfXHPmu/KsnPJnl3ktuSvG+Vy9bdl+TZ7n57kncm+W+r6rv3Ou6+QbG7P53kdze2\n/Up3v7q6+2SSG1a3707ySHd/s7ufT3I+yR1VdV2S7+vuJ3vnJ/VjSd6z32sDAACwpzuSnO/uL3X3\n7yd5JDu5bF0n+cOrVuf3ZiffvZo9HMc5iv9Jkk+ubl+f5IW1xy6stl2/ur25HQAAgMPbLYOt+x+S\n/GtJfjvJ55L8eHf/wV4HPdJVT6vqv8xOEv2FoxznIse9N8m9SXLTTTcd56EBAAC+w5afy3l1VT21\ndv9cd5+7hOe/K8mvJ/l3kvyxJJ+qqv+7u7+x2xMOHRSr6q8m+YtJ7uxvF59fTHLj2m43rLa9mG/X\nU9e3X9TqD30uSc6cOaNUDQAALNnXu/vMLo/tlsHW/XCSn1rltvNV9XySP5HkM7u94KGqp1V1V5Kf\nSPKXuvufrj30WJKzVfXGqrolOxet+Ux3v5TkG1X1jlUv9oeSfOIwrw0AAMC/8Nkkt1bVLasL1JzN\nTi5b95UkdyZJVV2b5I8n+dJeB913olhVH8/OlXGurqoLST6YnaucvjE7I8skebK7P9Ddz1TVo0me\nzU4l9b7u/tbqUD+anSuovik75zR+MgAAAFtgy6unu+ruV6vqx5L8cpKrknxklcs+sHr8w0n+ZpKP\nVtXnklSSn+zur+913H2DYne/7yKbf36P/R9M8uBFtj+V5G37vR4AAAAH192PJ3l8Y9uH127/dpK/\ncCnHPI6rngIAAHAFOdJVTwEAAK4Ep7V6ermYKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAA\nAIPqKQAAsGhVpXq6wUQRAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIDFUz2dTBQB\nAAAYBEUAAAAG1VMAAGDxVE8nE0UAAAAGQREAAIBBUAQAAGBwjiIAALB4zlGcTBQBAAAYBEUAAAAG\n1VMAAGDRqkr1dIOJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAA\nMAiKAAAADKqnAADA4qmeTiaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsWlWp\nnm4wUQQAAGAQFAEAABhUTwEAgMVTPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTxVz8crhH/UE5yPNf\n22fz8za72JrX173b9t22HeS1LmX7pX4N9/vav3bMvf5cF3v+fl+nw673tDrMn/Mg3+fT9N65Ulzs\nZ3q3n/fNj212GtbIlWmv98vF7m8+b/3+SdnvtS/131jej8frsP8+Oui/Ww7678DLab/3zsU8/fTT\nr9fyTi0TxSTdfaBtRz3mbvtsft5m+615rz/Lpf75dtv/Urcf5DUOesxL3e84vx6n2VG+N3ttP03v\nnSvFxb7mp/Hvsk2ncc1cGfb62dvrd9BBfz+9HvZ77Utdq/fj8Tqu38Hb/Hv5MO+H22+//XIt54oh\nKAIAAItnkj2pngIAADAIigAAAAyCIgAAAINzFAEAgMVzjuJkoggAAMAgKAIAADCongIAAItWVaqn\nG0wUAQAAGARFAAAABtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXTyUQRAACAQVAEAABgUD3l\nQKoq3X3SywAALuK0/p4+revmyqR6OpkociD+EgeA7XVaf0+f1nXDEgiKAAAADKqnAADA4qmeTiaK\nAAAADIIiAAAAg+opAACwaFWlerrBRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEA\ngMVTPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEFQPEGncbx9WtZ8WtYJbA9/b8DJ\n8f47vU7T9+40rXUbOEfxBHX3SS/hkp2WNZ+WdQLbw98bcHK8/06v0/S922+tguRkoggAAMAgKAIA\nADCongIAAItWVaqnG0wUAQAAGARFAAAABtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXTyUQR\nAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQBAAAY9g2KVfWRqnq5qj6/tu0tVfWpqvri6vOb1x57\noKrOV9VzVfWute23V9XnVo/9TJntAgAAW6CqtvrjJBxkovjRJHdtbLs/yRPdfWuSJ1b3U1W3JTmb\n5K2r5zxUVVetnvOhJD+S5NbVx+YxAQAA2AL7BsXu/nSS393YfHeSh1e3H07ynrXtj3T3N7v7+STn\nk9xRVdcl+b7ufrK7O8nH1p4DAADAFjnsVU+v7e6XVre/muTa1e3rkzy5tt+F1bZ/vrq9uf2iqure\nJPcmyU033XTIJQIAAByMM+OmI1/MZjUh7GNYy/oxz3X3me4+c8011xznoQEAANjHYYPi11Z10qw+\nv7za/mKSG9f2u2G17cXV7c3tAAAAbJnDBsXHktyzun1Pkk+sbT9bVW+sqluyc9Gaz6xqqt+oqnes\nrnb6Q2vPAQAAOFEnfWXTbbvq6b7nKFbVx5O8M8nVVXUhyQeT/FSSR6vq/Um+nOS9SdLdz1TVo0me\nTfJqkvu6+1urQ/1odq6g+qYkn1x9AAAAsGX2DYrd/b5dHrpzl/0fTPLgRbY/leRtl7Q6AAAAXneH\nveopAADAFcNVT6cjX/UUAACAK4ugCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMAiKAAAADM5RBAAA\nFq2qnKO4wUQRAACAQVAEAABgUD0FAAAWT/V0MlEE4LLxSxcATidBEYDLprtPegkAwCGongIAAIun\nBTOZKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAAAIPqKQAAsHiqp5OJIgAAAIOgCAAAwKB6\nCgAALFpVqZ5uMFEEAABgEBQBAAAYVE8BAIDFUz2dTBQBAAAYBEUAAAAG1VMAAGDxVE8nE0UAAAAG\nQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABgERQAAAAbnKAIA\nAItWVc5R3GCiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAADIIiAACweK9d+XQbPw6w9ruq\n6rmqOl9V9++yzzur6ter6pmq+r/2O6ZzFAEAAE6pqroqyc8m+feSXEjy2ap6rLufXdvn+5M8lOSu\n7v5KVf3R/Y5roggAAHB63ZHkfHd/qbt/P8kjSe7e2Oc/SvJL3f2VJOnul/c7qIkiAACweKf4qqfX\nJ3lh7f6FJH9mY59/Ncl3VdWvJvnDSf52d39sr4MKigAAANvt6qp6au3+ue4+dwnPf0OS25PcmeRN\nSf5+VT3Z3b+11xMAAADYXl/v7jO7PPZikhvX7t+w2rbuQpLf6e7fS/J7VfXpJG9PsmtQdI4iAACw\neCd9ZdMjXPX0s0lurapbquq7k5xN8tjGPp9I8ueq6g1V9T3ZqaZ+Ya+DmigCAACcUt39alX9WJJf\nTnJVko909zNV9YHV4x/u7i9U1d9N8ptJ/iDJz3X35/c6rqAIAABwinX340ke39j24Y37P53kpw96\nTEERAABYtIP+j+2XxDmKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKII\nAADAICgCAAAwqJ4CAACLp3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACDoAgAAMDg\nHEUAAGDRqso5ihtMFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAA\ngEFQBAAAYFA9BQAAFk/1dDJRBAAAYBAUAQAAGFRP4QRVVbr7pJcBALB4qqeTiSKcICERAIBtJCgC\nQPyXZABYp3oKADHhB1iyqvIfDDeYKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAAAIPqKQAA\nsHiqp5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMBwpKFbVf1FVz1TV56vq41X1h6rq\nLVX1qar64urzm9f2f6CqzlfVc1X1rqMvHwAA4Oiqams/TsKhg2JVXZ/kP0typrvfluSqJGeT3J/k\nie6+NckTq/upqttWj781yV1JHqqqq462fAAAAI7bUaunb0jypqp6Q5LvSfLbSe5O8vDq8YeTvGd1\n++4kj3T3N7v7+STnk9xxxNcHAADgmB06KHb3i0n+myRfSfJSkn/S3b+S5Nrufmm121eTXLu6fX2S\nF9YOcWG1DQAAgC1y6P89xurcw7uT3JLkHyf5n6vqL6/v091dVX2IY9+b5N4kuemmmw67RAAAgH2d\n5LmA2+oo1dN/N8nz3f1Kd//zJL+U5N9M8rWqui5JVp9fXu3/YpIb155/w2rbd+juc919prvPXHPN\nNUdYIgAAAJfqKEHxK0neUVXfUzvx+84kX0jyWJJ7Vvvck+QTq9uPJTlbVW+sqluS3JrkM0d4fQAA\nAC6DQ1dPu/vXquoXk/yDJK8m+YdJziX53iSPVtX7k3w5yXtX+z9TVY8meXa1/33d/a0jrh8AAODI\nVE+nQwfFJOnuDyb54Mbmb2Znunix/R9M8uBRXhMAAIDL66j/ewwAAACuMEeaKAIAAFwJVE8nE0UA\nAAAGQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEAgEWr\nKtXTDSaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAw\nqJ4CAACLp3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACDoAgAAMDgHEUAAGDRqso5\nihtMFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAAGIQmBEUAAGDo\n7pNeAidM9RQAAFg8U9TJRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEAgEWrKtXT\nDSaKAAAADIIiAAAAg+opAACweKqnk4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAwqJ4C\nAACLp3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACDoAgAAMDgHEUAAGDRqso5ihtM\nFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAAgEFQBAAAYFA9BQAA\nFk/1dDJRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg0apK9XSDiSIAAACDoAgA\nAMCgegoAACye6ulkoggAAMAgKAIAADCongIAAIunejqZKAIAADAIigAAAAyqpwAAwOKpnk4migAA\nAAyCIgAAAIPqKQAAsHiqp5OJIgAAAIOgCAAAwCAoAgAAMDhHEQAAWLSqco7iBhNFAAAABkERAAAY\nTNdQPQUAAIbuPuklvO6E48lEEQAAgEFQBAAAYFA9BQAAFk/1dDJRBAAAYBAUAQAAGI4UFKvq+6vq\nF6vqH1XVF6rq36iqt1TVp6rqi6vPb17b/4GqOl9Vz1XVu46+fAAAgKOrqq39OMDa71plrPNVdf8e\n+/3pqnq1qv7D/Y551Ini307yd7v7TyR5e5IvJLk/yRPdfWuSJ1b3U1W3JTmb5K1J7kryUFVddcTX\nBwAAWKxVpvrZJO9OcluS962y18X2+6+T/MpBjnvooFhVfyTJv5Xk55Oku3+/u/9xkruTPLza7eEk\n71ndvjvJI939ze5+Psn5JHcc9vUBAADIHUnOd/eXuvv3kzySney16T9N8neSvHyQgx7lqqe3JHkl\nyf9YVW9P8nSSH09ybXe/tNrnq0muXd2+PsmTa8+/sNoGAABwok7xVU+vT/LC2v0LSf7M+g5VdX2S\n/yDJn0/ypw9y0KNUT9+Q5AeSfKi7/1SS38uqZvqa7u4kfakHrqp7q+qpqnrqlVdeOcISAQAATr2r\nX8tHq497L/H5fyvJT3b3Hxz0CUeZKF5IcqG7f211/xezExS/VlXXdfdLVXVdvj3afDHJjWvPv2G1\n7Tt097kk55LkzJkzlxw0AQAAriBf7+4zuzx2kJx1Jskjq6np1Ul+sKpe7e7/dbcXPPREsbu/muSF\nqvrjq013Jnk2yWNJ7lltuyfJJ1a3H0tytqreWFW3JLk1yWcO+/oAAADH4aSvanrEq55+NsmtVXVL\nVX13di4g+tj6Dt19S3ff3N03Z2fA96N7hcTkaBPFZOeEyF9YLehLSX44O+Hz0ap6f5IvJ3nvanHP\nVNWj2QmTrya5r7u/dcTXBwAAWKzufrWqfizJLye5KslHVtnrA6vHP3yY4x4pKHb3r2dnjLnpzl32\nfzDJg0d5TQAAAL6tux9P8vjGtosGxO7+qwc55lEnigAAAKfeKb7q6WVxlKueAgAAcAUSFAEAABhU\nTwEAgMVTPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAAgEFQ\nBAAAYBAUAQAAGJyjCAAALFpVOUdxg4kiAAAAg6AIAADAoHoKAAAsnurpZKIIAADAICgCAAAwqJ4C\nAACLp3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALBoVaV6usFEEQAAgEFQ\nBAAAYFA9BQAAFk/1dDJRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRPJxNF\nAAAABkERAACAQfUUAABYPNXTyUQRXif+8uFK5OcaXn+n+X13mte+rTa/pq/dP+rX+rR+r07rureR\noAivk+4+6SXAsfNzDa+/0/y+O81r31abX9PX7h/1a31av1endd3bSPUUAABYtKoyjdxgoggAAMAg\nKAIAADAIigAAAAzOUQQAABbPOYqTiSIAAACDoAgAAMCgegoAACye6ulkoggAAMAgKAIAADCongIA\nAIunejqZKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAAAIPqKQAAsGhVpXq6wUQRAACAQVAE\nAABgUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIDFUz2dTBQBAAAYBEUAAAAG1VMAAGDxVE8nE0UA\nAAAGQREAAIBB9RQAAFg81dPJRBEAAIBBUAQAAGBQPQUAABatqlRPN5goAgAAMAiKAAAADIIiAACv\ni93qfZvb1AAP5qBfI19LDsM5igAAvC66+0Dbd9uP6aBfJ1/PgxGoJxNFAAAABkERAACAQfUUAABY\nPNXTyUQRAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIDFUz2dTBQBAAAYBEUAAAAG\n1VMAAGDRqkr1dIOJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAA\nMAiKAAAADKqnAADA4qmeTkeeKFbVVVX1D6vqf1/df0tVfaqqvrj6/Oa1fR+oqvNV9VxVveuorw0A\nAMDxO47q6Y8n+cLa/fuTPNHdtyZ5YnU/VXVbkrNJ3prkriQPVdVVx/D6AAAAHKMjBcWquiHJv5/k\n59Y2353k4dXth5O8Z237I939ze5+Psn5JHcc5fUBAACOQ1Vt7cdJOOpE8W8l+Ykkf7C27drufml1\n+6tJrl3dvj7JC2v7XVhtAwAAYIscOihW1V9M8nJ3P73bPt3dSfoQx763qp6qqqdeeeWVwy4RAACA\nQzjKVU//bJK/VFU/mOQPJfm+qvqfknytqq7r7peq6rokL6/2fzHJjWvPv2G17Tt097kk55LkzJkz\nlxw0AQAADuokK57b6tATxe5+oLtv6O6bs3ORmv+ju/9ykseS3LPa7Z4kn1jdfizJ2ap6Y1XdkuTW\nJJ859Mph5fMRAAAP2UlEQVQBAAC4LC7H/0fxp5I8WlXvT/LlJO9Nku5+pqoeTfJskleT3Nfd37oM\nrw8AAMARHEtQ7O5fTfKrq9u/k+TOXfZ7MMmDx/GaAAAAXB6XY6IIAABwqjhHcTrq/x4DAACAK4yg\nCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAADKqnAADA4qmeTiaK\nAAAADIIiAAAAg+opAACwaFWlerrBRBEAAIBBUAQAAGBQPQUAABZP9XQyUQQAAGAQFAEAABhUTwEA\ngMVTPZ1MFAEAABgERQAAAAbVUwAAYPFUTycTRQAAAAZBEQAAgEH1FAAAWDzV08lEEQAAgEFQBAAA\nYFA9BQAAFq2qVE83mCgCAAAwCIoAAAAMgiIAAACDcxQBAIDFc47iZKIIAADAICgCAAAwqJ4CAACL\np3o6mSgCAAAwCIoAAAAMqqcAAMDiqZ5OJooAAAAMgiIAAACD6ikAALB4qqeTiSIAAHBsBK4rg6AI\nAAAcm+4+6SVwDFRPAQCARasqk9ANJooAAACnWFXdVVXPVdX5qrr/Io//x1X1m1X1uar6e1X19v2O\nKSgCAACcUlV1VZKfTfLuJLcleV9V3bax2/NJ/u3u/teT/M0k5/Y7ruopAACweKe4enpHkvPd/aUk\nqapHktyd5NnXdujuv7e2/5NJbtjvoCaKAAAAp9f1SV5Yu39htW0370/yyf0OaqIIAACw3a6uqqfW\n7p/r7n3ro5uq6s9nJyj+uf32FRQBAIDF2/Lq6de7+8wuj72Y5Ma1+zestg1V9SeT/FySd3f37+z3\ngqqnAAAAp9dnk9xaVbdU1XcnOZvksfUdquqmJL+U5K90928d5KAmigAAAKdUd79aVT+W5JeTXJXk\nI939TFV9YPX4h5P8V0n+5SQPrSanr+4xoUwiKAIAAGx79XRP3f14ksc3tn147fZfS/LXLuWYqqcA\nAAAMgiIAAACD6ikAALB4p7l6ejmYKAIAADAIigAAAAyqpwAAwKJVlerpBhNFAAAABkERAACAQVAE\nAABgcI4iAACweM5RnEwUAQAAGARFAAAABtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXTyUQR\nAACAQVAEAABgUD0FAAAWT/V0MlEEAABgEBQBAAAYVE8BAIBFqyrV0w0migAAAAyCIgAAAIPqKQAA\nsHiqp5OJIgAAAIOgCAAAwKB6CgAALJ7q6WSiCAAAwCAoAgAAMKieAgAAi6d6OpkoAgAAMAiKAAAA\nDKqnAADA4qmeTiaKAAAADIIiAAAAg+opAACwaFWlerrBRBEAAIBBUAQAAGAQFAEAABicowgAACye\ncxQnE0UAAAAGQREAAIBB9RQAAFg81dPp0BPFqrqxqv7Pqnq2qp6pqh9fbX9LVX2qqr64+vzmtec8\nUFXnq+q5qnrXcfwBAAAAOF5HqZ6+muSvd/dtSd6R5L6qui3J/Ume6O5bkzyxup/VY2eTvDXJXUke\nqqqrjrJ4AAAAjt+hq6fd/VKSl1a3/7+q+kKS65PcneSdq90eTvKrSX5ytf2R7v5mkuer6nySO5L8\n/cOuAQAA4Dionk7HcjGbqro5yZ9K8mtJrl2FyCT5apJrV7evT/LC2tMurLYBAACwRY4cFKvqe5P8\nnST/eXd/Y/2x7u4kfYhj3ltVT1XVU6+88spRlwgAAMAlOFJQrKrvyk5I/IXu/qXV5q9V1XWrx69L\n8vJq+4tJblx7+g2rbd+hu89195nuPnPNNdccZYkAAAD7qqqt/TgJR7nqaSX5+SRf6O7/bu2hx5Lc\ns7p9T5JPrG0/W1VvrKpbktya5DOHfX0AAAAuj6P8fxT/bJK/kuRzVfXrq21/I8lPJXm0qt6f5MtJ\n3psk3f1MVT2a5NnsXDH1vu7+1hFeHwAAgMvgKFc9/X+S7DYHvXOX5zyY5MHDviYAAMBxO8mK57Y6\nlqueAgAAcOUQFAEAABiOco4iAADAFUH1dDJRBAAAYBAUAQAAGFRPAQCAxVM9nUwUAQAAGARFAAAA\nBtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXTyUQRAACAQVAEAABgUD0FAAAWrapUTzeYKAIA\nADAIigAAAAyCIgAAAINzFAEAgMVzjuJkoggAAMAgKAIAADCongIAAIunejqZKAIAADAIigAAAAyq\npwAAwOKpnk4milvED+fp5XsH28f7ktNg/efUzyzb7LT9fJ629W4jQXGLdPdJL4FD8r2D7eN9yWmw\n/nPqZ5Ztdtp+Pk/bereR6ikAALB4ppCTiSIAAACDoAgAAMCgegoAACxaVamebjBRBAAAYBAUAQAA\nGFRPAQCAxVM9nUwUAQAAGARFAAAABtVTAABg8VRPJxNFAAAABkERAACAQfUUAABYPNXTyUQRAACA\nQVAEAABgUD0FAAAWT/V0OtUTRd9MAIDTxb/ftpfvDetOdVDs7pNeAgAAl8C/37aX7w3rVE8BIDv/\nJd0/kgCWqapMVDec6okiABwXIREAvk1QBAAAYBAUAQAAGJyjCAAALJ5zFCcTRQAAAAZBEQAAgEH1\nFAAAWDzV08lEEQAAgEFQBAAAYFA9BQAAFk/1dDJRBAAAYBAUAQAAGFRPAQCARasq1dMNJooAAAAM\ngiIAAACD6ikAALB4qqeTiSIAAACDoAgAAMCgegoAACye6ulkoggAAMAgKAIAADCongIAAIunejqZ\nKAIAADAIigAAAAyqpwAAwOKpnk4migAAAAyCIgAAAIPqKQAAsGhVpXq6wUQRAACAQVAEAABgUD0F\nAAAWT/V0MlEEAABgEBQBAAAYtj4oPv300/vus9eY+LhGyNs+it729QEchL/LgCuVv984bbb+HMXb\nb7993326+1CPXYrjOs7lsu3rAzgIf5cBVyp/v20/YX7a+okiAAAAry9BEQAA+P/bu9tQy6o6juPf\nHzP5TFlIZjNDDjEUJoUmNiVEZA9jidOrmMg0i0TSshBixqDeBkUPghmDmkqiiBkNoY1iQa/GdDQf\nZswatPROmkaUkaBN/Xuxl7jPdMe5d3LO2eee7wcud6+1zzl33fPjnnv+Z6+9tjRi8FNPJUmSJOlg\nc+rpKI8oSpIkSZJGWChKkiRJkkY49VSSJEnSzHPq6SiPKEqSJEmSRlgoSpIkSZJGOPVUkiRJ0kxL\n4tTTvXhEUZIkSZI0wkJRkiRJkjTCqaeSJEmSZp5TT0d5RFGSJEmSNMJCUZIkSZI0wqmnkiRJkmae\nU09HeURRkiRJkjRi7IViknVJHkmyK8nGcf98SZIkSVpK9ldjpXNZ2/9AkpP395hjnXqaZBlwOfBB\nYA64O8mWqto5znFIkiRJUt+0Tj1dYI11BrCmfb0LuKJ936dxH1E8FdhVVY9W1QvAjcD6MY9BkiRJ\nkpaKhdRY64HrqrMNODrJcS/3oOMuFFcAT/Tac61PkiRJkrR4C6mxFl2HDXLV0yTnA+e35vNJHprk\neLQgxwB/mfQgtF/mNHxmNB3MaTqY03Qwp+mw1HJ6U7+xffv2rUmOmdRgFuCwJPf02puravPB/IHj\nLhR3A6t67ZWtb0T7pTcDJLmnqk4Zz/B0oMxpOpjT8JnRdDCn6WBO08GcpsNSz6mq1k16DP+HhdRY\nC6rD+sY99fRuYE2S1UkOATYAW8Y8BkmSJElaKhZSY20Bzmmrn64F/l5VT77cg471iGJV7UlyEbAV\nWAZcXVU7xjkGSZIkSVoq9lVjJbmg7f8BcCvwEWAX8Bxw3v4ed+znKFbVrXQDXaiDOvdWrxhzmg7m\nNHxmNB3MaTqY03Qwp+lgTgM2X43VCsQXtwu4cDGPme4+kiRJkiR1xn2OoiRJkiRp4AZbKCZZl+SR\nJLuSbJz0eGZZklVJfplkZ5IdSS5u/a9LckeS37fvr+3dZ1PL7pEkH57c6GdLkmVJ7kvys9Y2owFK\ncnSSm5P8NsnDSd5tVsOS5Mvt9e6hJDckOcyMJi/J1Ume7l8260BySfLOJA+2fZclybh/l6VsHzl9\ns73mPZDkJ0mO7u0zpwmYL6fevkuSVP9yEeY0ewZZKCZZBlwOnAGcAHwiyQmTHdVM2wNcUlUnAGuB\nC1seG4E7q2oNcGdr0/ZtAN4GrAO+3zLVwXcx8HCvbUbD9D3g51X1VuAddJmZ1UAkWQF8ETilqk6k\nWxhgA2Y0BNfQPcd9B5LLFcDngDXta5qXxR+ia/jf5/QO4MSqejvwO2ATmNOEXcM8z2mSVcCHgMd7\nfeY0gwZZKAKnAruq6tGqegG4EVg/4THNrKp6sqrubdv/oHtTu4Iuk2vbza4FPta21wM3VtXzVfUY\n3epKp4531LMnyUrgo8CVvW4zGpgkrwHeC1wFUFUvVNXfMKuhWQ4cnmQ5cATwJ8xo4qrqV8Bf9+pe\nVC5JjgNeXVXb2uIO1/Xuo1fAfDlV1e1Vtac1t9Fdww3MaWL28fcE8B3gK0B/IRNzmkFDLRRXAE/0\n2nOtTxOW5HjgJOAu4Nje9VeeAo5t2+Y3Gd+le2H/T6/PjIZnNfAM8MM2TfjKJEdiVoNRVbuBb9F9\nmv4k3bWmbseMhmqxuaxo23v3a3w+A9zWts1pQJKsB3ZX1f177TKnGTTUQlEDlOQo4MfAl6rq2f6+\n9imSS+hOSJIzgaeravu+bmNGg7EcOBm4oqpOAv5Jmyr3IrOarHaO23q6ov6NwJFJzu7fxoyGyVyG\nL8lX6U5puX7SY9GoJEcAlwJfm/RYNAxDLRR3A6t67ZWtTxOS5FV0ReL1VXVL6/5zm3JA+/506ze/\n8TsNOCvJH+imar8/yY8woyGaA+aq6q7WvpmucDSr4fgA8FhVPVNV/wJuAd6DGQ3VYnPZzUvTHvv9\nOsiSfBo4E/hkvXR9NnMajjfTfUB2f3s/sRK4N8kbMKeZNNRC8W5gTZLVSQ6hO3l2y4THNLPa6lVX\nAQ9X1bd7u7YA57btc4Gf9vo3JDk0yWq6E5t/Pa7xzqKq2lRVK6vqeLq/l19U1dmY0eBU1VPAE0ne\n0rpOB3ZiVkPyOLA2yRHt9e90unOzzWiYFpVLm6b6bJK1Ld9zevfRQZJkHd3pEWdV1XO9XeY0EFX1\nYFW9vqqOb+8n5oCT2/8tc5pByyc9gPlU1Z4kFwFb6Vabu7qqdkx4WLPsNOBTwINJftP6LgW+AdyU\n5LPAH4GPA1TVjiQ30b353QNcWFX/Hv+whRkN1ReA69sHYY8C59F9cGdWA1BVdyW5GbiX7jm/D9gM\nHIUZTVSSG4D3AcckmQO+zoG9zn2ebsXHw+nOlbsNvWL2kdMm4FDgjnb1hG1VdYE5Tc58OVXVVfPd\n1pxmU1468i9JkiRJ0nCnnkqSJEmSJsRCUZIkSZI0wkJRkiRJkjTCQlGSJEmSNMJCUZIkSZI0wkJR\nkiRJkjTCQlGSJEmSNMJCUZIkSZI04r/kJaL0nEIc8QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "convout1_1 output shape : (10, 300, 300)\n", + "convout1_1 output shape : (300, 300, 10)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAFfCAYAAAAWKAL+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQHOd55/nf2/eBRgMgQIiHSNEWJZvUrKQZhKSVPWtZ\nmrFkrWMpbzgcVITHWodjOTMh23LE7OxKDseIqxiN7XBYsR7bMgdhySYtWTJlXQxaEk3RFElYJAEQ\npCwQAEGAuPpCo9FH3fe7f3RVq6q7jqyqrHozK7+fCASqq7Iyn8p883jyffN9jbVWAAAAAIDoGXId\nAAAAAADADRJCAAAAAIgoEkIAAAAAiCgSQgAAAACIKBJCAAAAAIgoEkIAAAAAiChPCaExZo8x5u+M\nMWeMMaeNMf+zMWafMeZxY8yr5f/3Vk3/CWPMOWPMK8aY9/cufAAAAABAp7zWEP6xpO9Ya39C0lsl\nnZb0cUlPWGvvlPRE+W8ZY+6SdK+kuyV9QNJnjTHDfgcOAAAAAOhOy4TQGDMr6X+R9DlJstbmrLXr\nku6R9GB5sgclfaj8+h5JX7bWZq21FySdk/QOvwMHAAAAAHRnxMM0d0i6JukvjTFvlfSCpI9JOmit\nXSxPsyTpYPn1LZKeq/r+XPm9hvbv329vu+02DQ11/0hjNpvV+Pj41t/FYlHDwz+qoLTWyhjT9XKa\nKRQKGhnxsmq7l8/nNTo62pdldSsssV68eFFveMMbJNWWn3Q6rcnJyYbfs9bKWqv19XXt27evphyk\nUimNj49vzatYLEqScrmcisWiJiYmlM1mNT093Vasa2trmp6eVqFQ0PDwcE3Z70Yul9vaT0ql0o75\nWmuVy+U0Pj4ua60KhYKzbZtOp1UqlTQ8PKx8Pq+ZmZm60xWLRRUKBY2PjyudTmtiYqLjY0E8Ht9a\nTuWYkkqlVCwWNTQ0pMnJyR3Hs+3HourvVqytrWnPnj0yxiiXy2l4eFjDw8O6fPmyXv/61zeM11qr\ny5cv6+DBg1vldGJiQisrKxodHdXY2Jiy2exWTKVSSRsbGxobG9Pa2ppuv/12SfJc/tbW1jQ5OalY\nLCZrrfbt26dMJqOpqakdv7FdsVhsK7aJiQnNzs7WfF4sFpXJZLS4uKibb75ZhUJBu3fv7mqZnSoW\ni8pms1pZWdHevXt3lD1rrfL5vBKJhMbGxrS4uKjXve51KhaL2rNnT0fno5dfflnGGO3du1c33nij\n5ufnt8pMpUxXn3+stTp//rxuueUWFYtF7dq1a+t9L8tOpVKamppqOo21VrFYbMe2qpbL5TQ2NrZ1\nXKyU72w223L+jWw/33crk8loYmJiK9btSqWSjDEyxvTlWqKZfD4va23dOPuhVCptHU9anRu387ru\nKtujmUr5rD6mV47PhUJB6XRaxpitcl+5DllYWNCBAweUTCa1Z88eT3Enk0lNT09rbW1Ne/duPiVV\nOZd3e9yTNveRbDarsbGxhuW6cqzxY3mdqmy/Ztsnn89reHhYQ0NDWlhY0MGDB7euEzq51q9cKxUK\nBc3MzCgWi2n37t015XC71dVV7d27V4lEQmfPnl2x1h6ofGaMsW0H0T+PWWs/0O+FeslaRiT9S0m/\naa193hjzxyo3D62w1tp2V64x5j5J90nSbbfdphMnTrTzdQAAAABoyhhzyXUMbdjf7ENjzISkpyWN\nazNH+ztr7Se3TWO0+bjfByWlJP0f1tqmiZaXNH1O0py19vny33+nzQTxqjHmpvKCb5K0XP58XtLr\nq75/a/m9Gtbaw9baQ9baQwcOHNj+cU/kcrkd72WzWUmbd6WDqlQqeZqu3u+DG4VCoebvyl3ERjKZ\nTC/D6ZjXuFtN1w9BXYf9tv14Edb1ks/nPU0X1t8XVV63K9BLlWu/oGl1Lg1S3EGKpROV2v6g/fMg\nK+m91tq3SnqbpA8YY961bZqfl3Rn+d99kv681UxbJoTW2iVJV4wxby6/9T5JpyQ9Iukj5fc+Iumb\n5dePSLrXGDNujLmjHMzRVsvph3pNKyrV8q6aHHnhtXrdVdMR7LS9yXCr5h2tmsW44jVul81XKoK6\nDvtt+/EirOvFaxPksP6+qArDYwMYfH42NfZTq3NpkOIOUiydcJ34dZoQ2k2J8p+j5X/bW2neI+mh\n8rTPSdpTqcRrxOuDbr8p6YvGmDFJr0n6NW0mkw8bY35d0iVJv1wO9GVjzMPaTBoLkj5qrXVffQAA\nAAAg8lw+A9zCfmPM8aq/D1trD1dPUB694QVJb5T0Z1WtOCtukXSl6u9Kfy6LasBTQmitfUnSoTof\nva/B9J+W9Gkv80Z3+tmBjZ+qO+VAODXqeAHotbCWPY57cMVLBy0ItrBe7wVVgBPCFWttvZxrS7mi\n7W3GmD2Svm6MeYu19mQ3C+2+W084FdaDAxdF4RfGC3IMhrCWPY57cIVkMPzCer2H3ikPA/ikNsd9\nr+apP5dqJIQAAAAAIsH1c4LdPENojDlQrhmUMWZS0r+VdGbbZI9I+lWz6V2SNqqGCqyL2w0AAAAA\nIiPATUZbuUnSg+XnCIckPWytfdQY8x8kyVr7gKRvaXPIiXPaHHbi11rNlIQQAAAAQGSENSG01v6z\npLfXef+BqtdW0kfbmS8JIQAAAIDICGtC2Cs8QwgAAAAAEUUNIQAAAIDIoIawFgnhAGGcIbhSKpU0\nNESDAwAAEGxee/SMEhLCAUIyCFdIBgEAQFiQENYiIQQAAAAQGSSEtbitDwAAAAARRQ0hAAAAgMig\nhrAWCSEAAACAyCAhrEVCCAAAACAS6GV0JxJCAAAAAJFBQliLhBAAAABAZJAQ1qKXUQAAAACIqFDW\nEObzeY2OjroOAwD6huMeXCkUChoZCeXlAkIuk8loYmLCdRgYQNQQ1grlEZ6LIgBRw3EPrpAMwhWS\nQfQKCWEtjvIAAAAAIoFeRnciIQQAAAAQGSSEtehUBgAAAAAiihpCAAAAAJFBDWEtEkIAAAAAkUFC\nWIuEEAAAAEBkkBDWIiFE6JVKJQ0N8TgsgOhIJBLatWuX6zAQQblcTmNjY67DADpGL6M7DfRVdDab\nrfm7WCzW/L/9tbQ5+HPQpNNpFQqFup+VSqWt17lcrl8hdaQ61vn5eUndre9EIlEzj3g83vI7QV9H\nQbN9/xgU1WUxSMtstJ83er/VtLFYrO40lX0lnU4rFot1tB8WCoW24mp33hsbGw0/z+VyymQyPVl2\nJxqtZ2kz1mKxqMXFRZ05c0axWEyrq6sdL+vZZ5/VyZMnt5LBI0eO1Hxe7zgYpHUVxHPsdoN63PNL\nJRn0sv8nk8mW0zSaj7W2vcDKWh1rc7lcx+eAXh3zpNa/N2j7TrN1WIm18n8qlerp8tA90+kO56dD\nhw7Z48ePuw4DIcNdSgAA+iOTyTBQPJzo9nrPGPOCtfZQ5e+xsTF74MABX2Lz28LCQk2s/UKTUYRW\n5eBQLBY1PDzsOBoAAAYXySBc6cXNf5qM1iIhROiRDAIAAMArEsJaJIQAAAAAIoOEsNZAdyoDAAAA\nAGiMGkIAAAAAkcCwEzuRECL08vm8RkdHXYcBAH3DcQ+uFAoFjYxw+Yj+87OnWxLCWuzRCD0uiuAK\nPdzCFY57cIVkEK742dMtCWGt4fvvv991DDp8+PD99913X817H/vYx/TWt75VMzMzWlxc1OOPP66f\n/Mmf1OnTp9Vs7JDl5WWtrq7KWqvLly/r7/7u73To0CFtbGxoeXlZZ86c0ezsrDKZjBYWFhSLxfTB\nD35Qb3rTm3T+/HnlcjlNTk621cXtwsKCRkdH9ZWvfEXr6+sqFApKJBKanZ3teJ1I0lNPPaWlpSVd\nvHhRTz75pN72trc1nPb48eOanJzU5ORkV8vs1Pz8vM6dO6d0Oq0HH3xQ73rXu+pOF4/Htb6+vjWo\n8pkzZ7R///6Olrm0tKSrV69qYmJCo6OjOnPmjL7zne9oaGhI09PTWl1d3VqOtDkI9+/+7u9qZmZG\n+/bta3hB9Z//83/WW9/6Vu3atUvz8/N64okn9JM/+ZM6evSobrnllobxxGIx/eAHP9Ds7KxOnjyp\nI0eO6O6779bCwoKuXbum7373uxofH9fQ0JD+/u//Xrt379b73/9+3Xnnnbp27Zok6dVXX9XNN9/s\n6fdfunRJxhgVi0U9+uijun79uhKJhCRpenra62qs67nnntOLL76oubk5HTt2TG95y1t2TJPNZrW6\nuqoLFy5ocnJS4+PjXS2zU6+++qqOHDmiQqGghx56SO9+97vrTre0tKSFhQVZazU1NaWrV6/WlI92\nXLt2TRcuXNC+ffs0PDysc+fO6atf/aqGhoY0OTmptbU1zczMbE0fj8f1R3/0R0omk7rxxhsbrqsv\nfelLuvvuu2WMUSaT2brwOn78eMty8dxzz+n48eOy1uratWs6cOCA0um0fvCDHyiZTKpYLOqFF15Q\nPB7Xrl279Jd/+Zc6ePCgvvSlL8kYo1OnTunHfuzHPP3+I0eOaH5+XgcOHNCVK1e0tramS5cuaWxs\nrOtj0LVr1/Tkk0/qBz/4gc6cOaO77rprxzTJZFKXL1/W6Oios3InSUePHtXZs2f12muv6Wtf+1rD\nspfNZpXL5XTt2jXNzMx0VfauXr2q6elp5fN5DQ8P69vf/rZGRkZ07do1nT9/XtlsVnv37t2avlQq\n6YEHHtDtt9+utbU17d69u+58v/71r+t1r3udJicntbGxoddee00HDhzQ0tJSy1iXl5c1PT2tkydP\n6sqVK7r55puVSCR0/fp1Xbp0SaOjozp79uzWdJ/61Kd0++23a2FhQYVCQdevX9eePXs8/f54PK5U\nKqWxsTGdO3dOyWRS6XRaq6urXZ9zFxcXNTc3p/X1dZ0+fVq33XbbjmlyuZzi8bgWFha0a9cuZzeE\nVlZW9NprrymVSulrX/ua3v72t9edLh6Pa2NjQ0NDQxodHVUsFut4n0mn01pZWdHIyIhGR0d14cIF\nLS4uanh4WKVSSVevXq3ZBplMRl/84hc1Pj6u2dnZhuvqN3/zN/XOd75TU1NTmpub0/PPP68f//Ef\n11NPPaU3vOENTWP69re/rfn5eS0vL+vll1/Wj//4j2ttbU3Hjh3TlStXNDo6qn/6p3/SlStXNDY2\npg996EO6/fbb9eijj2psbExXrlxpel6v9r3vfU+Li4saGxvTN77xDaVSKb322msqlUo1+1wnjh49\nqi984Qu6ePGinnrqKb3zne/cMU06ndalS5e2rjldXe+9+OKLeu6553T06FF95jOf0S/+4i/WnW5t\nbU3Ly8sqlUqanJzUs88+q/3793d0M2txcVFXr17V+Pi4xsbGdOTIET377LMaGhrSlStXlEgkdMMN\nN2xNH4vF9LGPfUy7d+/WyMiIPvOZzyzef//9hyuf/9f/+l/v371791bT0SD9W19fr4m1XxiYHgAA\nAMBA2j4w/fj4uPV6I6DfLly44GRg+sD2MprL5eq+v7Gx0fW8/U6C0+m0r/NrRzKZdLbsoFtfX/d1\nfvF43Nf5+SEejzsrf432Ufhf9vL5fNfzKBaLPkTyI6VSyfff6RXHPf+lUqm67wdxP89kMs6Ox4VC\nwclywyCbzfo6Pz+2sd/nx1gsprW1NV/n6ZXLa82gy2QybX/HdU1go3+uBLYheKMmm902CZH8bzfs\nqtpe2rwokzZP5lNTU87iCCKvTZC8qm4CGBQuY6rso7lcrq0m1lHgd9nz43kxv5u2DQ0N+f47vao0\npaXs+afR+SOI63diYsLXZ4nakU6nNTMzo3Q67fTcH0R+N9/24/zm9zZq1OS6HyplPplMdv1YyKBp\n93jgOvkKosDWEFbz+66Tn3p597SS7DVTOWAGKRkM8vbqpXbvHHdyR6ua3zU+nc47iBeMrfhR4xZl\n3ZbdZrxsm8qFZxjLXi/3W/Re5ZwbxmQwiLW9/RTkaxMvx4VKAkMy6A/XNYHUEHbAZacBrfTygmRo\nKBT5+g5B3l691G7Pa93e4e5lZwaD3nMmPTR2p5e1M4O+bQZ930JwhfEGip+CfG3CcaH/qCGsFYqE\nEIMpm80G+gANAACAwUNCWCt0VVBeHqptNU29zytdWYdZ0B84ttbWxNjrZLBZs7bK8Az9Wl6r6YO+\n7cJue1OhXjUZrczX7/LVy+Ne2AV938nn8zUx9vo84+VRg3Z4ibfVNPU+z2QyoW8+G4Zrhn7EWNmO\nfne44+Wc2mqaXjZvdynovyuZTNbE2OtySEdj3WPYCQAAAAADafuwExMTE7bVGJeuvPLKK06GnfDU\nZNQYc1FSXFJRUsFae8gYs0/S30p6g6SLkn7ZWrtWnv4Tkn69PP1vWWsf8z1yAAAAAGiD6w5cgqid\nJqM/a619W1XW+nFJT1hr75T0RPlvGWPuknSvpLslfUDSZ40xzp+WjXrvWkGRy+V07do1pVKprpvt\nxWIx/fCHP9z6+/r1692GhwGXzWYVi8W6ns+RI0d09uxZHyJCp4LcY2Aji4uLXR/3Xn311Zq/g9DK\np56gN2mLikwmo5WVFV/GcF5cXKwpb0FtpjfI13thamady+VUKpWUSCS6jvvChQs6d+6cT5Ftct2b\naNB6GfXUZLRcQ3jIWrtS9d4rkt5jrV00xtwk6XvW2jeXawdlrf298nSPSbrfWvtso/nTZBQA0Il4\nPB7IMUIBAMGwvcno5OSk/bEf+zGXITV06tQpJ01GvdYQWknfNca8YIy5r/zeQWvtYvn1kqSD5de3\nSLpS9d258ns1jDH3GWOOG2OOX7t2rYPQAQBRRzIIAIgKY8zrjTFPGmNOGWNeNsZ8rM407zHGbBhj\nXir/+y+t5ut12ImfttbOG2NulPS4MeZM9YfWWmuMaavdirX2sKTD0mYNYTvfbUcul4v82DtBVSqV\nQjvWohepVEpTU1OuwwAQIIN+Thr04zqCK51Oa3Jy0nUYqCOfzwdujNkQP0NYkPSfrLUnjDEzkl4w\nxjxurT21bbpnrLW/4HWmno7a1tr58v/Lkr4u6R2Srpabiqr8/3J58nlJr6/6+q3l95xodOLtVbfz\n8G7QLxoGORksFouhfIYL4Rf2Z9MGORmUGh/Xw3a8qPc4TT6fD9UzXFHTKBkM2zEj6EPpdCJoyaAU\n3mcIrbWL1toT5ddxSadVpyVmu1pekRtjpssZqIwx05J+TtJJSY9I+kh5so9I+mb59SOS7jXGjBtj\n7pB0p6Sj3QbqtyAWTiAshoeHez6OJFDPxMSE6xDQgbAdL+pdmI2Ojmp42HkfeWhT2I4Z1HL2nuuk\nr0VCuL/ySF35331NfscbJL1d0vN1Pn63MeafjTHfNsbc3WqdeGkyelDS18tBjkj6G2vtd4wxxyQ9\nbIz5dUmXJP2yJFlrXzbGPCzplDarNT9qrQ3cLbUgVl8DiDY6SKm1sbGh2dlZ12HAB9lsNnRJIQZD\nJpMJVVIYtnjDKsBNRle8dCpjjNkl6auSfttau7379BOSbrPWJowxH5T0DW1W0DXUMiG01r4m6a11\n3r8u6X0NvvNpSZ9uNW+XSAbRSLFY5C4wnOC4VItksH96fZOUZBCuhC25Clu86D9jzKg2k8EvWmu/\ntv3z6gTRWvstY8xnjTH7q0eL2M5rpzJAZJAMwpVsNsvFAJzgZgRcoUYMLgS4hrApsxn45ySdttZ+\npsE0r5N0tdzp5zu0+Yhg08G6SQgBICCoEQMQNSSDcCGsCaGkn5L07yT90BjzUvm935F0myRZax+Q\n9EuS/qMxpiApLele22LgeRJCAAAAAJER1oTQWntEUtPgrbV/KulP25kvCSEAAACASPA6xEOUDPZA\ncEAHMpkM41TCCWst45zBmVwu5zoEAIAD1BDCF6VSaWAGmud5BrhijKFToxDJ5XIDNdD8IP0WAL0x\nKMO2UUNYi4QQvhiUZBAAvCKBAhA1g5AMSiSE25EQAgAAAIgMEsJaJIQ9wrg6iBLKO1yx1nJih5LJ\npKanp12HASAkOG/Uop1fj3BxjCihvMMVTuqQRDIIAF2ghhAAAABAJDDsxE4DX0O4vr7uOoS+obv6\nYOmk7GUymR5EAgD9kc1mXYeAiOrk/El5ja5KUhi0f64MfA3hnj17XIfQN3RXHyydlD2aXgIIs/Hx\ncdchIKI6OX9SXqOLGsJagU4IB2lsOwDwYtDGtgOAVgZlbDuEBwlhrUBnW71OBmliCResta5DQID1\nOhnc2Njo6fyBRih7aKTXySBNQ7Gd66ahQWsyGuiEsNdoYgkXuCsFl2ZnZ12HgIii7MEVmoYCzQW6\nySi8YQw4AAD6gzEPgXBzXRsXRCSEA4BkEACA/iAZBMKPhLBWZJqM8uwCXInH465D6DmezwimfD7v\nOgREVC6Xcx1Cz9EPQTBF4ZyL7rl+VjBozxBGpoaQZxfgyszMjOsQeo7nM4KJXvvgShR6yqUfgmCK\nwjkX3aOGsFZkaggBAAAAALUiU0MYdvF4nLteACIlm81S+wwnOOfCFWsttVd9wDquRQ1hSLQ6MaVS\nqT5FAtSKwrNCrfCsXm+0SgYpe6yDXml1zk2n032KBFHTKlFJJpN9imRwuX5OkGcI0TNTU1OuQ0BE\nReFZoVZ4Vs8Nyh7rwJXJyUnXISCi6OXWH9QQ1qKGcJtMJtP2d0qlUg8iaV8nsbN8f5VKpY7KQ7FY\nDEw5akdQasZKpVLft39QfrsXYSxbrQSpZqzfsQTpt0ub8fQzJnr3rOWll+co9gRdKBR8n6e11vd5\ndiII1zuSu7Lnx+93XRNIDWHAdTKm39BQMPJq1+MRRn35UudlIay91QWlZmxoaKjv2z8ov92LoByj\n/BSkmrF+xxKk3y71P56wHi97xctztlF8FndkxP9L3KDUKgXhekdyV/aC8vsHCQkhsE2pVBrIC+he\nyefzoUqOMDgKhUJPLvqiiP0YCAeuUfwRlOQ+KDiTAttwoG0PF5FwhWTQP+zHQDhwjeIPEsJanE0B\nAAAARILr5/WCiIRwABSLRZ6pAACgD9LpNL2MwgnKnn9ICGtR7zwASAYBAOgPLsjhCmUPvUJC6IOg\ndQGO6EilUq5DQIT1olt3r4LS/XsQRG1dlEolp+fdKA7h0EjU1kU6nXb6m4My3EQQdLsuXA8vwbAT\nAyhoXYAjOqamplyHgAhz2akLzX1+JGrrYmhoyOl5N4pDODQStXXhuoaO4RZ+pNt1EbXjZiuBqSFM\np9OuQ0DIdTr4NnfcAIRVpzVlGxsbPkcCAP2Rz+e7nofrmkBqCBtwfdcF4ddpV8zccQMQVp3WlM3O\nzvocCQD0R7fD5LhOvoIoMDWE28Xj8Zq/r127png8vuP97ZaXl7W+vr71umJ1dVUrKys188tkMspm\ns1t3Gjq901ppT57NZpXNZjU/P9/RfLpZdqe1Y36q1PI2eq6osv3i8bgvd3dWV1e1sLBQ815lm8fj\n8bpxXLt2TaVSSdevX/e8HK930hcWFnTlypWt2Cqy2axKpZLi8bjS6bQWFxd3TNOpyjOEqVRKqVTK\n1+dqWu1vq6urLffHfrt06VLd92OxmK/7yJkzZ5RIJGpaNly5ckULCwuKxWJ14+hkXbXTcuLatWs7\n3pufn1cikVAqldraN9bW1pRIJHzZB3sllUopmUw2/DyRSCiZTCqRSPQxqvoqx+CrV6/W/bxYLG69\n9mOdV455S0tLW+9duHBB1loVi8W6ccRiMSUSiabnpu3lM5PJeDrnSvWPZXNzc9rY2FA+n9/aToVC\noaZFRqetM3K5XM0/P1t5tNpGlWUFoe+AyrkpFovV/TwWi6lYLPp6nJ6bm6s5lq6vrysejysWi9WN\nY21tre1t1E7tdaVMV5dBa+3WeXb7fCv7Y6fbL5fLKZ1O96TsSc1/+8bGRmBq9ivrsVE/BplMZmvd\nVB8DO3Xy5EkVCoWaY/7Gxobm5uaUyWTqxnHx4kVJ/hx3o8AE4WH0Q4cO2ePHj7sOAwAAAMAAMca8\nYK09VPl7z5499l//63/tMqSGHn300ZpY+yUwTUYBAAAAoNdoMlorsE1GXXZnjnCgjKBdQWhi6Br7\nTW+wXhFUURsaop4gtIYbRK2Oe0Eue647j6FTGY9cdmeOcKCMoF27du1yHYJz7De9wXpFUEVtaIh6\nqA3qjVbHvSCXPcpELc5gAAAAACLBdW1cEAW2ySgAAAAAoLcCmxDW6yK+3e5919bW6s6jMu9KV7SV\n/7vplr5Xwz60mm+pVArEkBPVXHbx6/eyK+vX6zputPzqdvaVZxn82m65XM6Xbp3radSdeSX2oJS/\n6uFjwsTrcy1e1nG73ahXhkNptI3biakX5SAs27NQKCiXy7V8VsbPfbTddV2vnDUrL34MqbB9fVQP\n71Qdf6fd9rs47lSvlyAMO1HRal00GhqgE/WeGaseeqsTjfaNdp7LrZ5H5diWyWS2tlP1vCqvO1kv\n2+fjZzn0cowIwvm2HX4+W739txcKhaZlr9W6cv2sIM8QelRvkPF2BxDfu3dv03lUBras/N/pwObd\nfreb+fZqud3odsDQIC273fXbaPnV7ewrO7xf267Tgam92L17d933K7EHpfwF+TmFZrwe/L2s53bL\nQWWdNdrG7cTUi3Lg8jjSDq/PDg4PD/u2zHbXd71y1qy8+HFM2b5PVrbn9nm3e16vcHHsqY69l8fd\ndrVaF1NTU74tq155r2zrTo/DjfaNdp7LrZ5HJY7qslU9r8rrTtZLvfn4xcsxIijnXK/8XEfbf/vI\nyMjW/OuVvVbriiajtTyXLGPMsDHmRWPMo+W/9xljHjfGvFr+f2/VtJ8wxpwzxrxijHl/LwJHuPlx\n9z8sNQheBPGuXxBjaqZVvH7XolbXbHgpi0HubS2I2zqIMXXLjzKQzWbbrqkKag+oQaplq6jEFOT9\ntZrXdejH/jRo+2QQ94vqWi/0luuawKDVELZzq+Fjkk5X/f1xSU9Ya++U9ET5bxlj7pJ0r6S7JX1A\n0meNMf7dGsVA8OPuf1hqELwI4l2/IMbUTKt4/ayhkeq3NmgmyLWYQdzWQYypW36UgfHx8bZrqoLa\nA2qQatkqKjEFeX+t5nUd+rE/Ddo+GcT9YmRkJDRlL8xcJ32hTQiNMbdK+l8l/UXV2/dIerD8+kFJ\nH6p6/8tZxt2UAAAgAElEQVTW2qy19oKkc5Le4U+4AAAAABA9xpjXG2OeNMacMsa8bIz5WJ1pjDHm\nv5dba/6zMeZftpqv19sj/5+k/1vSTNV7B621i+XXS5IOll/fIum5qunmyu9tD/Y+SfdJ0m233eYx\nDAAAAADoXIifISxI+k/W2hPGmBlJLxhjHrfWnqqa5ucl3Vn+905Jf17+v6GWNYTGmF+QtGytfaHR\nNHazCzNv3eX96DuHrbWHrLWHDhw40M5XAQAAAKAjrpuGdtpk1Fq7aK09UX4d1+bjfNsr3u6R9JDd\n9JykPcaYm5rN10sN4U9J+t+MMR+UNCFptzHmC5KuGmNustYulheyXJ5+XtLrq75/a/k9p0ql0sC1\nfweAZnK5XCCf0wKAXsnn8wPVxwB6I8A1hPuNMcer/j5srT1cb0JjzBskvV3S89s+ukXSlaq/K601\nF9VAywzJWvsJa+2t1to3aLOzmH+01v6KpEckfaQ82UckfbP8+hFJ9xpjxo0xd2izuvJoq+X0Gskg\nXOl0nC2gWySDAKJm0HpDRW+4rglsUkO4UmlBWf7XKBncJemrkn7bWtvZgMJVusmSfl/SvzXGvCrp\n35T/lrX2ZUkPSzol6TuSPmqt7c2o2Qgta23Xg1lXhhEIehfNnY6zheDyewgLREMymVSpVPJlyBwu\netGOyjFrfX2943kEcZiQeuilMziy2awSiYRyuVxXZW9paUlSMIcKccEYM6rNZPCL1tqv1Zmk7daa\nbfW5a639nqTvlV9fl/S+BtN9WtKn25k3osWP7nUrwwhw8Ee/+T2EBaJhenpaEkMAoP8qx6w9e/Z0\nPA9aHKBd4+PjW9do3ZSf173udZL8GyrE9RAP3TCbgX9O0mlr7WcaTPaIpN8wxnxZm53JbFR1BFpX\n8AZhAQAAAIAeCWtCqM2+Xf6dpB8aY14qv/c7km6TJGvtA5K+JemD2hz6LyXp11rNlIQQAAAAQGSE\nNSG01h6R1DT48ugPH21nviSEAAAAACIjrAlhr/AQAgAAAABEVCQTwng87joERFQs1nXPwEBHisWi\nEomE6zAQQbFYLDQ9VGKwMOwTGnE9vESnA9P3SiSbjM7MzLgOARG1e/du1yEgooaHh7Vr1y7XYSCC\nOO7BFYZ9Qj2uk68gimRCCABBks/nNTo66joMAOibbDbLsFFwhoSwFgkhADhGMgggakgG4RIJYa1I\nPkMIAAAAAKCGEAAAAECEUENYi4QQAAAAQGSQENYiIQQAAAAQCfQyuhMJIQAAAIDIICGsRUKIgRSP\nxxlvEkCk0I0/XOGcC1estR0ldySEtSLdy2gsFnMdAnok6CemlZUV1yEgojKZjOsQ0CNBTwaLxaLr\nENAjQT/nXr9+3XUI6BESO39EuoZw9+7drkNARO3fv991CIioiYkJ1yEgooaHh12HgIi64YYbXIeA\ngCGRrBXphBAAAABAtJAQ1iIhBAAAABAJ9DK6EwkhAAAAgMggIawV6U5lAAAAACDKIp8QZrNZ1yEg\nolZXV12HgIhKJBKuQ0BE0cstXNnY2HAdAgKk0mw0aP9ciXyT0aB3043BtW/fPtchIKJ27drlOgRE\nFL3cwpXZ2VnXISBAaDJaK/IJIQAAAIDoICGsRUIIAAAAwFfZbDaQLfFcN88Mosg/QwgAAADAX0FM\nBlEfNYQAAAAAIoMawlokhAAAAAAig4SwFgkhAAAAgMggIaxFQggAAAAgMkgIa9GpDAAAAABEFDWE\nAAAAACKBYSd2CmwNYTwer/t+Op32PI/19XVP82x3vkESj8eVz+ddh6FcLqdcLqeVlRXlcjlncWQy\nmZbT5HK5jtaZl3l3olfz7Ydiseg6BEnBWIexWKzlNJlMpuk6y2azfobUs3m6FrTf5PKY55dG58eN\njQ3P81hZWfE0z3bnGyRBOeemUiklEgktLS0plUo5i6NQKLScJpFINF1n1tqu40gkEr7PM2istZ7W\nN2o1WmeVpDBo/1wJbA3hzMxM3fcnJyc9z2PPnj2e5tnufIOk2W/qp7GxMUnS/v37ncYxMTHRcppK\nrL2Yd5Dm2w/Dw8OuQ5AUjHW4e/fultO0irMXYzYN4jhQQftNnR5TgqTRuWR2dtbzPLYf/5udn9qZ\nb5AE5Zw7NTUlSdq1a5fTOEZGWl9GtorRj4vg7csYxNofY4yn9Y1ajdbZIJaRbgS2htCVINQ0DKrq\nu5i9WM+rq6u+zxPwollNCIDGksmk6xAGVvVxqRfrmXMuGul1LbofNaWuawKDVkNIQrhNEGoaOhX0\nJhKVO5pSb9bzvn37fJ8nBk8+n1epVPJtfqVSqeNaAz/jiKqgNFv2otK0lO3+I9PT065DGFjVx6Xp\n6WlfmzbncjlP59x6zbtp9ti9oD/mNDo6uuM9P7e7l5rSVo8WuE78gpYQUvc8QKj+Blqrd6LqxtBQ\n5/fVuvkuNgWl2bIXlaalbHe44GfTZq/zqte8m2aP3QvjY0793u5Be7Qg6DgrIRCCfrcLg2P7XUOa\ne6Jftt8hp6YQrvB4DFzx0gFbr7muBaSGEGggjHe7EE7b7xq67pQB0bH9DnmpVKK2EE6E+fEYhJuX\nDtj6gVZ1tUgIAQy0YrHYtFkhJwX0SiaTaXrh3U0Tqnw+73vzZwAIsmw261tTUM79tUgIAQy0MD1j\nhsHSy1oYkkEAUePnc4EkhLVoq4KBEabeBgGeXUQnisVizfNfPIcIAOhWYBLCet0ht3ro2ctD0X52\nsyz17uTrdb4uHwR3mXB5+d2d1gT1ariO6nEXge2qu4QPejfsfh9Hez3fQTY8PFxT89jJM4jVnXiF\n5RwZRa47W+vF8tPp9FbHXtUdfLU6X3o5n/odb6/G0vM6X5fXEC7LXiqV6svyXXceQ6cyDdTrwrhV\ncxsvzXH87GZZ6l134V7n6/JBcJdN73r5u3u1A1aPuwg0E/Ru2P0+jvZ6vmiuuhOvsJwjo8h1Z2u9\nWH71PKub/7U6X3o5n/odb6+aZXudr8trCJdlrx+/23XyFUQtj9zGmAljzFFjzA+MMS8bY/7f8vv7\njDGPG2NeLf+/t+o7nzDGnDPGvGKMeX8vfwAAAAAAeOW6JjCMNYRZSe+11iaMMaOSjhhjvi3pf5f0\nhLX2940xH5f0cUn/jzHmLkn3Srpb0s2SvmuMeZO1lge8AAAAADhFDWGtljWEdlOi/Odo+Z+VdI+k\nB8vvPyjpQ+XX90j6srU2a629IOmcpHf4GjUAAAAARIgx5vPGmGVjzMkGn7/HGLNhjHmp/O+/eJmv\npwdXjDHDkl6Q9EZJf2atfd4Yc9Bau1ieZEnSwfLrWyQ9V/X1ufJ7AAAAAOBUiGsI/0rSn0p6qMk0\nz1hrf6GdmXp6+ttaW7TWvk3SrZLeYYx5y7bPrTZrDT0zxtxnjDlujDl+7dq1utNUvz8/P69sNqv5\n+fl2FuNp+u9///ttzbOR6m7kV1ZWup7f9evXm35e3Tvcs88+2/XyXGj1G724fPny1rrw0pW/l2VW\n935WLQxDW7z22mt9XV6Uh0/48z//c1/n99RTT229np+f1+XLl1UoFHT48OGm3ysUCvqLv/gLbWxs\n1Lz/6KOPbu0fJ09u3kw8c+aMjh49qmeeeUZf+MIXdO7cOUna+tyLs2fPbr3+yle+4muPcC+88IKe\neeYZJRKJuvtbIrHZYOXrX/+6JH+Otd1YXl7W3/7t39b9rLJezpw5o6WlJa2trdUcWzpZb4899pj+\n4A/+QNLmunj44Yd1/vx5raysbG3L7TFcvXq1ZW+i1efbWCwmafN4l8/nmx73CoWCrly5UvezxcXN\ne8ZXr16VVNtr4tLS0tbvTyaTTWOrdvHixa3XV69ebXis7tT58+dbTvMP//APkqRTp075uuxOnD59\nuu77lXW7vLystbW1rfdLpZLi8XjH++znP//5rdfLy8tb+19lW9eLoZXf+Z3f2Xpd6fW78t1mPTCX\nSiVls1mdOnVK8Xi8pox/97vf1crKik6cOCFJunDhgiRpdXVVkvTqq6/qzJkzanT9Wc/c3JyOHz++\ndc144cIFX68JKsfg6vPAds8884wk6fd+7/d8W2675ubmVCgU9OUvf1nf+c53dnxe2WZXr17dWu+X\nLl3S+fPntba21lGv2idOnND/+B//Y2t//+u//mvdf//9kqSnn356x7W+l2W4flaw02cIrbVPS1pt\neyW2Wh/tdrlfrnpMSfo/Jb3HWrtojLlJ0vestW82xnyiHPDvlad/TNL91tqGGcuhQ4fs8ePHO/0N\nAAAAALCDMeYFa+2hyt+33HKL/ff//t+7DKmhT37yk5ckVd/pPGytrbkrbIx5g6RHrbU1FXTlz94j\n6WvabKE5L+n/sta+3Gq5XnoZPWCM2VN+PSnp30o6I+kRSR8pT/YRSd8sv35E0r3GmHFjzB2S7pR0\ntNVyemH7eEjNxkfK5/OhHROrEncQxn8K6zr0m5e71pWbMUEegy4MNaJort5Nv0qZSyQSgThu1NMq\nrsrnvRpHtB1BXYeuBWHb9NKg/74wq3cOrrxXaWUQRF7HKPS7ZjyKXNcENqkhXLHWHqr617yJ0E4n\nJN1mrf2fJP2JpG94+ZKXZwhvkvRg+TnCIUkPW2sfNcY8K+lhY8yvS7ok6ZclyVr7sjHmYUmnJBUk\nfdRVD6Pbx0NqNj5Sr8ab6YfKOFJBGP+JccU2VY+v1EilaUCQx6BzOfYk/FGvCUqlzO3atavf4XjW\n6nhW+TwIz4EE4dgbREHYNr006L8vzOqdgyvvBfm45/Va1Ms1BqLJWhurev0tY8xnjTH7rbVNn69o\neSVqrf1nSW+v8/51Se9r8J1PS/p0y6gBAAAAoI8G9YaOMeZ1kq5aa60x5h3arMxr2XlGcKsm4Ek6\nndbk5KTrMBBB+Xw+lDXruVyOmmw4EdZ9Bj9SLBZD2XKiVCpRkw1UCWtCaIz5kqT3SNpvjJmT9Elt\nDgkoa+0Dkn5J0n80xhQkpSXdaz20bychDDmSQbgS1gtbkkG4EtZ9Bj8SxmRQolkzsF1YE0Jr7Ydb\nfP6n2hyWoi0khAAAAAAiwesQD1HCLSMAAAAAiChqCAEAAABEBjWEtUgIAQAAAEQGCWEtEkIAAAAA\nkUFCWIuEEAAAAEBkkBDWIiEE0LVMJqOJiQnXYQAAMPCSyaSmp6ddhxFa9DK6E72MAugaySAAAP1B\nMgi/UUMIAAAAIDKoIaxFQggAAAAgMkgIa5EQAgAAAIgMEsJaJIQAAAAAIoOEsBadygAAAABARFFD\nCAAAACASGHZiJxJCAAAAAJFBQliLhBAAAABAZJAQ1iIhBAAADWUyGU1MTLgOAxFULBY1PDzsOgwM\nIBLCWnQqAwAAGiIZhCskg0B/UEMIAAAAIDKoIaxFQggAAAAgEuhldCcSQgAAAACRQUJYi4QQAAAA\nQGSQENaiUxkAAAAAiChqCAEAAABEBjWEtUgIAQAImXQ6rcnJSddhAEDf+DkmKglhrdA1GS2VSr5+\nr1gsdj3vXiqVSsrn8zVxVisUCn2OqLlm67ASa69izuVyNX/XW2fW2o7n32n5yOfzvkzTb0HcH5rx\nsg7j8Xjd1926evVqzd8rKyu+zbtble1YvT1TqZSrcDzL5/OeyuD2/T7I1tbWfJvXyMjm/Vwvvz+R\nSHS8HL/XbywW83V+fsvlciqVSp5+dzfnk37JZrOS6p8PO9VOmagsvxm/12OpVNqaZ6N5d3p+6/U2\nbxVXOp32NF0/eI3Br7KXTqe3kkEv82w2TaWX0SD+cyV0NYRDQ53lsI2+Vz3oaafz7qWhoaGmcVUu\nCoLCS6x+xbz9TtHY2FjN5/UGtO1mZ+u0fIyOjvoyTb8FcX9oxss6nJmZqfu6WwcPHqz5e//+/b7N\nu1uV7Vi9PaemplyF45nXfWL7fh9ke/fu9W1elfXj5ffv2rWr4+X4vX53797t6/z8Vvm9Xn53GGoY\nxsfHJfkzwHupVNLQ0FBbZaKy/Gb8Xo/Vx7pG8+70/Nbrbd4qrkqrgCCcn73G4EfZk1TTIsLLPFtN\nE4b9t5/clyigQ341GwCAsAlCDQGiJQhJCKItDLXyYRWs6iUAANASF+cAosbPWj1qCGuREAIAAACI\nDBLCWpFJCIvFom/tmAEgDKy1nPTgBGUPrhQKhcD1r4Dg4fhUKzJ7DMkggKjhhAdXKHtwhWQQrbju\n0TOI2GsAAAAARAYJYS2eSkfohWkcMgyWII4fCQC9RE+PcCUMY+iG1fD999/vOgYdPnz4/vvuu6/m\nvYceekhvetObNDo6qkuXLmnPnj2SpBdeeEE333xzw3mtrq7qzJkzstZqampKp06d0o033qh8Pq+L\nFy9qeHhYpVJJIyMjWllZ0dramp577jm9+uqrkjYHlC4UCp7Hbbp+/bqWl5c1Pj6ur3zlK5qentbQ\n0JCWl5c1Ozvb4RrZ9Oyzz+rs2bM6d+6cstmsDhw40HDaCxcuaM+ePc7ueJw+fVoLCws6c+aMVldX\nddNNNzWcNh6Pq1AoaGxsTFevXu14jKxMJqMrV65oampKo6Oj2tjYUCqV0unTp1UsFjU+Pl7TdGRt\nbU0PPfSQfuInfkKpVKrhsBWf+tSn9K53vUsjIyNaXl7W3Nyc9u/fr5MnT+rGG29sGM/CwoLW19d1\n6tQpXb9+XceOHdOb3/xmZTIZnTp1SleuXNHevXs1Nzen1157TYVCQffcc4/e+MY36sUXX9TY2Jis\ntTVj7TSTSqV07do1SdLf//3fa21tTfPz87r11lvbWIv1HTlyRPPz8zp//ryee+45veUtb9kxTSKR\n0OXLl7e2patm2SdPntTZs2c1NDSkw4cP693vfnfd6VZWVrS6uqqZmRkZY7SxsdHx0CVzc3NKp9Nb\nY6odP35cJ0+e1NramgqFghKJRM14a9lsVg888IBuuOEGjY2NNRzH68Mf/rDe+973anJyUvF4XKdO\nndJNN92kxx57TG984xubxvTwww/rmWee0fr6uo4fP667775bS0tLOnbsmI4dO6aRkRGdOHFCL774\nom666Sa9733v00//9E/rD/7gDzQ1NaWXXnpJb37zmz39/oceekiXLl3SDTfcoOPHj+v8+fM6evSo\n9u7d2/U4c+fOndMf/uEf6tSpU3r00Uf13ve+d8c0sVhML774otLptEqlkqanp7taZqeeeeYZPf74\n4zp27Jh+93d/V7/yK79Sd7qlpSWtra0pFotpdnZWTz75pO64446OlvnKK6/IGKOhoSGNjIzoq1/9\nqr75zW9qZmZGJ0+eVCqVqjlOFQoF/dZv/ZZyuZyGhoZ0ww031J3vn/zJn+jWW2/V7t27lUwm9cgj\nj+iuu+5qec6VNs9Vu3fv1j/90z/p+eef17/4F/9C6+vrGhsb02OPPabdu3fr+9//vi5evKiZmRn9\nwi/8gn7mZ35GjzzyiIaHh5XP5z2Xm2eeeUbJZFLGGD3//PPKZrN66qmnVCwWd4wH2q6TJ0/qkUce\n0fLyss6fP193n9vY2NCJEye0tLSk0dFRZ2VvZWVFzzzzjDY2NvQ3f/M3DY97c3Nz2tjY0NjYmEZH\nR/XEE0/opptu6mjs27W1NeXzeWWzWU1MTGhhYUH/+I//qMnJSU1PT+vcuXM7xmD9oz/6Iy0uLmrf\nvn0Nz/V/9Vd/pRtvvFEzMzNKJpN67LHH9OY3v1mXL19ueR118eJFTU5O6umnn9bZs2f1xje+UYlE\nQtZaHTt2THv37tXp06d1+fJljY+P6wMf+IB+7ud+TseOHZMxpunxeLvLly9rfX1dknTixAkVi0X9\n8Ic/VCqVanp95sXp06f1yiuvaH19XWfPntXtt9++Y5p4PK4zZ85ofn5eExMTnq8V/JbL5fT8888r\nl8vpc5/7nH7qp36q7nQLCwuKxWJb+/ZLL72kG264oaNrhVgspmw2K2utxsfHtbS0pKefflq7du3S\nxMRE3bL34IMPamlpSTfffLP+23/7b4v333//4cpnf/zHf3z/z/7szzofhL7ev2984xs1sfaLCcKd\nnkOHDtnjx4+7DgMAAADAADHGvGCtPVT5+4477rCf+tSnXIbU0K/+6q/WxNovoWsyGovFup6H30nw\n2tqar/NrRzqddrbsQdWoCaofZc9v2WzWWVzxeNzJcsMgm8129L1GTVAzmUw34UiSkslk1/OoVigU\ntLq66us8vfL7twySTs8JjcqeH020enGe6nQf65Yf++Kg8nu/9KPs9aJZv6vjT6FQcLLcMEgkEm1N\n77oWsNk/V0KXEHbbHEny/0HSvXv3+jq/dlSaDNCu2j+Nmo/4Ufb8Nj4+7iyu8fFxJ8sNg07XTaNm\nXJ02ba3md9O2kZER7du3z9d5elVZT1yc79RpM7JGZW9qaqqbcCR1HlMzro4/lX1xY2PDyfKDzO9j\njB9lr5Omsa24aiZceQSGm7E7dfLokevEj4SwA+3cXSyVSm3Nu9sOSdpdXq/4ceD0yyDVWrazfV3d\nse6FYrHYchqvz130k9ftFYY7re2Up3bLXrfHrV4+auAltkrZ8yNR9ovXbRCGshdkQXjMRVLXfQS4\nEJR110w7+0e/96VenuPbqcmcmZnpWRzt8roNBum6cFCFYtiJdu4uDg21l+N2e1Hb7vKiwNWDzr3Q\nzvYdpBqzsI7b6XV7hWGcqnbKU7tlr9vjVi/vYob1mOp1G4Sh7AUZXcV3Lgzrrp39o9/7Ui/P8b2o\nyewHr9sgiNeFYdgf+okzE5xJp9OBPEhg8JVKpdAmHgi3bDY7UDePAKCVQqEQuJthJIS1QndF5KXa\nudU01Z8P0jMoQa+STyQSNTH2qhaq0gy42XOVnTQV9vKdVtPU+3wQxlEMw2+ojrFXJ4JKk6ygNx+u\n7IeMo9h/vU4Gg34eqAjK4xbwT7POVjp57s1LGWk1TfXnXh6FCIug7z+VIYEqep18ddKPhutnBUP3\nDKEx5vXGmCeNMaeMMS8bYz5Wfn+fMeZxY8yr5f/3Vn3nE8aYc8aYV4wx7+/lD9iu3R4/K8+gZLPZ\ngUoOg2h7jUyvnkGrzLfZhVcny/bynVbT1Ps8aHfNOhHE5wmrxePxmhh7lbBV5uv3Rb+XxK3VNNWf\nV2rmw9pMqVoYktp+xtis1UUQksVKZyxDQ0OBv6gdNL26xqlsx2bngU6ee/PSg3araao/H6TO94LY\n63m1ycnJmhh7fQxs1o9GvXLvOukLZUIoqSDpP1lr75L0LkkfNcbcJenjkp6w1t4p6Yny3yp/dq+k\nuyV9QNJnjTG+VQW1amK4d+/eltPU+3x8fDxQHRR0IujNL6empvoaY1ieg6PpYu9tvxjp1b7eq/l6\nSdxaTTMIyV89YfhdQYkxCOeI6s5YOPb1V6+OT5Xt6Hc537NnT9fTVH8epM5YuuVl3bhWHaPL6+uw\nX9tvZ4z5vDFm2RhzssHnxhjz38sVc/9sjPmXXubb8mhsrV201p4ov45LOi3pFkn3SHqwPNmDkj5U\nfn2PpC9ba7PW2guSzkl6h5dgeonav2DIZDJbvVJ123wjmUzqxRdf3Po7DD2oDZpBaoLTjo2Njcj+\ndnTOr2PUysqKL/PppUGu/QvTvl/ZDtlstutamo2NDV29enXrb865/Re2Xorj8biWl5e7ns+FCxd2\nzLdbrmsCu6gh/CttVrg18vOS7iz/u0/Sn3uZaVtt1Ywxb5D0dknPSzporV0sf7Qk6WD59S2Snqv6\n2lz5ve3zuq8cqG677bZ2wujIoN0hqKdYLAa+Vqx6O3Qb6/T0tN7+9rdv/e2yqj2qKttwZWVF+/fv\ndxxN/4Sxy3m459cxKgz72iDX/gX9PFutsh38aMY+Oztbc+zjnNt/YXvEZGZmxpea2TvuuGPHfLsV\n1vJrrX26nI81co+kh+zmHZvnjDF7jDE3VeVsdXk+Yhtjdkn6qqTfttbWNF4uL7StW0XW2sPW2kPW\n2kMHDhxo56toIEwnKQyWMFygAgAASKGuIWzlFklXqv6uWzG3nadbDcaYUW0mg1+01n6t/PbVSsZp\njLlJUqVOeF7S66u+fmv5PSdyuVzgO7yIqiB2Q+ynVCrV9EFnAAAA9F+Aawj3G2OOV/192Fp7uNcL\n9dLLqJH0OUmnrbWfqfroEUkfKb/+iKRvVr1/rzFm3BhzhzbbsB71L+T2DHIyGKbnGOoZ5GRQat7r\nVZgM8rNACJ8w9CoKAJ1qdG0X9OGM4JuVSgvK8r92k8GOKua8XJH/lKR/J+mHxpiXyu/9jqTfl/Sw\nMebXJV2S9MuSZK192RjzsKRT2uyh9KPW2nBnLgFFE1H0wyA/C4TwCUqPnQDQC42u7Xo9hmmUuB7i\noccekfQbxpgvS3qnpI1Wzw9KHhJCa+0RSY3W2vsafOfTkj7dat7NhKGDFAymqHWQ0ko2m+VEBCfW\n1ta0d+/e1hMCANCGsCaExpgvSXqPNpuWzkn6pKRRSbLWPiDpW5I+qM1RHlKSfs3LfAe7zR7QAZLB\nWiSD/ZPP56kBq0IyCADohbAmhNbaD7f43Er6aLvzDWxCSO0gXKFGDK4kEgmSIAAAeiysCWGv8HAQ\nsA3JIFwhGQQAAP0W2BpCAAAAAPAbNYS1SAgBAAAARMKA9zLakcAmhJlMRhMTE67DQEQVCoWBHycR\nwZPL5TQ0NETZgxPWWi6S4EQ6ndbk5KTrMBAhHOtqBfaqg2QwXAYtgRqk34LwGBsbcx0CIowLJLhC\nMoh+43hXi6te+IIECgAAAGFAQliLXkYBAAAAIKKo1hkgPHcJafCa7yI8SqWShob6e58xl8vR1BYA\n0BZqCGtx1ThASAYh0XwX7vQ7GZR47hIA0B56Gd2JK0cAAAAAkUFCWItnCOvI5XKuQ8AAyGazrkNA\nRKXT6ba/UyqVehBJ74U17kGVTCZdh4CISiQSrkPoG2ut6xBCr1JLGLR/rpAQ1kETJPhhfHzcdQiI\nqE66cHfR3NMPYY17UE1PT7sOARG1a9cu1yH0DbVb8Fugm4wWi0UNDw+7DgMRRMcscCWZTHJRDScY\nmN2r8q8AABdkSURBVB5AVHCsqxXoK95eJoOpVEpTU1M9mz/CjWQQrvQ6GaQ3YjTS6wskEk4AQcGx\nqFZkr3pJBgFEEckgXOECDEAQuH5eL4gimxAC6B5Na+GKizEPAQCDgYSwFmdTAB0jGYQrJIMAAPgj\nMmfUWCzmOgREFGUPrmQyGdchIKJSqZTrEBBRUSh7DGvVPdfDSwRt2InI3N7fvXu36xAQUZQ9uMLz\ngnCF5/ThShTKHsNadY8mo7UikxACAAAAAAlhLRJCAE3lcjmNjY25DgMRRNkDAPjNdfPMIIrMM4SD\nLgpt5uEGF+RwpVXZ4xlJniVyZWNjw3UIiKh4PO46BOdyuZzrEAYONYQDIgpt5gGgGs9I8iyRK7Oz\ns65DQETNzMy4DsE5P25UU0NYayBrCIvFoorFYtvfC/sdh6DE7+WOdS/uagfl93cin893VNuRTCZ7\nEE37Otnf/FRZd6VSqeW0XqZpl+vfH0VBqhkrFAp9XV6Qfns3rLWuQ0DI5fN55fP5up81K1+pVKqj\n82c6nW77O34KynVOMpnU2tpaX5fp92933ZsovYz2wfDwcEffC3vTuKDE7+WOdS/uagfl93didHRU\no6OjbX9venq6B9G0r9N9zi+VmiIvY9P1Yvw6178/ioJUM9bv8TiD9Nu7wR16dKvZebNZ+eq0VdXk\n5GRH3/NLUK5zpqen+3794fdv5/hTK7A1hI3u+KC+QbljHAS9qEECvHB99xnRxTmkPVyj+IcWFnDB\ndU1g0GoIA5sQdlJbEmWDcsc4CHpRgwR44fruM6KLc0h7uEbxDy0sAPcGsskoAAAAAGznujYuiEgI\nB4C1loINIFKy2Sy1WnAik8nQwy2cKJVKtGLyCdfNtUgIBwCFGkDUkAzCFZJBuEIy6B+unWtRsnwQ\nlG6AET2pVMrp8vvd3X6QRXFd0BEJXKHswRWu+QaD685jgtapDDWEPghKN8CInk67zvZLv7vbD7Io\nrgtq6eAKZQ+ucM03GKghrEUNIQZGp11XB2Vwd4RXp7WDiUTC50gQNZ0evxgUHt3qtAwxzAQQPNG7\npY2B1WnX1UEZ3B3h1Wnt4K5du3yOBFHT6fGLu+PoVqdliGEm4Jrr5plBNHA1hIlEYmtg8aWlpa33\nM5mMMpnM1t+rq6tb01XuVlV/3o7KswzZbFbZbFaxWKyj+TTSarDqoAxm3eqZjlQqtXU32487hMvL\nyzu269ra2tay6rlw4YIk+b6Ntqu+cxqPxyX9qAxubGz4tpxKGS6VSluv/dLp/uBSo8Gi4/G473el\n6y1rdXVV8Xi87mf9euap+nhQXc4r27NXcfh9HGo18Hc+nw/Esa/fA5RXapWrjyPV57pG0un01vHP\ni3aOU5VnqrbXVi4tLe04jmxsbGyts26OWdXz9fN43uq45+fx2y9etr8f5XRubm7He9X7YLM4mm3r\n69ev1/wdj8d1/fr1He/X8+KLL+54r/qcW7kmKBaLW+/76erVq77NK5PJaH19veHn8Xhc6+vrgTg3\nV65xrl271nQ6L9vQiwsXLigWi2lxcXHrve9///tb5apRHJlMRsvLy3U/c/2sYNCeITRBaDZy6NAh\ne/z4cddhAAAAABggxpgXrLWHKn/fdddd9gtf+ILLkBr6V//qX9XE2i80GQUAAAAQGTQZrRXYJqP9\neOjY7yZ26K8wP5hO2UM9lAu00qsy0o+u9OmuP9zYftguCK0M4Y/A1hD246FjBvgMtzA/mE7ZQz2U\nC7TSqzLSj6706a4/3Nh+2C7MtWxhjr0XApsQAgAAAICfXHfgEkQkhAAAAAAig4SwVmDaJ21vh1w9\nYHOxWOz6ebFsNqtcLqdcLlfT9fD2+XaznEr7ej+f8Wg2cHUl1kKhEKrn6frV5rxe9/r1ts32eOo9\nJ9FuN8/V261UKm1to2bd5HezXipdinc6QHo9rZ4XyWazPPPWgNf1sn2/7WZ9ehlOIp1OeyrvroWt\nXPVrSJGK7duw1bGj3pAD/X72pxfrKOrPL/W73Plle3msPg7m83klk0klk0lP27dy/No+1FRl+IZ0\nOq1isahcLre1XGttx+vOWquNjQ2lUilZa5teo7WrWCzWHdpD2lwviURChUKh70Pd1FMoFPp+7tj+\nu1stv9W2cT28RNCGnWiZEBpjPm+MWTbGnKx6b58x5nFjzKvl//dWffYJY8w5Y8wrxpj3ew1k+0qo\nHrB5eHi46+fFxsfHNTY2prGxMc3MzNTMu1o3y6m0r/fzGY9mA1dXYh0ZGQnV83T9KvDj4+M73qu3\nbbbHU+85iYmJibaWXb3dhoaGtrbR5ORkw+90s15GR0cldT5Aej2tnhcZHx/nmbcGvK6X7fttN+uz\nXnnfbnJy0lN5dy1s5crLuvfT9m3Y6thROT608x2/9WIdRf0Of7/LnV+2l8fq4+Do6Kimp6c1PT3t\naftWjl9TU1M17+/Zs0fS5jFveHhYY2NjW8s1xnS87owxmp2d1dTUlIwxTa/R2jU8PKxbb7217mej\no6PatWuXRkZG6u7P/TYyMtL3c8f2391q+X5um6AxxnygnGedM8Z8vM7n7zHGbBhjXir/+y+t5unl\nrPtXkj6w7b2PS3rCWnunpCfKf8sYc5ekeyXdXf7OZ40xoclUgljLVokpLHcCW63DINZGoLmw1dY0\nEoS7qoAfqlsChOXcADdc16IGtXzm83nn62a7IMbUTKtz6vZa226tra1tvfZyLdmqxZTrmsBOawjL\nedWfSfp5SXdJ+nA5/9ruGWvt28r/PtVqvi0TQmvt05JWt719j6QHy68flPShqve/bK3NWmsvSDon\n6R2tlhEUQaxlq8QUljuBrdZhEGsj0FzYamsaCcJdVcAP1S0BwnJugBuua1GDWj5HR0edr5vtghhT\nM63Oqdtrbbu1d+9WY0RP15KtWky5Tvy6aDL6DknnrLWvWWtzkr6szfyrK51e6R201i6WXy9JOlh+\nfYukK1XTzZXf28EYc58x5rgx5vi1a9c6DAMAAAAAvHGd9HWZEHrNtd5tjPlnY8y3jTF3t5pp1w8c\nWWutMabtOm5r7WFJhyXp0KFD4akjBwAAABBaAa6N3W+MOV719+FyztSOE5Jus9YmjDEflPQNSXc2\n+0KnCeFVY8xN1tpFY8xNkpbL789Len3VdLeW3wMAAAAANLZirT3U5POWuZa1Nlb1+lvGmM8aY/Zb\na1cazbTTJqOPSPpI+fVHJH2z6v17jTHjxpg7tJmNHu1wGQAAAADgK9dNQ7toMnpM0p3GmDuMMWPa\n7MzzkW2/7XWmPDNjzDu0me9dbzbTljWExpgvSXqPNqsw5yR9UtLvS3rYGPPrki5J+mVJsta+bIx5\nWNIpSQVJH7XWBqLrzlwuR4cmACKlVCoNTKdAAAD4JcBNRpuy1haMMb8h6TFJw5I+X86//kP58wck\n/ZKk/2iMKUhKS7rXtujCtmVCaK39cIOP3tdg+k9L+nSr+fYbyWCwWGu73hkLhYKv4+5h8GWzWY2P\nj3dd/paXl3XjjTduzS+oSAaDo1AoaGNjQ7Ozs0omk5qdnXUdEiIimUxqaGhIk5OTWl9f3xqjr11B\nP94heEql0lbNVyaTaXtM514Ka0IobTYDlfStbe89UPX6TyX9aTvz5GoaTvixI5IMol2Vi5luy9+N\nN95YMz+glZGREd1www2SRDKIvpqent563WkyKHG8Q/uqb0oGLRkMc0LYC9w+BgAAAICIoooFAAAA\nQGRQQ1iLhBAAAABAZJAQ1iIhBAAAABAZJIS1IvkMYSqVch0CIioej7sOARGWTqddhwAAfZXJZFyH\ngAByPd5gF+MQ9kQkawinpqZch4CImpmZcR0CImxyctJ1CADQV0Hq3RLB4Dr5CqJI1hAC9cRiMdch\nIKJWV1ddh4CIymazrkNARCWTSdchACiLZA0hUM/u3btdh4CI2rdvn+sQEFGMLQdXqsdHBPqNGsJa\nJIQAAAAAIoOEsBYJIQAAAIDIICGsRUIIAAAAIDJICGvRqQwAAAAARBQ1hAAAAAAigWEndiIhBAAf\n5XI5jY2NuQ4DEUTZAwBvSAhrRbrJ6MLCgusQEFHxeNx1COiRoF+Ql0ol1yGgR4Je9gqFgusQAEDS\nj2oJg/bPlUjXEN58882uQ0BEzczMuA4BETU0FOn7gHBoZCTSlxwAAoQawlpcGQAAAABARHG7DgAA\nAEBkUENYi4QQAAAAQCS4fl4viEgIAQAAAEQGCWEtEkIAANAXGxsbmp2ddR0GIigej9OhG7aQENai\nUxkAANAXJINwhWQQaIwaQgAAAACRQQ1hLRJCAJGRzWY1Pj7uOgxEUKFQYBw+OJFMJjU9Pe06DERQ\nqVQK7Ni3JIS1ODsBiAySQbhCMghXSAbhSpCTQRLCWpyhAAAAAEQGCWEtEkIAAAAAkUFCWCuYdbkA\nAAAAgJ6jhhAAAABAZFBDWIuEEAAAAEAk0KnMTiSEAAAAACKDhLDWQD9DmEwmXYfQF8Vi0XUIgeF1\nmzdbZ7lcrqt515u20TzbnW+QNPtN/VSJIx6PByamTjWKP5FIeJ6HtdbTPNudb5Dkcjnl83nXYWzF\nEI/HAxFPK53EuL08+aVX842KfD6/dR5zWfZKpVLLaTq9Rmnne9lstifzxf/f3t3GyFXVcRz//tht\n2ZZFqdmI2DbSmEZTiQYkWCUxRnwoaqivTIkIopEQQdGQGIqJvjXR+ECCmAYQiARCEGNjQCBo4qsi\nFOShINqAwlYQqijWtm5n+/fFvUvvbnc7Mztz95yZ+/skm51778y5Z+Y/e/ece57ytX///p5eP9NK\nmNtPKkPdQtiUtXdGRkZSZyEbncb8WJ/Z8uXLe0p7vuculGa36ebkWO9pKc3k48QTT0yck94t9JmO\nj493nMbcfyjHilM36eYkl+/esmXLgMH57s3ktxt1FVB8d7431VguJq790sk6c4sto3Tzum7WmHWZ\naTisXLkydRaGylC3EFpe6r6L+eqrr9aaft1arVbqLDSCP+ejdXKX33rnz9mGib/PlsqBAwd6TiN1\nS2BuLYSuEA6R3LvgzL2L2c9uG9PT06xatart87rpVrLURkeHusE+G6k+55wLT53c5c/VIHW5HoRu\npda5fhRKU+hXWWGx143cyyqDYJCuJTNd/COi526eULz3FStW9JxO6opfbhVCl0CHyKB1welnt41O\n0+qmW4lZPw1ypStng9Tl2tef4dKPQmkKqcsKqc8/DFJ2E+5WtYt/P7p59uO9p6585cgVQktienra\n/fjNrFF83TOzppmamspm3HeVK4Sz+Za1JeFCkZk1zdzrnsezWir+7tlSmVsZzHn4RJO5hdAGXqvV\n8vg7M8vOgQMHjtmt0Nctq4u/e5ZKuzJZL8MnDh061Lfusm4hnM1XBBt4/sdmZjka1DFmNvj83bNU\n6iyT9XPspCuEs7kkbQPt8OHDPd1t2rt3LxMTE33MkZlZfWa6W3mSIltqEUGr1RqoCU1seLRr9e6W\nK4SzZf0fpd3UxJ1MXTw1NdWv7AD9XSphMemmnK45x3P3WiiamJjoyzTI8+l3unWN+fBYkjSqS6BU\nH7ebTjzFdON1Le3Qabopp1hPuVTNfO/7uOOO6/m6d/DgQfbt2wfMfn/trgUprhV1/d/pNN2U18eD\nBw8mO3er1Trq/JJ6rgxWx4/1u3xm/ZN6nN985+93ZTDXn1RqqxBK2iTpGUm7JV21yDR6Og5HD2bt\nVV2ToXSabsovy7Ceux/TIC9FunV1w3CX2zSqSxBUH7crcKW4O1/X0g6dppuyRSLlUhF1ve+xsTHG\nx8eB2e+v3bUgxbWirmt/p+mmvD6OjY0lO/fo6Ggt56/ezMhx5kkrpO6BkPr8TVTLJy5pBLgWOBfY\nAJwvaUMd5zIzMzMzM+tU6pbAXloI2zW6qXBNefxxSWe0S7OuW19nAbsj4tkyY7cDm4GnajqfmZmZ\nmZlZW4M6hrDS6PZRYBJ4SNL2iKjWsc4F1pc/7wOuK38vqK4K4Wrghcr2ZLuMmJmZmZmZ1W1QK4R0\n1ui2GbglisHSOySdJOmUiHhxoUSTdY6XdAlwSbm5T9I/gL2p8mMdmcAxyp1jlD/HaDA4TvlzjPLn\nGOWvCTF6W3Vj586d90rKdYr5MUkPV7a3RcS2ynYnjW7zPWc1sOQVwj3A2sr2mnLf68o39/oblPRw\nRJxZU36sDxyj/DlG+XOMBoPjlD/HKH+OUf6aGKOI2JQ6D7mpaxqfh4D1ktZJWg5sAbbXdC4zMzMz\nM7Nh17bRrcPnzFJLhTAiWsDlwL3A08AdEbGrjnOZmZmZmZk1QCeNbtuBC8vZRjcC/z7W+EGocQxh\nRNwN3N3FS7a1f4ol5hjlzzHKn2M0GByn/DlG+XOM8ucYDZCIaEmaaXQbAW6MiF2SLi2P/4Si/vUJ\nYDewH7i4XboqJqAxMzMzMzOzpqlrDKGZmZmZmZllzhVCMzMzMzOzhkpeIZS0SdIzknZLuip1fppK\n0lpJv5X0lKRdkq4o979J0v2S/lz+XlV5zdYybs9I+ni63DeLpBFJj0r6VbntGGWmXAT2Tkl/lPS0\npPc7TnmR9PXyWvekpNskjTlGaUm6UdLLkp6s7Os6JpLeK+mJ8tg1GuAVqHO0QJy+W17vHpf0C0kn\nVY45TktsvhhVjl0pKarr8DlGlrRCKGkEuBY4F9gAnC9pQ8o8NVgLuDIiNgAbgcvKWFwFPBAR64EH\nym3KY1uAdwGbgB+X8bT6XUExe+8Mxyg/PwJ+HRHvBN5DES/HKROSVgNfBc6MiNMoBuZvwTFK7SaK\nz7dqMTG5DvgSsL788Zpj/XUTR3+m9wOnRcS7gT8BW8FxSugm5vk8Ja0FPgY8X9nnGFnyFsKzgN0R\n8WxETAG3A5sT56mRIuLFiHikfPwfigLsaop43Fw+7Wbg0+XjzcDtEfG/iHiOYiajs5Y2180jaQ3w\nSeD6ym7HKCOS3gh8ELgBICKmIuJfOE65GQVWSBoFVgJ/wzFKKiJ+B/xzzu6uYiLpFOANEbEjilnz\nbqm8xvpgvjhFxH3lkmMAOyjWPQPHKYkF/pYAfgB8A6jOKOkYWfIK4Wrghcr2ZLnPEpJ0KnA68CBw\ncmXtkpeAk8vHjl0aP6S4mB+u7HOM8rIOeAX4adm193pJJ+A4ZSMi9gDfo7hL/iLFGk334RjlqNuY\nrC4fz91vS+cLwD3lY8cpE5I2A3si4rE5hxwjS14htMxIGgd+DnwtIl6rHivvEHmdkkQkfQp4OSJ2\nLvQcxygLo8AZwHURcTrwX8pubjMcp7TKcWibKSrvbwVOkHRB9TmOUX4ck/xJ+ibFEJRbU+fFjpC0\nErga+FbqvFieUlcI9wBrK9tryn2WgKRlFJXBWyPirnL338tuA5S/Xy73O3ZL72zgPEl/oehe/WFJ\nP8Mxys0kMBkRD5bbd1JUEB2nfHwEeC4iXomIQ8BdwAdwjHLUbUz2cKS7YnW/1UzS54FPAZ+NI4tc\nO055eDvFDbDHyjLEGuARSW/BMTLSVwgfAtZLWidpOcWg1u2J89RI5cxRNwBPR8T3K4e2AxeVjy8C\nflnZv0XS8ZLWUQw2/v1S5beJImJrRKyJiFMp/lZ+ExEX4BhlJSJeAl6Q9I5y1znAUzhOOXke2Chp\nZXntO4di3LRjlJ+uYlJ2L31N0sYythdWXmM1kbSJYjjDeRGxv3LIccpARDwREW+OiFPLMsQkcEb5\n/8oxMkZTnjwiWpIuB+6lmOXtxojYlTJPDXY28DngCUl/KPddDXwHuEPSF4G/Ap8BiIhdku6gKOi2\ngMsiYnrps204Rjn6CnBreaPrWeBiihtwjlMGIuJBSXcCj1B85o8C24BxHKNkJN0GfAiYkDQJfJvF\nXd++TDHL4gqKsWz3YH2zQJy2AscD95crE+yIiEsdpzTmi1FE3DDfcx0jA9CRVn0zMzMzMzNrktRd\nRs3MzMzMzCwRVwjNzMzMzMwayhVCMzMzMzOzhnKF0MzMzMzMrKFcITQzMzMzM2soVwjNzMzMzMwa\nyhVCMzMzMzOzhvo/pBlHp7U3b24AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAFbCAYAAAA9aqSfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3duO40Z6wPFPrT6f5ug5ODveAeIEi2ARJEi/QN4jDxLk\nLYIAuQoQIMgD5CJX2QSLOAusY7ez9qazO2vPydMz00e11DqfKOVilrKkFimSVcWqkv4/wPC0Wk19\nKhaL/FjFqsJwOBQAAAAAQDYrtgMAAAAAAJ+RVAEAAACAApIqAAAAAFBAUgUAAAAACkiqAAAAAEAB\nSRUAAAAAKCCpAgAAAAAFJFUAAAAAoICkCgAAAAAUrKZ58/3794dPnz41FAoQ7fXr13J5eVmIew/1\nE7ZQP+Ey6idclqR+ilBHYU/SOpoqqXr69KkcHh5mjypCp9ORjY2N0c9nZ2fy8OHDG+8rlUpy7949\nef/+vXz88cfa48hDtVqV/f196Xa7sr6+bjscbxwcHMx9j6n62Ww2ZXt7e/TzdH0VERkMBrKy8qHj\nt9FoyNrampP7t9frydramu0wEvPlOLFZP5Po9XoSBIFsbm5Kq9WSYrHoZLmOH0dxvx8Oh1IozD2/\nGUf9TK/f78vqavylx7x64DpX6qcv5ZikforYbUOnrwPq9brs7u5aiSXOrOuTWaa/jy2uluO0pHU0\nVVJlynQFmJVQiYjcu3dPRMTbhEpEZH9/X0TEixMxPphueGY1WOMnrp2dHeMxZeVTQiXCcaLL2tra\naN9vbW1ZjibavAvA8PcuXLCKUD+zmJdQicyvB65zpX76Xo4umb4OcDURSJJQidz8Pra4Wo5ZccQB\nAAAAgAKSqhydnZ3ZDiGz09NT2yHAsE6nYzuEzFqtlu0QgEj1et12CDCs3+/bDiGz6+tr2yEAsWq1\nmu0QEiGpylHUsEYfPHr0yHYIMCzpsAEXuTykDVi0IS64KcmwRlfdunXLdghArL29PdshJEJSBQAA\nAAAKSKoAAAAAQAFJFQAAAAAoIKkCAAAAAAUkVQAAAACggKQKAAAAABSQVAG4odFo2A4BAAAYUK1W\nbYewkEiqANyws7NjOwQAAGDA/v6+7RAWEkkVAAAAACggqQIAAAAABSRVAAAAAKCApAoAAAAAFJBU\nAQAAAIACkioAAAAAUEBSBQAAAAAKSKoAAAAAQAFJFQAASKXZbNoOAYjV7/dth4AlYzSpqlQqJjcP\nKOl2u7ZDAAAvbW5u2g4BiNVqtWyHgCVjNKm6ffu2yc0DStbX122HAABeWllhoAvctre3ZzsELBla\nRQAAAABQQFIFAAAAAApIqgAAAABAAUkVAAAAACggqQIAAAAABSRVAAB4ol6v2w4BALzVaDSMbZuk\nCgAAT+zu7toOAQC8tbOzY2zbTiRV19fXid5XKpVExO1FWzudju0QtAqCQEREnj17JiIiR0dHmbc1\nvRj03/3d343+XavV5Pj4+Mbf1Gq1zJ8nItJut2e+nrTOzYohrIfjd4zL5fLos87Pz6VUKmWqp1Hx\n6nB9fR1bnuPfR7XcdYkrw1KpJM1mU46OjuTFixdydHSU+S7+V199JT/72c/kV7/61ajOm9wXoajP\nSLNw+mAwmPj5/PxcRCb3YaVSGZVls9mU8/Pz0fdMw2SZVCqV2HpXq9VGdxjz2DdJxLX3V1dX0ul0\n5JtvvpF3797Jy5cvZTgcZvqcL774Qn7xi1/IZ599lmv9jDJd59I4PT0Vkcm7xYPBQJrN5o33uGQw\nGEij0ZBerzfz9ybvfmcV1x52Oh1t1yvj7VVUHc/S3qjo9/uJ3xu178b3dRAEo2PO1WvQfr8fWT9F\nJPZ3LhqvM2/evJFut5u5bWg2m9Lr9Sbq59u3byfeo+O6p5CmkT84OBgeHh4qfyiQ1sHBgRweHhbm\nvIf6CSuon3AZ9RMuS1I/f/8+6iisSFpHneipAgBXuHoXEhDJ/44/ACAZkioAGLO+vm47BCBSsVi0\nHQIAYAaSKiCFNM+6AHm7urqyHQIQ6eLiwnYIQKxyuWw7BHiMpApI4fbt27ZDACLdvXvXdghApI8+\n+sh2CECsO3fu2A4BHiOpAgAAAAAFJFUAAABQNj41PuCiNNPtp0VSBQAAAGXb29u2QwBira6uGtu2\nlqRKx4N94wt6VatVEZlcqCxqgoAXL14of3beXr58aXXa5ulFI7/99tvY95dKpdE+1hH3+Oe3Wq3Y\n9zabzcwLZup2eXk58fO8ux1BEMi7d+9SfYYri5r6Jly0T0f9dGFK9ZOTk7nvmT5uw/o4PVnFu3fv\n5Pr6erQosIjI2dlZ6ro2a9HFtPU7zvv37+cuvtjv92UwGFidVrzT6Uiz2ZROpzP3/KMrznBfTS9a\nfnZ2Jm/fvp25L3u9ngRBYGQh7ySL/4bn8VDUJCrh+6YXH0+zQLvID4uyj5tus1VMLxQ6S1guttuQ\nMI55i/tOn1tVF4ed3mdhr9Ws8ghfU12A+NWrV5n/ttPpyHfffTf6+ezsLPJ9Ih+Ow//4j/+Q58+f\ny/X19Y06Ps/19bW0223pdrvy29/+Vnq9XqJ6lUSpVJL379+LiMizZ8/mvt/2YtXj10/zziPjbZhK\ne1av1yfamfPzc/niiy+k1+vNLI8gCKTb7ab6TBb/hRdYvBIuo37CZdRPuIzFf+E664v/cscdaVFn\ngA9U796aononG+Yk6T1adLZ7iBCN+vkBi3e7S0f7YSyp2tzcjP192vV+XL3ICKV58M3H5CGP8p9X\nZ/KUtou52+3OHcoYp9lsOnPB6uOFiWr5uyL8DhsbG1q3m3aYyrSwbq6trekI5waf912S2FXLP4mV\nFfOPSJuahEB1iHc47MzUwt22h0qpSLLP8hhin0f9FHH3+ipMpkwt3u1z0urKPtPRfph7WmuOtOv9\n6L7I0C3Ng28uJQ9JuV7+uu3t7aV6v+rB6NLDvaYuTEzyMeZZtra2jGx3f39f6e9NJVMhU987D0li\nVy1/V5hqpwqFuaNqYt26dUtTJLPt7OwY3b5JSfaZavm7xNXrK1PJVCivpNUEV/dZFv7uBeQube8i\nkCcTD+QDAAAkQVKFxFwfgonl5lJvHzDN5yGOAGCbK49IxDGWVM2afjfLe0LjU6Oenp5632uS5rvb\nMj3O2tQQwHBfxpWJ7oc7k4zhzTrOt9VqeT2+WcSdMc5pmBrCMhgMpN1ue3dRPP5s3Pg0suP/Rn5M\nDnHsdrve79fXr1+LyM1puWFGns+JBUEQu19NLMaa5Jph3nvGy6jf74+ejazVakYXkM2DDxNmTD/f\nbeocH+5LHaNdjD1T9ejRIy3vCd2/fz/T37nKh+8wXYHTPgeXVLjduDLRPR45yRjerON8fX4+JOTj\nGGdTY8pXVla8LI/x58x2d3dn/huLYX193fvnCp8+fSoi5p+Pwgd5PidWLBZj96uJxViTXDPMe894\nGa2uro6ejUz7zLWLTD/jpcN0m2Zq0d5wuzr2q5PD/3zvhYrj292N58+fy3//93+LiHrv2j//8z9P\n/Ozbnf+Q771Qi2Y4HEqn09FSn8YXEPW1fi6yPGbR06ndbo9m9tTRkzS+UKipmfiQnY/PdbZaLXnx\n4oX2HsKvv/5a6/by5Nt1Whq+PcbRarXk5OREqtWq0vHV7Xbl5ORk4jpW5+L1IWuz/8Ux1SPiAlOZ\ntimffvqpfPrppyKi3rv2V3/1VxM/+9qj4/MsO4uoUChoG5p679690b99rZ+LzLdZ9MZ7OHXMoPij\nH/1o9G+eIXSPjz0YW1tb8od/+Ifat/tnf/Zn2reZF9+u09LwbSbnra0tLefi9fV1efz48cRrf/AH\nf6C83WlcHVpyfHxsOwQAAKCZD8+rYLn52KvqA5IqS548eWI7BAAAoJkPz6tgufnYq+oDZ5Kqs7Mz\n78Z6pvHy5ctcVi2HGUEQLPQzDKVSyftniHyf/UyF7/tunkajIefn57bDUMKd4cXl27N+s+Q5G6CL\nfJiuW8UitD8+7CNnkqqHDx/OHOvp49TOs3z88ccLtWr5sikWizOfYfAx0Zo1NOXevXveP0O0zLPa\n+b7v5lldXZUHDx7YDkMJd4YXl2/P+s2S52yALtLxzKMrZiUfe3t73t9882EfOZNURfFxKuNZFuV7\nYJKPD4szNAW+8e3hagCwJSr5WPSbby5QTqpMD9nzsaeKYX7uMDFl5jgfe6p8v1uFxeb7MD8AwHJS\nTqpMJxA+9vAwzM8dJqbMHOdjTxV3q9yxyM+RZuX7MD8AwHJSTqp8THoAwAUMawOA7Bh5AZc4/0wV\nAAAAMI2RF3AJSRUAAAAAKCCpwkIbDAYMD4CzfFh3AwAAzKecVJVKJR1xAEasrKwwhTicFQSBdLtd\n22EAkQaDge0QgFjLvPA73LKquoF79+7piAMwZn193XYIwExM9OOnIAiW5mbNygoDWuC2ZV743VfD\n4XAhZ8qmtQQAIIVlSagAwIRFTKhESKoAAAAAQAlJlSU8i4YkGCsOl9VqNSuf2263rXwu/NJoNGyH\nAMRisqLFQlJlCc+iIQnGisNle3t7Vj6XZ9GQxM7Oju0QgFhra2u2Q4BGJFWAQUznDgAAsPicSaoY\nzoFF5Otq70zz7Zdlm/Y6CALbISCFZauf8A/nPOjgTFLFcA7AHUxD75dlm/aa2ff8smz1E/7hnAcd\ntLR0nU5Hx2YAI7gDBZdVq1XbIQCRhsOh7RAAwAtakqqNjQ0dmwGM4A4UXLa/v290+8yABhWm15Mh\naQOwKOiTB4AFxgxocNmiLgIKYPmQVAEYYagkXMYEFQAAV5FUARhhqCRcxgQVAABXOZlUMcYaLmPt\nKbjs/PzcdggAAIdxHWOGk0kVY6zhMl/XnsJyePDgge0QAAAO4zrGDCeTKgAAAADwBUkVsGTa7bbt\nEIBI1E8AgI9Iqiw4PT21HQKW2Obmpu0QgEjz6ifrbn3QbDZth4AZLi8vbYcAxLq6urIdghNM3MAj\nqbLg0aNHtkMAAC+x7tYH29vbtkPADPfv37cdAhDr7t27tkNwgokbzFaTqk6nI51OJ/L3lUol9m99\nFvfd8hCW32AwsBaD7TJQZWJNp2q1qn2bWfT7fdshWEcZuMe13pkk7afOmF37/ipsnnsAkQ/n8Ljz\neK1Wm/n6YDDIfP6v1+uZ/k4XV4ZXd7tdGQwGia7ldcZs+vuvGt36HBsbG7G/v337dua/dV3cd8tD\nWH4rK/byattloMrEmk77+/vat5nF6qrVpsEJlIF7XOudSdJ+6ozZte+vwua5BxCZfw7f29ub+frK\nykrm8//u7m6mv9PFleH/YfkluZbXGbPp76/cqkVl8ojmew+NT7gbCpfxfBBctkg9Y3kxMYIB0RhR\nkB5rwZqjnFRFZfKI5nsPjU+4GwqX8XwQXLZIPWN5MTGCAdEYUZAea8GawxUnAAAAACggqQIAAAAA\nBSRVAAAAAKBg6ZIqJomAy2xP/NLr9ax+vmsoDwAAkMTSJVVMEgGX2Z74ZW1tzernu4byAAAASSxd\nUgV3mFjA+fr6Wvs2sZxMTI1MTzl0MbFQOEtQQBdT03YzhTpcRlIFa0ws4Hzr1i3t28RyMjE1Mj3l\n0MXEQuEsQQFdTE3bzRTqcJnVFjR8XuEXv/jF6LUvv/xSqtWqDAYD+eabb0TkhzvGOhbKvLq6EhGR\nVqslIiJnZ2fK2xQRuby8TLQ9XZ+n6v379yLyQ9yzhHdCwzJT8dvf/la++OILKZVKUiqVRq8fHR2J\niEi5XJ75d//yL/8iImZ6tZIav3v7/Pnz0c9xzz9lrauDwcDYgrA+LTRbLpfnxhvuB51312fVs9PT\n08jfubA4ar1en/h5Ok6TMeo+Ludtr9Pp3Pi+rtJZNuVyedQLP95mv379eu5n1ev10flOVdz5Ylq7\n3RaR2aMHpuOZ3q5KnW02m9LpdOTt27eZtzEtCIK5MaUpmzw0m00JgiD2PbrK6PT0VL799tsbr9fr\ndTk/PxeRH+qqbicnJxM/l8tlOTk5ufH6LD//+c9nvh4EwUTZ9Pt9KZfLE9cpKufT8G9brZZcXFxk\n3s6s7cZtr1wuy8XFhTPXAmEcUfsqCAJtbVev15OjoyMplUry6tWr0ev/+q//KmdnZzIYDCKPh0aj\nkXjkSiFNF+3BwcHw8PAw8fsBXQ4ODuTw8DD21hf1E7ZQP+Ey6idclqR+/v591FFYkbSO0tcPAAAA\nAApIqgAAAABAAUkVcpkxLxxfv4iYcdCsuGfXKPv5mHHQrLhn+nSVvYmZKJPIY502Zhy0R2fZL/Ka\nfsw4aFbcM16+lT1JFXKZMW9zc9P4Z9jCjINmxa3dRdnPx4yDZsXNmKer7E3MRJlEHuu0MeOgPTrL\nfpHX9GPGQbN2dnYif+db2dOaAQAAAICC1EnVdFfcmzdvtAUzLuwODIf+jE8Ze3x8LIPBQHloRbfb\n1To0Jq4swvhbrZbV6cHHVSoV+f7773P9zLjhBrOmbk87pGB6NsvpYYeNRiP1dKKz6kj4OePfJ5yC\nPpx6N+uQnfDve72e1mE/84ZgJpmCN0/9ft/asKdZdJTNdPupMvxm1hTP0681Go1RXQ3LstvtOjnk\nysWY5plXJ8LppHWZLqNw30ZN9532+MljHwyHw9F/43GHsYZT5uuIRdf30TWtc97mze7s4zE3ff00\n3aZWq9XRsjzzhOfE8YW02+22tNtt6ff7E//vdruj5WCurq6k0+nEDk2PMhgMRlOzX19fZ9rGLL1e\nT/r9vnz33Xczf9/tdqVcLmu/rlA1rw3VVT6h6foT1oGo66O0jxik7leb7or75JNP0m4ikbA7MBz6\nM75Q7JMnT0REfWjF+vq61mEVcWURxr+1taXt81Tdvn0796FBccMN7t69e+O1tEMKphccnB52GNfN\nHGVWGYWfM/59wsU4t7e3RST7kJ3w73UPp5g3BDP8XFe41u1fLBaVtzH9nVSG38zaX9Ovjdf3sD7a\nGko2j4/DwObViQcPHmj9vOkyCtuhqGM37b7OYx+Mt9HjcYex7u7uaotF1/dx6bydxrwFeH085sav\nBUVutqlpFsUOz4njfzN+ngy3Hf7/3r17IvLDtcp0LEmsrKzInTt3RETv8PXweuGP/uiPZv5e9/Wu\nLvPa0Ljh/1lM77Nwf0ddH6XdR/4dUQ6rVCoLNSGD7u+SpYfO1/J06U7QuHBhTF/ElWN4l1vH4raz\ntuFSr51uviyg67ok5ajjQeus2/DtIe9QksV28+Zqmx4nSRumq372+/2FbjNnce34SrPurE90XAeG\nvY3j7UqSkVBpr5fcuhXsuUV7IFz35BJZ7ur4OsGFi3eERNzrjZonrhzD76LjO83aho6eKVeFvQFQ\nk6QcdfS4Zt2Ga729SRWLRefaKlfb9DhJ2jCb9dN3rn3veT2TvtJxHRhuY/w4TjIaKO11Kz1VAAAA\nAKCApAoAAAAAFJBUAQAAAIACkioAAAAAUEBSBaTk4yxQWB7UT7jMx7WRsFyYHRVZkVRhrrSLn0VJ\nu+iuq3ycBWqRlUolOT09VV5I9/j4WET8XegzRP10U6/XGy0emuVvF4WPayMtunDx26yLVV9fX3vf\nbo5jdlR3Zb2OzGu6f1o3zBUmVVkvCEREzs7O5P/+7/90hQSM3LlzR27fvi0rKyuZLz6LxeJoYcdF\nnkod+avX61Kv1yUIglEdS2ttbW100UpPJHQLF7/Nulj1zs7OaIFkeiKhW6VSGSX84wvap1EsFkc3\nD0z2RLo1yT6c9Mknn4iIZL4gEBF5+PChPHz4UFdIwMjKyspoDYok607MMr4WBT090EnXXe/wopX6\nCdeMr9dETyR007UGbHjzwGRPJLUfAAAAABSQVAEAAACAApIqAAAAAFDgfFJVqVRshwAAADS7urqy\nHQIAaON8UqXrATUAAOCOu3fv2g4BALRxPqkCslCZ/h0w7fT01HYIQKRms2k7BCCWrvUzAZ0yJ1U0\nunCZyvTvgGmPHj2yHQIQaXt723YIQKxwGQ3AJZmTKhpdAAAA5G18bUHAFQz/AwAAAAAFJFUAAAAA\noICkCgAAAAAUkFQBAAAAgAKSKgAAAABQQFIFKGJ5Abis1+vZDgGIxHpDcF0QBLZDgCe8SKp+/vOf\n2w4BiNTpdGyHAERaWfGimceSYnkWuK5YLNoOAZ7w4mz7l3/5l7ZDACLduXPHdghAJC4I4LK1tTXb\nIQCAFl4kVQAAAADgKpIqAAAAAFBAUgUAAAAACrxJqi4vL22HAABeqtfrtkMAYr1+/dp2CECkfr8v\n1WrVdhhwnDdJ1f37922HAABe2t3dtR0CEOvp06e2QwAira6uyv7+vu0w4DhvkioAAAAAcBFJFQAA\nAAAoIKkC4LVer2c7BAAAsORIqgB4jcVDAQCAbSRVAAAAAKCApAoAAAAAFJBUAQAAAIACkioAAAAA\nUEBSBQAAAAAKSKoAAAAAQIETSdXbt29vvHZ9fW0hEvPa7bbtEETkhzgGg4HVOI6PjxO9bzgcZtp+\nVHmnqV/VavXGa7VaLfVnus6VuMN9c319nbh++CqqzCuVSuJtzDqG447rTqeTeNsuabfb0u12bYch\nlUpFut2uVCoVKZVKtsNJJGv7GcXkecPX+umKcN/YPreLiARBMPc9ptYZ7Pf7id/bbDZvvNZoNHSG\ngzHhvun3+9av9eOu5bJY1bq1jH70ox/deO3WrVsWIjFvc3PTdggi8kMcKyt28+onT54kel+hUMi0\n/ajyTlO/9vf3b7y2t7eX+jNd50rc4b65devWwrYDoagyv337duJtzDqG447rjY2NxNt2iSv1M9w3\n6+vrliNJLmv7GcXkecPX+umKcN/YPreLiBSLxbnvMbXO4Opq8svb7e3tG6/t7OzoDAdjwn2zurpq\n/Rwfdy2Xhf2jDs4y3Uvwm9/8xuj2barX67ZDWBqUdXq6784hGmWdHr0E5oW9SKbKOkkvlc9M9bDh\nB2HbaaqsTVw7kFRZkqZr2pbxXqSrqyutwzI6nY78yZ/8ydz3XV1dafvMPO3u7toOYWns7u5aO4H7\neuGg++5c3mYNyXWV72Vtg++9BD4k0mEvkqmyTtJLlYULwxpFzPWw5cWHYbZh2xmWdbfb1bb/u92u\nkes0J4b/LaM0XdMuuHv3rtbtJR3ioftzsZhMncBd/dxlN2tILuAKEmlzXBjWuAh8HGarc8i1qeHb\n1E4kkubBeSBv0z2/vkwggOV0enpqOwQg0qyJGwCX2J7gIgpJFWaani0qzYPzgGnPnj2b+Hm65/fe\nvXuZt01CBlW/+tWvYn//6NGjzNsmIYOqy8vL2N/PmrghKRIy6PDmzZvY36tMcGEyISOpwkwmLyxp\ndKHqJz/5ibFtqyRkgIjIn//5nxvbtkpCBoiI3L9/39i2VRIyIGTyRr7JmWRJqjATjS4AAADyZvK5\nWZPPk6VKqnQvIIjlY3LxTqY4BbCogiDwdrZJLL7hcOjE4txAHNPLNWjpqZo3xWGSKRB9mggh6VSU\nNqf+tD3taNTnm1wwc21tbeZUtvNuBiS5WWBiitxWq6V9myLJE1ebN0ls36Cx8fnjx8T4vp/XniRt\nb0zVJ92SToduc8pf29MNz/r8YrFodLbJwWAwOg+PD9Ge154kbW98GfadtG2wmUDYTl5mfX6hUMh1\nQex2u+3FNuEW08s1pEqqolZlnzfFZZIpMH2aCCFp16HNqT9tTztq6/NnTWUbVW+T/j5qu6q2tra0\nb1MkeeKa5HubYvOzbX3++DExvu/ntSdJ2xtT9Um3pMM6bE75a3u6YRufv7KyMjoPjw/RnteeJG1v\nfBn2nbRtyDOBcOmzXfh8ETPPxZh81gbLgWeqAAAAAEABSRUAAAAAKCCpAgAAAAAFhTQPbBcKhQsR\n+d5cOECkHw+Hw4/i3kD9hEXUT7iM+gmXza2fItRRWJWsjtqehQsAAAAAfMbwPwAAAABQQFIFAAAA\nAApIqgAAAABAAUkVAAAAACggqQIAAAAABSRVAAAAAKBgNc2b79+/P3z69KmhUIBor1+/lsvLy0Lc\ne6ifsIX6CZdRP+GyJPVThDoKe5LW0VRJ1dOnT+Xw8DB7VAl1u11ZX1+feK3VasnW1pbxz1YVBIEU\ni8W57+t0OrKxsZFDRIvh4OBg7ntM1c9erydra2ujn9vttmxubt54X6PRkJ2dHSmXy7K9ve3k/p1X\nP8Pv0O/3ZXU1VfNghC/Hic36ORgMZGXlh0EHs9pPEZHhcCiFQkH6/b6IiBP7d9r0sRYl6hjMmyvH\nyTw262cSzWZTtre3Rz/X63XZ3d21Essi8aUck9RPkfzqqC/H9SzzzvG+nFNdk7SOOllrZl0Q+JBQ\niUiihEpEqNQemb7Ii7qY29nZERGRO3fuGI8pq3n1M/wOrpxQOE7mG0+oRGa3nyIihcKHm2yu7NtZ\nkiRUItHHYN5cLkufjCdUIuJFIuADyjEbn4/reed4zqlm8UwVAAAAACggqcpRt9u1HUJmzWbTdggw\nrN1u2w4hs0qlYjsEGOZz+zkYDGyHAETqdDq2Q0AOwqHfPmo0GrZDSISkKkdRw3J8MD08A4vHlSFV\nWdy+fdt2CDDM5/Zzeogm4BKGhC0Hn4c1ho8muI6WHgAAAAAUkFQBAAAAgAKSKgAAAABQQFIFAAAA\nAApIqgAAAABAAUkVAAAAACggqbLElzn3sZxYVwcAACA5kipLfJlzH8uJdXUAAACS48oJAAAAABSQ\nVAEAAACAApIqAAAAAFBAUgUAAAAACkiqAAAAAEABSRUAAAAAKCCpAgAAAAAFJFUAAAAAoMBoUtXp\ndExuHgAWVrfbtR0CEKnVatkOAYjVbrdth4AlYzSp2tjYMLl5QEm/37cdAhBpfX3ddghApK2tLdsh\nALE2Nzdth4Alw/A/LK3V1VXbIQAAAGABkFQBAAAAgAKSKgAAAABQQFIFAAAAAApIqgAAAABAAUkV\nAAAAACggqULugiCwHQIAeKler9sOAYhUq9VshwBYQ1KF3BWLRdshAICXdnd3bYcARNrb27MdAmCN\nclJ1dXU18/U0d9M6nc7Ez+/fvxeRyRXbT05OpFQqiYhIpVKR9+/fS6PRSBtuZLw61Ot1OT8/j1zF\nu9VqSblvkCbqAAAauUlEQVRcFhGR8/NzY3GkEcYzy+XlpVxcXMi//du/yc9+9jM5OjrKXH6fffaZ\n/PVf/7X80z/902g/fvbZZ6Pf12o1aTabN/7O1F2vLHUnFMbU6/VGrzWbTalWqzfe45JGoyH9fn9m\nOYtMfh9XdLvdRO/79a9/LSLZ7+JXq1Upl8sSBIEMBgMREXn58uXEe0y0HVFtxXA41P5ZOkTFq4Or\n31lVvV6Xfr+fuC7PEtZJk+U/y8nJyczXj4+PE29j+pj88ssvRWTyu3z++efy5s0bEflw3H355ZeZ\nzpFR8epwfHwsL168kLOzs5m/b7fb8vr1axEROTo6MhZHGnFxvHnzRr7++mv5+7//e/nbv/1b+fd/\n//fM1yX/8A//ID/+8Y/lb/7mb0Zt8T/+4z+Ofv/+/fuJ67nx11XpaDemr0FnGR9ho3KutN3O2f78\ntPr9vgyHw1EbqNKOTguvRUWi92nafV1IU8AHBwfDw8PDVB8A6HBwcCCHh4eFOe+hfsIK6idcRv2E\ny5LUz9+/jzoKK5LWUYb/IXcqvUQAAMBNrozCAWwgqULudnZ2bIcAAAA0e/Dgge0QAGtIqoAUop5H\nAlxALzBcRv2E62Y9+wUkRVIFpLC9vW07BCASvcBwGfUTrtva2rIdAjxGUgUAAAAACkiqkLsk05cC\nAG7SOaUwoBvD5+A6k0tTkFQhdxsbG7ZDAAAvra+v2w4BiMTwObhuc3PT2La1J1VZF98MF0vt9/si\n8sMCZbrueoxP8xkuIqZzEbTr6+u57+n3+7kv3qgiXHTNZ19//fXM18N6Ns///u//isjkA9bj/w7r\nZ7PZlHq9Ll999dWNRWOTCHvvyuWyNBoN+Z//+Z/U24gTLsh4fX0tlUol9r3jixzaEC62d3JyIq1W\na+6+Co9nFYPBQOr1+sRCf41GQ87OzuTy8jLyb8YXfM7i8vJyIv5we99+++3cvw33aa1Wk8vLS/n+\n++9lMBjI2dmZlEolub6+ltPTU7m4uJByuTxa6PD4+FiOjo7k8vIyca9HvV6XZ8+eTeyL169fy/ff\nf5/4u87zX//1X/Ltt9+OFlCdNhgMpFKpSL1et9qOtttt+d3vfidv376V//zP/4w85w0GAwmCQLrd\n7uiYChe4TStsc5rN5qhNrlarUq1W5dWrV1KtVm9MotPv9+WXv/yllEol7cd00sXNv/nmmxuvjbef\n4XkzPMay7tdwYe5SqSTValVrvRT5YcHid+/ead2uCeE5ScfCukn1+/3IOqZ7XyR1cXEx9z3h/hwM\nBtLtdifqZnishefL8Wuher0ul5eXMhwOE9fZer0u7969m9jO5eWl1kXlS6WSnJ2dzb0edeG67uLi\nYnTumnceCoJgdO7RMVlYeM4N251utyvNZnPmvgwXOk96ncHiv/BC1sUrK5WK3L5922hsAIurwmVZ\n62etVpO9vT2jsQEqi/92Oh1Gv8C4hVj8l2dvlkfSnqO0ohKq8R6JrHT0kOSxTfhHR0+MiWPK1HGa\nhE+9/Hkz1W5EJVQ6RpDoaIMBkwmVzfbOBJ53M89aUpXkBDl+sARB4PQaQYt+gjBd/qurq8a2Pcva\n2lrs75MMb1lZ0X/4mNgm/BGexHWM+R4/pjqdjvKF93A4zP04HReWiQtDV8YlufDSUf5x8mo3wqGO\n856bSVIm89rgtJIMwc9K5xCtvGV9JMNXSW/GJ0kwxtu7Xq+nlGR1Oh2jN4aSfJ/wuHXt5m2SfaZa\n/nmxdoZMe9FQLBadXiNI9wnCNa6Xv24MeYENppIWHXdzC4W5Ix9y4UocoST7bFGGJ+3u7iZ6n43k\n+9atW8a2fffuXWPbNi3pPlsUSY+1tBNqqF7jmW4D0nwf127eJikbX66x3SpZOI3hN3BZ0ofnAQCT\nfOgFwHLzYfgiSRUSc23YDTCO3kUAyMbm0F4gCR+m6zeWVCUZx5t1rK/Lz1Yl5cM45/Ex6tVq1WiF\nrlQqsfvV9jTfs4zH22w2R9P2VyoVFujMwXidqNfrxso83O68qeh1SnJHLutdu8Fg4H0b6sMdy2mm\nyrzZbEqtVsv1OYmoZQbSvGf6eH3+/LmIfHi+wvcbeEnKx7bx9rPb7Ror83Ba8rwnHksysmbee8an\nWBeR0bIUjUbD+zbUh5FH0+28yTZU5Ob+zsLYrYkk43izjvVdhGd7fBjnPD5GfX9/3+hnzZv2vFgs\nGv38LMbr4fb29uhnpnDPx3idMHk8hYut5rlfk9zAyHqTY2Vlxfs21Ic7ltNMlbmNfXn//n3l90wv\nYvzpp5+KyGI8f5akfGwbbz9NLihdKBSsnBOTPLc/7z07OzsTP9+7d2/m6z4yuQCuLtPtvOk2VMd+\nZfhfzny8A1ev1+X6+lrpLkGtVpNerzexsKePd5tFbt5hhT3lcllOTk6kUqko9SSdnZ3JxcXFxJ2q\nJAvwusj3O6hxXOyxjtNqtaTdbkuj0VDuSTo9PVVebNoFPp4DF93h4aFST1K9XpdGozFakFxE5Ojo\nSEdoVixyG+rbdVev1xstaKzSk9TpdOT09HRiBFbWxdjjMIg2Z67NXJWEjl6A8HmXp0+fjl7z8W6z\niNm7ekjnzp07Wrbz8OHDG6/98R//sZZt5833Xqg4LvZYx9HZxj169Ejbtmzy8Ry46A4ODpT+PrxG\n+NM//dPRaz/96U+VtmnTIrehvl13ra2tzTw/p7WxsXGjDf3kk0+UtzuNnipLFvlOCPzn87osAGCT\nb70BAPQgqbJkke+EwH8+r8sCADb51hsAQA9nkqpFv7Pjw2xA8yz6Ppqn1+vZDsGYcrlsOwRli7x/\nkshz9re89Xq9ibHwgEt0zBpmmw+zwSG7Wq3GPs6BM0lV1J2dRRkm58NsQPMs+923WSt6L0r93N3d\n9T5p9mXFdVNWVpxpzrULgmBiNlIsBh8T5Vk3L1ZWVnKfMlw3H2aDs8HHRGTWuXxvb499nAPnJ6pg\nmBxctij1c21tbemTEriLi4HF5GOiPOvmxbLfcFxkPrY91Ed7nL+1uSg9AVhM1E+oWIQpsnXzsfcC\n2bCv4Tofe6p8jHlROJ9ULUpPAOww/ZwN9RMqmJ7/Jh97LxaV6SHB7Gu4zseeKh9jXhTOJ1WAin6/\nbzsEIBInP7hskZ/TAwDdaDGx0BhbDADZbGxs2A4BALxBUgUAAAAACpSTqiAIeFgfADIYDAYLvb4U\nAJjU7XYZ5g9nKCdVxWKRh/XhrEaj4f36IVhchUKBpApOq9frtkMAIq2vr8vqqvOrA2FJUBOXVL/f\nX4qGaGdnx3YIQKRCobAUxyH8tbu7azsEAPACz1QtKS7kAAAAAD1IqgAAAABAwdInVaYXNwRUmF68\nOEqj0bDyuUASw+HQdgjwQLvdth0CgCWy9EkV6xjBZWtra1Y+l2fR4LJCoWA7BHiAxbUB5Mn7pIrp\n3AEgG2YeBIDsmM4d47xPqnydzp3hVQBsW1nx/hQAOOf8/Nx2CMgJk35hHGdUSxheBQDA4nnw4IHt\nEABYoCWpCoJAx2YAYOmwODUAZGdrQidgmpakqlgs6thMJMaswmXMRAYVGxsbRrd/fX1tdPuAiuPj\nY9shwHOmJ3TixheS8mL4H2NW4TJmIoPLbt26ZTsEINKTJ09shwDEMn3jC4vDi6RqkTBBBQAAi4cJ\nKoDlRlKVMyaoAABg8TBBBbDcSKoA3NBqtWyHgIx4hgqwi2dw/NZut22HAE+RVAG4YWtry3YIyIhn\nqAC7eAbHb5ubm7ZDgKdIqgAAAABAAUmVAVdXV7ZDAAAvMfQGLjs5ObEdAhCLZV7sIaky4O7du7G/\nr9frOUUCpMdF7Qc8F2HHvKE33W43p0jcRjnY8fjx49jfl0qlnCIBZpu3zAuzUJtDUmXB7u6u7RCA\nSIwn/4DnIty0vr5uOwQnUA5uunfvnu0QgFjMQm3O0iVVQRDYDkFERJrNpu0QrHO9DIIgiK0v/X4/\n9m995ErvTJry0xmzK9/fpMFgYDuEzFzqnRkMBonKUmfMLn3/eWq1mtRqtdR/NxwOM/2diF/lY1Kt\nVpPhcLgU7ZkNcef+eVwZmufCiJR+v2/1fGSiDFa1b9FxxWLRdggiIrK9vW07BOtcL4N5dWV1Nfrw\ncaWepeVK70ya8tMZsyvf36SVFX/vpbnUO5O0HHXG7NL3n2dvby/T3xUKhcx/61P5mBSW3zK0ZzbE\nnfvnmTc0Ly8ujEhRKUcdTJSBv2dXIAFfe4xs4u4mXKZylxjpuD6aAEB6Po9WcB1JFRaarz1GNnF3\nEy6zfXdzmbg+mgBAej6PVnAdJQsAAAAACkiqAAAAAEABSRUAAAAAKFi6pMqFaSSBKFmnEgaWgSvT\nEbuC8phkexKT6+trq5/vGsrjplarZfXzuQaepLs8li6pcmEaSSBK1qmEgWXgynTErqA8JtmexOTW\nrVtWP981lMdNW1tbVj+fa+BJussjdVJVr9e1BoDlZWK680ajoX2bgC70LEAXE0sfHB8fa98mALio\n1+tp32bqpGp3d1d7EFhOJqY739nZ0b5NQBd6FqCLiaUPnjx5on2bAOCitbU17dtUHv5XLpcnfm42\nm1Iul2+8PsvFxYWITN4de/HihdRqNbm4uJD379+PttlsNuXdu3eq4Y4WM+x0OoliTCrJuMzws11Y\nkDb87u12O7IcarWalMtlLQtAlkolOTs7k5cvX068Hu77er0u3W73xt+9fftWgiDQdkfh7Ows8Xu/\n++47ERE5PT0dvfbtt99Kp9ORIAgm9vnZ2dnEWOlKpZIpvnq9PvrbarWaeTuzVCqV2O2dnZ1p/TwV\npVJpbiydTkeq1aqW3vNmsylfffWVVCqVid7O7777Tl69eiUiIs+ePbvxdzrbEJF0z9SF7ee4brcr\n/X5/YnHHq6urG9tVOaabzab0ej25urrSOnKh2WzGbq9Wq0m9XnditEQQBHPLsN/vy9XVlZbPGwwG\no/PfeHv04sULubi4kE6nM7Ntu76+jmxbkwjPwaFKpSLv37+/8fosz58/v/HaL3/5Szk5OZHPP/9c\nfv3rX4vIh3NQpVKR3/3ud6P3ZR1x0Gg0Rn+rs56Uy+W5MYXtlQvPxb59+1YajYaUy+XIfXVyciL1\nel3r6I7PP/984rm2169fy/n5ubx580bevn174/2vXr2SWq2m9ZoozXNc4TE1fpxWKpVR+1mtVie2\nq2PR3PBYDIJArq6utD13Fm43bnvX19fOPOcWXj/FtU2DwUCurq4yt1/j6vW6HB0dSb/fn2gbwvKI\natNfv34tIslHmRTSDEc5ODgYHh4eJn4/oMvBwYEcHh7G3uanfsIW6idcRv2Ey5LUz9+/jzoKK5LW\n0aWbqAIAAAAAdCKpAgAAAAAFyklVHnPeuzCGfpHFzSKlq+y73a6V9RF0PA82DzMO2qOr7Pv9fi51\nxQZmHLTH97JP8wxqVsw4aFbcOVxX2TebzVzqChaTiZlMp+W1hp3yog55zHnPjINmxc0ipavs19fX\ntWwnre3tbeOfwYyD9ugq+9XVVetr3JjCjIP2+F72Dx8+NP4ZzDhoVtw5XFfZb29v53KuxWIyMZPp\ntLzO7wz/AwAAAAAFyknV9FSY41OaJnV+fh77+3A6RV3dd6amNJ+33SAItEzJqYsLw510TJWZxmAw\nSLwPZnVJdzqd0ZCe4XA42udBEIy+SzjMUUd91VXnw+neo6Z4Hv8eLkz5n1ReQy91DU9IOhwsSR2d\ndex0u91RrHExZ22Hxv9OZ1sW1vO82wPTdC8uGVXmUeWWdvhh0uHeqsMaw78Pz0G1Wm1im1mPN1vD\nLcenUXdhSvXQyclJ7O91t/Vx+218enKdor5DmnPnvHKYta2s7d/4tnRfDybZny5dg7bb7dyP2env\nP74/ZtXftOWl3B82vYBrluE4Dx48iP19OHRMV/ediUVnk2zX1Odm5UJ3fd7DAldWkt9HmNUlPf5a\noVAY7dNisTj6dzgkVkd91VXnt7a2RETk7t27M38//j18ktfQS13DE5IOB0tST2cdO+OvxcWc5jiI\n+rus25glrOe2hgmbontxyagyjyq3tMMPkw73Vh3WGP59eA7a29ub+H3W483WcMvx+Ke/i02PHz+O\n/b3u9j5uv+3v72v9rFDUd0hz7pxXDrO2lbX9G9+WzjZUJNn+1P2ZKvJ4fGja9Pcf3x+z6m/a8nKn\ndDPI4+G2tFzo/dEl/C46Jquo1+tO3SFZRp1OR5rN5sLsh7B+6rjTNRwOnWxPTGm32871CuX1ILFO\nSSbf0dFbFW5jWepoo9GYWEzdFa4snJpUXE++7u9SqVQmrhWSnGdc3MdJtdttK5NvxRkMBtJut706\nx8eVoe5RP51OR8rl8ug1E/XP6yez83i4LS0Xen90Cb+LjskqmGzEPhePFxVh/dRxd7pQKCxc+cSx\ncYdwHh8nCklSjjp6q8JtLEsddXXyn1u3btkOIZW4ctT9XW7fvj3xc5I7/OEICh+52IaurKw4GVec\nuHh1j/pZXV2daENN1D+ve6oAAAAAwDaSKgAAAABQQFIFAAAAAApIqgAAAABAAUkVkNKyzMAFP/k4\nix6Wh47ZZAHARSRVmKvf70upVFJevDhcmM73aeeXZQYuX9TrdS3Tqi9KMuLjLHrLYDAYaJle3afp\nkmdhJli3XF5ejv79/fffZ95OXguxY/mUy2VpNBrS7XalUqlk2kan05HT01MRMXuuJ6nCXLVaTfb3\n96VYLGZeOK7b7crFxYWILNa087Bvc3NTgiCQRqOR+YKz3W6P1qygJxI6BUEgw+FQCoVC5unVu93u\n6GaU70kV3HL//v3RxeaPf/zjzNsJp2+nJxK63blzR3Z2dmR9ff3G1P1JFYtFefTokYiYvfHILU3M\ndefOHeVtrK+vjyo0oFPYQKo0lJubm6M1MeiJhE7FYlF5G+vr67K+vi4i9ERCP53nZnoi4aK82k16\nqgAAAABAAUkVAAAAACggqQIAAAAABc4nVVln+gAAAACAPDifVGWd6QMAAAAA8pA5qQqnxwZcxLSu\ncFm5XLYdAhDp5OTEdghALNpQuChzUvXRRx/pjAPQKlwzA3AR0w7DZY8fP7YdAhCL9S7hIueH/wFZ\nFAoF2yEAkbIuAgsAYD1BuImkCgAAAAAUkFQBAAAAgAKSKgAAAABQQFIFAAAAAApIquCEZrNpOwQA\n8FKv17MdAgAsPZIqOIHpUQEgG2aTBMzpdDq2Q4AnvEiqrq6ubIcARHr//r3tEIBIrVbLdghApG63\nazsEIFa9XrcdAjzhRVJ19+5d2yEAkT7++GPbIQCRtra2bIcARFpfX7cdAhDr3r17tkOAJ7xIqgAA\nAADAVSRVAAAAAKCApAoAAAAAFJBUARo0m005Pz+3HQYAeOn58+e2QwBilUol2yHAcau2AwAWwfb2\nNtPCA0BGn376qe0QgFhMWIF56KkCAAAAAAUkVQAAAACggKQKAABDhsOh7RCASNfX17ZDAGK1223b\nISRGUgUAgCGFQsF2CECkW7du2Q4BiLW5uWk7hMRIqgAAAABAAUkVAAAAACggqQIAAAAABSRVAAAA\nAKCApAoAAAAAFJBUAQAAAIAC5aTq6upq5uv1ej3xNi4vL2+81ul0It/v05z1466urqTb7doOQ+r1\nunS7XanX6zPLPk/NZnPue9rttva1XhqNhtbtLYp+v287BGk0GtLv90f/tymqfRvXbDYz18+otoy1\njW5ypd0P981wOFz4/XRycjLz9ePj48TbePbs2Y3X4q4PbJ+Tsjo5OUl0PjPt+PhYms2mHB8fy29+\n8xursbRarbnvOTs7k8FgkPkzdByDs+pj3DWor4bDofVzaiiMo9frWY4kmaT1bFX1g+7evTvz9d3d\n3cTbuH///o3XNjY2It/v05z146LKKm/hvllfX0+1n0zY3t6e+57NzU3ta73s7Oxo3d6iWF1VbhKU\nhfvGhViSHLPb29uZ62dUW8baRje50u6H+2YZ9tHjx49nvv7kyZPE2/jJT35y47W4886s6wEfRJVV\n3sJ9k+TcatrW1tbc9zx8+FBWVrLf39dxHM6qj3HXoL4qFApOnFdFfji/r62tWY4kmaT1zNvhf0nu\ngEBNeNfNVFmfnp4a2a4LfLn74rOwF8lUWZfLZSPbBRDPlV7JRRae102V9fPnz41sF9DFRK+dt0lV\nkjsgLvNh2Eh4p8tUWT969MjIdl3gy90Xn4W9SGFZB0GgbdtBEMidO3e0bS+kMswFP9C5r/Pk+v53\n5bzkSq/kIgvP65ubm1KtVqVWq2nb/7VaTT799NO576tWq6m37crwNd/51jERDsfUuf+T9NqlHQbq\nRj/gElqGoSNAnorFopPbGqcyzAU/MLV/THN9/3NeWk77+/tat7e3t2fsc10ZvuY73zomwuGYee//\ntMNA3W7h4YzpB3AvLi4sRQLMl2aiHCBvDC2Fy6ImKAFsmR6m6mobSlKFmY6OjiZ+nn7o9aOPPsq8\nbRIyqJp30leZgIWEDKpevnwZ+3uVoaWuXkzAH1999VXs71Um3SAhgw7Tbej0kGBX21CSKsz005/+\n1Ni2VRIyQOTDjFGmMDMkVJmsn7ZnbIX//uIv/sLYtl2ZBRF+MzkLqMmZMUmqAHjH5LMpPFcCVSYT\ncybBAbDodD/nN87kdPkkVchFv9+/MbMQs/hgmfg6Yx3sGwwGEgTBxHMFrs8kCADLJlVSNRwOZ65p\nMG8V8SSrjJtYK8HU6uZJL45srq5ue2X36c9fXV290QNgYhYXUxcatVrNyHaxPMZnrDNxQ0H3Nk0d\nS2mnqMWHntlisTjxXIHu3trx+qP7ucJ+v8+zilA2GAxG7cd4O6LjGrTVamlvm0zdOE66NiPXoPlL\ndVVbKBRmrh8xb3xikvGLJtalMDVuMul0vjZXNLe9mrqtzzc1LCzpFLFAEiZuKOjepqljyeTQC2Q3\nXn90P7e1urrKs2BQtrKyMmo/xtsRHdegJqYYNzX9d9IhwFyD5o/hfwAAAACggKQKAAAAABSQVAEA\nAACAgsL0jGyxby4ULkTke3PhAJF+PBwOYxe4on7CIuonXEb9hMvm1k8R6iisSlZH0yRVAAAAAIBJ\nDP8DAAAAAAUkVQAAAACggKQKAAAAABSQVAEAAACAApIqAAAAAFBAUgUAAAAACkiqAAAAAEABSRUA\nAAAAKCCpAgAAAAAF/w/CmuBz8K2IQQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHKCAYAAAA+Up11AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmMJPd93/1PdU/3XD07x84e3ItLS0uLOixKGoqyJMs6\nbDhRHMd/2EAeOw6QwKbsOEAi+4HhGPEj6zEMGPkjCQwhUehEfmw4eGBHlvzIhBRbsClTsk1RQ4ri\nklyaXO4uZ6+Z2Tl6pu+znj92q9Uz0/dU1a+O9wtY7HR3ddW3q+pXx7d+h2XbtgAAAAAAAACMLmE6\nAAAAAAAAACDsSLIBAAAAAAAAh0SSDQAAAAAAADgkkmwAAAAAAADAIZFkAwAAAAAAAA6JJBsAAAAA\nAABwSCTZAAAAAAAAgEMiyQYAAAAAAAAcEkk2AAAAAAAA4JDG+k1gWdZjkh6TpOnp6fe85S1v8Two\nIA6uXbumjY0Nq9c0lD/AG5Q/wJxByp9EGQS8wjkQMGfQc2DcWJZlezTrP7dt+x94NO+OLNse/Lcs\nLS3Zy8vLHoZzUDab1dzc3KHmUalUND4+7lJEZjWbTTWbTY2N9c2Phvp3hzn2QS0tLWl5eXngA6yJ\n8pfL5TQzM3Pg/VqtplQqNdB3qtWqGo2GJicnPYvTL7Zty7IG22TValXpdFrFYlFTU1MeR+auKG2z\nbsJQ/iSpVCqNvB2y2awSiYSOHDniclRmVCoVNZvNgdbH7u6ujhw50vNYFVRO7FE2bPm79x0jZXDY\nY3j7dWulUlE6nR74vBF01WpVtVpN09PTfad1zpc7OzuanZ31ITr3DHOuD6uwnAPL5bImJiZG+m6j\n0VAymXQ5IrOazaYSicEbokVxHUTBKOfAOPAwyfasbdtLHs27o8A3F61UKqpUKgfer1arA33/1q1b\nHb8fVolEYqAEm6TW715bW/MyJE9EaZuF2dTUlIrF4oH3e920tl98FwoFpdPpyJzg6/X6wNOm02lJ\nCuVvj9I2C7NuCbZeD8dqtVrr7/HxcWUymYHPl0GXSqUGTjhmMpnWd8ImStssCjol2HqVwfYHw+Pj\n47IsS81m05PY/JZOpwdKsElqJakGnT5IorTNwqxWq3VMsHW6Lu30mXMdk8/n3Q/OgEqlMlSCTQrn\nNagUnW2G4VmW5fq/PsubsCzrGcuyvmNZ1kuWZX26wzSWZVm/Y1nWZcuyXrAs6939fsdg2RqDTpw4\n0fF95wa2n1OnTrkZTqg4T8K7rcMgi/pT/LBIJpND18JqvwBwLq4HLa9BN8oNe1hrZEZlm4VZt4RS\nrwuG9n3U+X5UtuUwNxfD3ogESSKRiMw2i6phazmFeX88rEEfDAdNnLdZUHS75up1XdrpM+ehS9iF\n9XpyFFHZZgiFiqSP2radtywrJekblmV9xbbtp9um+YeSLtz796ik/3rv/67CeeYDAAAAAABAJHjR\nVL9X7XP77odO1cnUvX/7v/BPJP3BvWmftixrzrKs+2zbvt1tvjymAQAXFYvFPU32APiHsgeYtbOz\nYzoEILYajYbpEIAgWrQsa7nt32PtH1qWlbQs63lJ65K+atv2N/d9/7Sk622vb9x7rytqskXQ2tqa\n5ufnaW4CGJBMJkPZD5QbDtNBMeCGVCoVi07LO3EGWwFMmp6ejm0ZpJN5mJZMJkM54Bbg8OjcsdFr\n4APbthuSHrYsa07SFy3Lertt2y8eZoHUZIugEydOxPZCe2try3QIiLk49ZmxX1yPOwiWON7cS5Q/\nBMPY2FhsyyAJNgQBCTaEmd8DH7SzbTsr6UlJ/2DfRzclnW17febee12RZEOkLCwsmA4BiC06igYA\nAAAQBpZlHbtXg02WZU1K+mFJr+yb7EuS/vm9UUbfJ2mnV39sEs1FAQAAAAAAYMiwNc9ccp+k37cs\nK6m7FdD+2LbtJyzL+nlJsm37s5K+LOnjki5LKkr6F/1mSpINAAAAAAAAsWHb9guS3tXh/c+2/W1L\n+sVh5kuSDQAAAAAAAMZEpU9PkmwAAAAAAAAwJipJNnqpBgAAAAAAAA6JmmwAAAAAAAAwhppsAAAA\nAAAAACSRZIuFbDZrOgQAAADETLVaNR0CEFt3B0UEwsOyLNf/mUBz0RiYm5szHQIAAABiJp1Omw4B\niK2oNL1DPJhMirmNmmwAAAAAAADAIVGTDQAAAAAAAMZQkw0AAAAAAACAJGqyAQAAAAAAwCBqsgEA\nAAAAAACQRE02AAAAAAAAGBSVmmwk2QAAAAAAAGBMVJJsNBcFAAAAAAAADomabAAAAAAAADDCsixq\nsgEAAAAAAAC4i5psAAAAAAAAMCYqNdlIsgEAAAAAAMCYqCTZaC4KAACASCsWi6ZDAGKrXq+bDgEA\nfONrki2bzfq5OABtqtWq6RAAADBiYmLCdAhAbJVKJdMhAAgBZ/ADN/+Z4GuSbW5uzs/FAWiTTqdN\nhwAAgBGJBI03AFNmZmZMhwAAvqFPNgAAAAAAABgTlT7ZSLIBAAAAAADACJPNO93Wt+68ZVmPWZa1\nbFnW8p07d/yICcA9lD/AHMofYBZlEDCH8gcAo+mbZLNt+3Hbtpds2146duyYHzEBuIfyB5hD+QPM\nogwC5lD+APiNgQ8AAAAAAAAASKJPNgAAAAAAABgUlT7ZSLIBAAAAAADAmKgk2WguCgxpZWXFdAgA\nAAAAAJ/k83nTISAkqMkGDGlsjGIDmLK9va35+XnTYQAAACBGMpmM6RAij5psQ6rVar7Nq1KpHJi+\n0Wi4tnxTarXaQBn0Uqm05/Xm5qZXIXnGjf3Ftm0XIrlrY2NDhUJBknTq1KnW+7u7u1pdXd0z7f79\nr12z2ez5uVeazaZr8xo2fhO/1wvOOgxjeRqWG9tsa2vLhUi+yzmGtyfY3njjDT377LN7prt582bP\n+fT7PAzaz2f7z225XK7vd8IqKscStznrZX19XVL3fcCr5Q4qm816FEl/5XLZt2W5fewLinK5HInj\nyKAGvW4qlUqq1+uS1PrfT8Nc6+6/P3CLm9eY/ebbaDT2/OZ+v9/ZZ924J/Dqdw6q0WgMfCwLc42r\nUY4zpVKpde/o5v1fu/3rdNjybuL4AHNcTbLt7Ox0/SyVSrk2337zGh8fb/1drVaVSqWUTCZHXn6/\nePySSqWUSqV069atntNNTk7ueX306FEvw/LEsPuLc0C+cuWKpLsXgy+99JJr8SwuLuo73/nOgfd/\n//d/X3fu3NnznnOj00mhUOj5+ajK5XLPG6tRb7o6zbfZbKparbZet/8t3a1p5FhfX1ez2dTm5uaB\n6dyKxy+5XE65XK5vecrn83sScbdv3/Y6NNft38bdbG5uan19XcViUS+++KIuX76sF198USsrK0qn\n067F8+yzz2p5eVnf/va39eKLL7beP3HihN7znvfsmfb06dM959Xv81GUy+WeF9+jJhc6zXdtba3n\nd9ovTovFotbW1lw75vT7nV7KZrOqVqsqFos9p8vlctra2mo9FLlx44Yf4blqbW1toATW1taWNjY2\nJEnf+c53VK/XdeXKlQM3oYf1zDPP6NVXX9VTTz2ly5cvt94fdhlzc3OuxTQsN49H/XT6nfsfxoVR\nOp0e6Aa/UCjs2X/7HbOCqt+xRrqbaJ6cnGwdd71q6ZDNZrsex51jnaNXgqI9VjclEokDcbQbNbnQ\nab7JZHJPTZf9tV7af1+1Wm3d/7lRO6bf7/RSvV5Xs9nseyxzKpY4Na5MxXsYg96zNxqN1jXJ5OSk\nUqmUqtWqbNt29ZhbLBb1yiuvaHp6ek+ienV19cCD9173KGNjY8buYcLCsixP/hn5LcNcJC0tLdnL\ny8sehgPEx9LSkpaXlwcu+ZQ/wD2UP8CcYcvfve9QBgGXcA4EzBnlHBgH6XTaXlxcdH2+t2/ffta2\n7SXXZ9wDnUsBQyqVSgdqCwIAAAAAgNHQJxsQUyTYAHPC3M8IEHY0dQHMCmPzPyAq3OxjHp1Fpbko\nSTYAQGgwshNgzszMjOkQgFibnp42HQIQW4fpYx7xQnNRAAAAAAAAGENzUYP8HIodAICgMDW6J4C7\nKIOAOW6MVA8AXgtlTbaJiQnTIQAA4LtEIpTPxoDIoAwC5qTTadMhAPBQVGqyhTLJBgAAAAAAgPAz\nOVCB23gcBwyJ5sqAOcVi0XQIAAAAANARNdmAIdFcGTBnamrKdAgAAACImWazSZcBHotKTTZXkmz/\n7b/9N33605/W888/r+PHj0uSnnjiCf3oj/6oJGl9fV2PP/64/v2///cDze/FF1/UE088oUcffVSZ\nTEbveMc79N//+3/XT//0T2t+fl75fF5f+cpX9JM/+ZN67bXXND09rU984hP6jd/4DaVSKa2trel3\nf/d39cd//Mf6l//yX+pHfuRHVCgU9PDDD6tSqej7v//7h/6Nf/VXf6WFhQVdv35d3/u936t/9I/+\nkZ566in97d/+rd75zneqUCjone9859DzHcSv/Mqv6JFHHtGXvvQllctl7e7u6rOf/aweeOCBrt/Z\n2NjQ4uKivvCFL+hjH/uYZmdnPYnNTVeuXNHLL7+sV199VS+++KJ+7/d+T7/1W7+lX/u1Xxt4Hjdu\n3NCZM2f0la98RXNzcyNt605u3ryp06dP64tf/KI++tGPttbnq6++qhdeeEEPPvigvvSlL+nRRx/V\n0tKS5ufnD8zj0qVL+r7v+z79zd/8jU6ePOlajbhf//Vf1+XLl/Wv/tW/0g/8wA9IklZWVvS//tf/\n0i//8i9re3tbly5d0vvf//6B5vf666+rXq/rtdde01ve8hbduHFDf//3f69PfOITymazSqVSeu65\n5/TGG2/oxIkT+v7v/3599atf1ZEjR3Tq1ClZlqWHHnpIn//85/Xtb39bp0+f1o//+I9rcXFRGxsb\nuu+++4b+jd/61rf0lre8Revr61pYWNAf/uEfant7W+9617tkWZbe9773aXFxcej5DuJP//RP9e1v\nf1uPPPKIisWi1tfX9TM/8zNdy1Q2m1U+n9fGxoYWFha0u7urt7/97Z7E5qbNzU1duXJFN2/e1Nve\n9jZ96lOfUiaT0eOPP971O9lsVoVCQZLUaDR05swZJRIJ/fmf/7ne8573uLZNLl++rOPHj7eW99BD\nD0mSvvrVr+p//+//rYcfflgnT57U2bNnNTY2plOnTh1IxpVKJf27f/fvdP/99+ujH/2oGo2GK7H9\n/M//vL72ta/p/e9/vz73uc9Jkra3t/WpT31Kv/M7v6Pd3V196Utf0j/7Z/9soPmtrKzoi1/8olZX\nV7W0tKRaraa1tTW95z3v0Vvf+lblcjl961vf0urqqhqNhn7gB35AL7/8sra3t/XmN79Z7373u3Xy\n5En97M/+rHZ2dlQsFvXBD35QP/ETP6Enn3xSP/dzPzf0b7x48aL+7M/+TMePH9fHP/5xPfPMM/rP\n//k/6xd/8Rd18+ZN2batT37yk0PPdxAvvPCCfuM3fkO2bev8+fN67bXX9Eu/9Ev66Ec/2nH6ra0t\nlUolvfDCC7rvvvtUKpVcOw94qVAo6L/8l/+ifD6vWq2mJ598Uq+88oq2t7e7fmdra0u5XE6SVKvV\n1Gw29eCDD+rzn/+8bNvWT/7kT7oS28rKiur1uiYnJ/XSSy/ph37ohyRJn/nMZ/T0009rfHxcH/7w\nh5VKpfTAAw/obW97mzKZzJ551Go1/fAP/7CuXbumX/3VX3W1RuonP/lJ1et1fehDH2r95p2dHX3u\nc5/TJz/5SeXzeT399NOtuPtZXV3V8vKy3ve+92lra0vLy8u6fv26PvKRj+iBBx6Qbds6evSovvCF\nL6hQKOhjH/uY/vqv/1qJRELpdFrve9/7dPbsWa2ururll1/WU089pWPHjunHfuzHVCqVdOHChaF/\n42uvvaaLFy/qvvvu07lz5/T1r39db3/721UsFvV3f/d3uv/++/XjP/7jQ893EH/7t3+r8fFx/cmf\n/IkuXLig119/XR//+Me7XlPcuXNHlUpFzz33nMbHx/W2t71NZ86c8SQ2N+3u7uqP/uiPlEqldObM\nGf3Zn/2ZisWifvd3f7frd+7cuaNsNitJmp6e1szMjGZmZvTkk0/q9u3b+qmf+ilXYnv99ddlWZZm\nZ2dVLpd1+vTp1vv/+l//a/3jf/yP9X3f931673vfqxdeeEEXLlw4cI1i27Y+8YlPqFKp6N3vfrdr\nAwj8p//0n5TL5fSBD3xAH/vYxyR9d13+3M/9nGq1ml5//XW95S1vGWh+hUJBb7zxhs6fP698Pq8n\nn3xS1WpVP/iDP6iZmRlZlqXx8XE98cQTmpyc1Ac/+EG98MILKpVK2tnZ0Qc+8AGdOXNGb7zxhjY2\nNvT3f//3WlhY0KOPPqpEIqEjR44M/Ru3t7e1trYm27a1uLiop59+unUPdvnyZd1///1617veNfR8\nB/HMM8/o7Nmz+uY3v6nFxUW9/PLLeu9736uHH364a6y1Wk2vvPKKarWaHn74YR09etST2NyUy+X0\nl3/5lxobG9O5c+f0xBNP6OrVqz3L3/b2tra2tiRJyWRS58+fl3S3XFy/fl0f/vCHXYntjTfeUDqd\nVjqdVqFQ0Llz5yRJ165d03/4D/9BS0tLeu9736sHH3xQFy9e1Jve9CbNzc3tmYdt2/rN3/xNNZtN\nPfDAAwygEwOWbdsDT7y0tGQvLy97GE53q6urOnnyZN/pLl68qLNnz+rFF1/UBz/4QU9iqdVqWl9f\nb53kvHb16tUDCbVcLqeZmZmu36nVakqlUrpy5Yq+53u+x+sQXVEulw9VS2xzc3PPiaRarXrSQWqn\nOEulkiYnJ3tOI91t6jY1NSXbtvXII49oeXl54HS9yfInfTdxO6pGo6FkMnmoGA67j7ilX/mDd+XP\nLUtLS66Uv5dffllvfetb97y3u7u750L+9u3bQyWXX331VT344IMqFAqanp6WJNXrdY2NjalcLmt8\nfFyWZWlra0vJZFKzs7OtBwE7Ozu6efPmnpjW1tY0OzurXC6nY8eODRxHO+ccXC6X9corr+y5wHeW\n7YVr167p/PnzunXrlmZmZjQxMaFUKtX3e/V6XYlEIjRPnCuVihqNhnZ2drS4uKiVlRW96U1v6vs9\nJ1mcTCaVz+cPJLfc4Oxzu7u7B27cd3d3VSqVVKvVWomUTk/6a7WaEomEksmkcrmcPvKRjwxV/qT+\n58D2Y45zDeQYtvaBU4bbzzlbW1taWFjYs285iYp0On2g3LfL5XJqNpuampoaaP/txLnGaTQaqtVq\nrbhs29bm5qZnD5oczkPMQYWxxocTc71eV6PR0Pj4eN/vOPdRlmXtuc7Zvw8eVqPRUD6f7/iAz7m2\ndHRa9+3lo1Kp6AMf+IBr16BXr15VvV4fKYHcSaVS0crKik6cONEqU2trazpx4oQqlYpu3bqlBx54\nQPl8XmNjY5qYmFClUpFlWUqn06rX6/rrv/5r3X///VpcXGz185RIJEY+Ru7s7Gh8fLx1/r106ZJO\nnDihhYWFocvGsDY3N1WpVHTq1CnVajVVKpWevyOMZU/67nWOc83U6fqqm1wup+np6dbv9uI6PZ/P\nq9FotMrg+vq6jh8/rmeeeUbvete7WhUJOl3/NhoNNRoNlUolJRKJkc6BcTA+Pm6fOnXK9fleu3bt\nWdu2l1yfcQ+hSbIBUePWTT6A4VH+AHOGLX/3vkMZBFzCORAwZ5RzYByMj4/bXjy0vXr1qu9JNt/S\n3FeuXPFs3vV63bN573fp0iXfljWq9fV1X9cJzNrZ2enb9HRzc9OnaLxVKpUC/1t6Ne+C9/weGCGb\nzapSqfScxmlS64Xd3V3P5r1frVbT6uqqb8sbxe7urq/rBHvl83nfl9lsNvuWQS/3CafJrh9s2w78\n4C/5fN7XdYK9dnZ2fF3eIPcbXu4P/cq+m2zb9n39Dsup6QYznObjgG8DH3hR9c8xNubf+A0PPfTQ\ngWrZQeP0iwcz/G7SOEh/e172x+BU7/bD5OTknma5QdSpPz74x+9j8/5+NzrxsnyM0r/MYQzSbYNJ\nfq8P7GXi2iiRSPRt1uflfuHnOalWqwX6+lOSMpkM/Q0Z5HdXFoOc37yMyc9mkc1mMxBdlvTiZhNl\nDC/ox+cwiMrAB54dmfZncv08KHmdwfe7ADWbzZFrprnVub4pYXwiEIQTsJ9PkfdfYLnVmW67YrGo\nWq3m+nwHMUyT+v28WBd+GmU/KpVKHkQSPu3rYZB+fTp9bxRe1Nhxyp6Ji/dKpcI+FSJB6gdo1Bpf\nw35v/znwMOeMbpzaMyb6uaxWq0PXxg3SfhA3QVn3o95/DPs9P85L7X1fDnM+dwtJ6/AIcl/E8Jdn\nR+JKpTJysuuwSTIvkmxra2vGbpgTicTINSGCkPA5DKo8j2Zqasq3G4z9vDjBJJNJY0/nDtP0Ouwn\n21EeKBx2cIso2D8QyjAOWyvGi47vU6mUJ4mDQZcd9NqrXhkluRj2xL6bRn0getgHqV48hZ+enjZW\nBtPpdGsAFvRHQkR7BuYYVhDvW5LJpLFm2pVKJTCJU7+N8nDdRJcFcI8zSInb/0zwrA3LiRMnRv7u\nYZ8SeNEs4DC/B6NjvY8mmUwau8Hwgoknh444V70fJWEW9sSiG0wmhby6GDd1kRLXmwtptP2I8hdN\nfnaLgsOJ8zHLEcXrJlPXxiavf00bZT/y4kEjMArOBIicMDYxBaKCDq8Bs2heC5gV9MEpgCgLe1dJ\ncUdNNiCgnKbKcX76A5jiNFUOYo1IIOoO01QZgDs4/wFmHKapMoKBgQ+GtLq66tn0+6fd2Ng48Bm1\nm6LJtu0D2398fNxIgs3Zxwbdd52OVP0w7FOdYabvNa1To4I+SqJr//a3LMvIDYazjwWtFs+wfWQd\ntk+t9v5I6Jskfn2UmU6wsc/t5QxYgGgadkAIPwy6zx2mv9lhFAqFoa53h51+/7Ttv8upWe/Xbw2i\nIO6jbqlWqwe2v6kEjbOP0ZoDDl+SbJcuXRpqpx92+v3TLi4utv6enZ3VxsaG5ubmBp5f1Fy6dMl0\nCJ557bXXDmx/U9vaWe7s7OxA0/vZQfywT3WGmb7XtM4NX9ASH3DP/u1vals7yzWdZNivUCgMNYDL\nsNPvn7a9PxL6Jon2DcbKykrgBgcadJ/z88GLlw95O2l/0DsxMaFGoxHr5oOHXZ9B1ikZZGpbO8sd\n9PrNr37+0um0tra2PJt+/7TtSY6ZmRlJ8R5ELcr9dBYKhQPb39S2dpbr7HP9UPmgO5qLDuGhhx7y\ndPpeneNPTk4G7qbLb8OuzzB58MEHTYdwQNz3t04YmSw+TG3roO5j8/Pznk5Ps/jehl2fYXLu3DnT\nIYzMz87hT5486en0+7U/6HXKZ5ybDx52fQZZp4HWTG1rZ7lBOyekUikdO3bMs+n3T9vpmB/U6wM/\nRHEQCkeQtvWwy2WAlOhjC0fU+vp6rKpHX758Wd/85jf12muvefbU1LZtSdLv/d7vtd6jhhY62d7e\nNh2C75zy4WWZ2Nzc1Kuvvtp6TflDJ7u7u9rd3TUdhm/K5bKKxaKazaanzTVv3LixZ/5xrp2F3vL5\nfOyaTZVKJe3u7nrWRPi5556TpD3Htueff96TZSHcarVarGrvlUol3b59W5I3zTWr1arK5bJWV1d1\n9erV1vs3b950fVmITk22UCbZ2qvio7Pjx4/HZsj3jY0NvfnNb9bRo0d14cKFgZtrDuOpp56SZVn6\n7d/+bZ0/f771ftCeGCIY5ufnY5XkrlQqrSr7XtbkPHLkyJ7aq9QaRSdHjhzpWMMkqiYmJlq1WLxo\nIpzP51WpVJRIJPZcrMa1dpaf/amGVSaTic3xudFo6Nq1a0qn0xobG/Ok0/UbN27o3e9+t9544409\nx7Z3vvOdri8L4ZdKpWJVU2pzc1P33Xefrl+/PnBzzWGk02ldv35dJ0+e3FMzMC7HOD95kWCLdHNR\nt7VXxUd/zWYz0gdbZ39485vfLMmbg96HPvQhSdKv/uqv7nk/yusVhxOXJLfk32AjUW72AG9ks9nY\n9Mnq1fnISdydOnXKk/mHjZ/9qYaZcw6M+oi3yWSy9fDVq8TzmTNnJEn333//nvejMgof3OdcL9Xr\n9chfjzrl4+zZs54t48KFC3uWJUkLCwueLQ/h1/eKzLKsxyzLWrYsa/nOnTt+xASXRbnj56ij/AHm\nUP7CLy4JtqiiDIZflBNsUUf5C7+oJ9gQPVGpydY3yWbb9uO2bS/Ztr00TEeUCA4vqs7CH5Q/wBzK\nH2AWZRAwh/IHAKMJTVu3bDZrOgSEBJ2huy9uHRgDQcNxDYOizzBvMNADYE65XDYdAkLCGYgL4RSb\nmmxBUalUYjVSymHE/eBC0wT3TU1NcYMxoLgnQ/L5vKrVqukwIiXqfRq5aX193XQIRvFAxDtxHegB\nw6GLFvfVajVPBpRA9NRqNfoqDDmSbD47ceIEIzm2cUby64SDC9yWTCa5wWjTq6ZI3JMhmUxG6XTa\ndBiREvd9ahjHjx83HYJRMzMzdMwPGDQ9PW06hMjpN+hRs9n0KRIEHQNkYViWZZ21LOtJy7Jetizr\nJcuy/k2HaT5sWdaOZVnP3/v3f/WbL70hhhQjmgDmcBMLAABgnlcjKwPwn4HKQnVJv2zb9nOWZc1I\netayrK/atv3yvum+btv2jw46U1eOSs1m03hTzji11b9y5YrpEBAwN2/eNLr8ODUl3dzcNB0CAoT+\nQv1FUyzsF/cm+n7b3d01HQICpF6vmw4hVugSAHCXbdu3bdt+7t7fOUmXJJ0+7HxdSbIVCgU9/fTT\nRvsCi1Nb/VOnTpkOAQEzMTFh9EYjTk1Jjx49ajoEBMjc3JyKxWLs+wLzy9gYFfCx1+TkpLa3t02H\nERtHjhwxHQICZGxsTLdu3TIaQ5yai87MzJgOAfCMF/2x3asZt2hZ1nLbv8e6LP+8pHdJ+maHj99v\nWdYLlmV9xbKst/X7La5crc7MzOjRRx+lLzCfxCmhiMGQ+AHMSSaTse8LzC/0zYpO5ufnTYcAxNap\nU6eMDtBDc1EAfWzYtr3UawLLsjKS/kTSv7Vte3+V7ecknbNtO29Z1scl/amkC73m58pRqVwuk/gB\nAMROpVJfaX9VAAAgAElEQVQh8QMAiC1GwAbgFhOji1qWldLdBNv/tG37C/s/t21717bt/L2/vywp\nZVnWYq95ulKTjQQbACCOSLABAOKMBBsAt/jdMtK6u8D/IemSbdv/scs0JyWt2bZtW5b1Xt2tqNaz\nk246NwEAAAAAAECcfEDSz0i6aFnW8/fe+zVJ5yTJtu3PSvoJSb9gWVZdUknSP7X7DEZAkg0AAAAA\nAADG+F2Tzbbtb0jquVDbtj8j6TPDzNfVniIrlYqbswMwgFwup2azqWq1ajoUIJZqtZp2d/f3kQrA\nD9lsVpKMjnAPAADgcK0m2+bmplKpFP3TAD6bnp5WIpFQOp02HQoQO7VaTY1GQ5lMxnQoQCzNzc1J\n8v/pNwCpWCxqamrKdBgAIiIq53LXkmxHjx51a1YAhsDQ5YA5qVRKqVTKdBgAAPiOBBsAtww6GmgY\ncHcOAJAkmhwDBjUaDdMhAAAA4JAY+AAAIEk0OQYMSiaTpkMAAAAwhppsAAAAAAAAACSRZHNNqVQy\nHQKAAMrlcqZDAADACGf0VwAA+nH6ZXPznwkk2VwyOTlpOgQgtvL5vOkQupqenjYdAuCpICeSa7Wa\n6RAAzxUKBdMhdOWM/gpEVZDPM8Vi0XQIwFBIsgFAQGQyGdMhdMXor4i6mZkZ0yF0xciviAMe5gDm\nBPk8w+ivgBkMfAAAAAAAAABjGPggpHZ3d02H4Dv6i8NhUd0cMMet5tDNZtOV+QBxs7OzYzoEILbo\n1w9A2IQmyVYul12Zz5EjR1yZT5jQXxwOi+rmowtyf3EIB7fKXxybLge5vziER5CbRAddkPuLQzhw\nDTq6IPcXB+znRX9s9MnWx8TEhOkQAGBoQe4vDuEQx+SYW0iOwA2UwdHRXxwOK51Omw4htILcXxwQ\nZfTJBkRIqVSi5iIAAAAAIFTokw1A4CSTSdMhALFVrVZNhwDEGv0OAubQPQaAw6K5KIDAMVmlno5p\nEXc0aQHMolknYI7J7jHiOLAdgOCiuSgAV8zNzZkOAQAAADETx4HtgCiiuSgCrVQqmQ4BAAAjGo2G\n6RAAADDCtm3TIQCxRk22iKLzewBAXNE/JQAgrqJSGwjxE5V9lyQbAAAAAAAAjDA5UIHbQtlc9MqV\nK6ZDCJVyuWw6BETI5uam6RCA2CoUCqZDCJVKpWI6BEQMHawD5uRyOdMhAEBfoazJdurUKdMhhMrE\nxITpEBAhR48eNR0CEFtjY6E8bRszPj5uOgREDB2sA+bMzMyYDgGAh6jJZhBJIwBAHJE0AgAAAIKr\nb5LNsqzHLMtatixr+c6dO37EBOAeyh9gDuUPMIsyCJhD+QPgN6dfNjf/mdA3yWbb9uO2bS/Ztr10\n7NgxP2LCAHZ2dkyHAB9Q/oKJPkHigfIXTM1m03QI8AllEDCH8hdM9M2KKItNkg3BNDs7O9B0q6ur\nHkeCra0t0yHAZ/QJEhyNRsN0CPBZIjHYpQs3It4qFoumQ0DAbWxsmA4BiJzp6emBpuP+xFsMLIhe\n6EE54ubm5kyHEHkLCwumQ0BAVatVpdNp02FEWjKZNB0CAmrQGxGMZmpqynQICLjFxUXTIQCxxf2J\nt+gj3hsMfOCxbDarbDbbd7p+WWTn80HmFUUTExOhyrTHdTsFVbVa7fl5v5oMbtd0CFMzzUajEcoE\nm7PNi8WiKpXKwN9rNBpDTT8KP5YRJPl83nQIewQtnkHU63XTIQwljOs4iqrVqqrVqis1ZYvFYt9z\nKYLB2ebUkDbLtm3Ztu3KvOr1umvzCpNarSZJobpmcrbTKPcOzu/1kh/LQHQENsk2OTmpycnJvtP1\nyyJPTEwom80ONK+oClOmvX07NZvNoas6+1E1un0ZUU8K9juh9KvJMDU15erNRZgulMJaw8rZ5lNT\nUxobG7yyczKZHGr6UexfRtgSKMPKZDKmQ9gjaPH04lyke71Pui2TyahWqw3d75wfTTfj1Dw0nU4r\nnU67chyfmJgI5QMXt5RKJdMhDMzZ5mE9f0dFrVZTrVbT7u5uz+n6HSebzaZKpZJryZEwPQRxEsWD\ndq8QBM42z+fzQycH/UiMk3z3nhf9sZmqGRfYq8/x8XHX5kWTyfBo3+6JRGLoqs5+VI1uX0bU9y03\nmlu5eXNx5MgR1+aFztq3+bA3Gn7cmLQvI2wJFPgnzE0ZU6nU0N/x4/eGeZ2aFKabXC/E+SE3RuNc\nN/a7fuxXthKJhKt96IbpQZNTwWKU84kpzsONUa71/ahQEqZKKzDP1TN/mKqkAlESpxoGQNBEvUYd\nEHT1ep1yCBhSLpdpEg3AFVGpyeZaki2Xy7la+wzuiHpzRtzF05Xg4sIz+njAFFxhat6D0VWrVWq2\nBpBb/doh2MbGxkJVYyouwtTFCuCISpLNtSsSN6vjwj1Rb86Iu+LeHCXI4twXT1wwimVwhal5D0ZH\nU9Zg4vwXDyS4gykqozQCYcRREQAAAAAAAMZEJTlM9RcAAAAAAADgkKjJFlHNZlPNZpMq3IABtm1H\n5kkMEDaVSkXNZpNRDQFDqtWqarUaTekBQ5rNJl3JIJSicv9EBiaiEokEB1fAkHq9TifAgCGpVIrz\nH2BQOp2mPzbAkEqlwmCECCWTAxW4javQITFaJ2BOLpczHcJAarWaarWa6TBioVgssq59VCqVTIfQ\nF6MZ+oey579isWg6hL52dnZMhxAbrGt/lctl0yH0RSsm/3C9gW5Isg2pUqmoUqmYDqOvtbU1VatV\n02HEAuvaP1NTU6G4wUgmk9Rk8wnr2j+lUikUTTBTqZRs2zYdRiywrv0XhpFUp6en2S98wrr2T61W\n08TEhOkw+komk6G4Vo4C1rX7nNpsbv4zgVT3kE6cOGE6hIGEJc4oYF37J5lMhuIGg2r6/mFd+ycM\nCTZHVJobhAHrGvtRk8Y/rGv/hOmBXhiulaOCdY1OqMkGHILftRp3dnZCUVUd8EO1WvW1+WI2mw1F\nTWbAD7u7u74vs9lsUgaBe/yuwVav131dHoD4oSYbAN87F52dnfVtWUDQpdNpX5tqz83N+bYsIOgy\nmYyq1aqvHdwnEglqrwL3WJbl6yiS1JoD9srn88pkMqbDiJSo1I535ai8sbHR8/1un3dTq9V0/fr1\njp99/etf19e+9jW9/PLLku7WLLh69aok6dKlS63lra6u7vmemwMW3LlzR5L2LGP/8ryQzWYHWo6z\nvldXV0M3UMPKysqezu0vX77cc/rd3V2tr6/r4sWLkrzdDtevX9fOzo6uXbvWeu/IkSO6evWqbt68\nqatXr2plZaVnzE888YS+9rWvKZvNBvqJYHtHnp1qCjmxN5vNgb7TPt1hlMvl1r9SqdSq1edH7b5m\nsznUcuJQ49C2bW1ubqparba2iVe6dS6bTqdVr9cH6oDdi22Sz+d7vt/t8242Nzf3HBs6DfbR6bju\nlLF8Pj/0MgdVrVZVr9dVrVaVz+dbr4Mkn88HLqZRDbK/bm5uanV1tbVNvNBtOycSiQPl0tRxr/28\n3On9bp93s7m52fWzlZUV1Wo1bW9vS/ru+e7KlSutabzqjL7RaKhUKqnRaGhnZ0eNRkO3b9/2ZFmH\n4cS0tbVlOJLhDVOO7ty5o83NTRUKhdY28crm5qZu37594FyXSCR08+bNPe/12t8bjYa2trZce0BV\nr9c71mp13u/2eTfZbFbr6+ut1+3bY3V1VbZtK5/PK5fL7TkuOTVc6/X6gfOmm+cEZznOMm7duuVL\n5/f1en2g5dTrdd9ictv+sjfINWUul2sdi70aHK1QKGh9fV03b948cEwrFAq6ceOGSqWS8vm8SqVS\n1/19bW1NhULBkxgRPK4k2RYXF3u+3+3zbm7duqWTJ0+2Xn/jG99o/T0xMaF3vOMdOn78uJrNpubm\n5vTAAw9Ikt70pje1ltde42djY8O1GghbW1sqlUra2trS7Oystra29Prrr3uedXV+wyDLWVxcbMUU\ntpoXY2NjrZPhxsaG3vzmN/f9Tq1W0zve8Y7WNvHCpUuXdPLkSdXr9VZS13Hx4kVtb2/rgQce0NjY\nWM+Y6/W6HnnkEc3NzQX6BJhMJlt/t9cauHz5sra3t1tPM0ulUuuE0f6d/X03uZV8SafTmpiYUDqd\n1uTkZKsGhR8d0ZZKpaGWE4bOcfdzLlQc/Zpl2bat2dlZpdPp1jbxSjKZVKVSORBjqVTS2NiYNjc3\ntb293TPmZrOplZUVV+Pq9gTTeX/YJ5yZTGZPbYH9x/ytra09x3Wnw10nuZHJZDx7qppOpzU2NqZ0\nOq1MJqN0Oq1yuexb871BlpPJZFoxeZV08lL7b+x3DKlUKjp69KhOnjzZ2iZeKBQKrX1ybW1tz2eT\nk5N7buj7xdxoNFo3Im7Z2NjQ+fPnu77f7fNuLl68qOnp6dbr/YmTc+fO6ebNm5qYmFCxWGwd977n\ne76ntdz29dBoNFzrGDuZTKrZbCqZTGpiYkLJZNKXmoTD/IaNjY1WTAsLC16G5QmnHDUajb7J2WPH\njuno0aPa3t5ubRMvrK6uanp6Wvfdd9+BJNsLL7yg2dnZVmLq2rVrPff3ZDKphYUF1/abXC7XMXHg\nvN/t826q1apeeuml1uv249rJkyeVzWaVyWS0s7OjSqXSOiY516C5XE4zMzN75unmOcq5JnaWUavV\nfEkmVyqVgZaTy+VaMYUtoZPJZPY8lO/1sEO6W0ZnZmZa5W7/dndLOp3WSy+9pImJiQM1qefm5vT8\n889rd3dXmUymlXTv5MSJE6pWqyoUCgyY10NUmotaw7TnX1paspeXlz0MB4iPpaUlLS8vD1zyKX+A\neyh/gDnDlr9736EMAi7hHAiYM8o5MA5mZ2ftD37wg67P98tf/vKztm0vuT7jHmhcDwAAAAAAACNM\n1jxzG6OLAgAAAAAAAIfkWpItCJ18D9LxNaIpzts+KJ18uzW4AcLH620flH28myD3rwjEQRCuQYMQ\nA8yI87Z3q79BYL+g3Fewj/srKn2yuZJkK5fLgejkO5VKmQ4Bhni97YN8ARWUIdVzuVyg1xOGN+j2\n9GpEJ0dQ9vFOqtXqnkE/TMlms74NQAB/DFr+vB5FPAwdNAehDKbTacpgTPkx+ERQTU1NmQ5BUvAf\nxmF4icRgaQqvt31Q9vG4iEqSzZU7lyAk2AAvsY/359XIrjBn0P0+zts+KDdXYRtJGv0NWv683vZB\n2cd7CcJD1kQicWDkOcTDoMkAeCfID+PgLbY9goi9EgAAAAAAAMYw8AEAAAAAAAAASSMk2er1eseO\nCFdWVva89rJfiq2tLWWzWRUKBWWzWV27dq3VJ9DW1taeZV+/fl3S3c4T3eq3ZG1tbc+8qtWq532i\nSN9dx1evXu07balUUqlUCnX/IG+88YbpEA5oNpva2trqOU2vz2u1mjY2NkZevm3bHd/v1HdPoVBQ\noVAYeVmO/ft2o9FQrVaTbduq1+vK5/OtY8L+DuDbOwt1s1+f9nnVajVf+gxy1vHNmzd7TlcsFlWr\n1Vrrwo1tYEJQ+2HqN8jAYT/vpVu/H253ztutk91u7xcKhY7Hhmq1qnK5HJjOgw8jCr9hUMVicaj9\ndH193cNo7ioWi123Qbfz0n5uHFM6xVAqlQ4931G0/+5uZTOfz7f+dnMf3j8vr8vHsOu4/XeHjfNb\nB92vJbPHJz/3/0qlot3d3T3v1Wo11ev1PeurWq1qd3e3Ne2w68e53srn83uW57y/vr7eOh/ncjnV\n6/XWZ9VqtRXL1taWisWiKpWKK33HNptNbWxstObVbDa1s7Pjeb+0zjp+7bXXdOvWrZ7Tbm9va3Nz\ns3VtvH97BV2tVlO5XFaj0Ri4DHq9/qW7+16ne2on3kH4sa9EQWz7ZOvW7vncuXN7XnvZL8XCwsKe\n1+39kez/7OzZs5Lu9pfgVr8lJ06c2PM6nU770meJs44feOCBvtNOTk56HY7n7r//ftMhHJBIJA7s\nY/v1+jyVSmlxcXHk5Xc7UHTqu2d6enrk5bTbX26SyWSrk+mxsTFlMpk9n7Vr7yzUzTLSPi+/+uJx\n1vHp06d7Tre/g1S3toPfgtoPU78Ozg/7eS/dzn9u98fTrZPdbu9328eCug1HEac+j4btZPn48eMe\nRfJdvWIa9ALWjf2x035g6nqn/Xd3Wz/t50c39+H98/K6fAy7jtt/d9g4v3WYGzOTxyc/9//x8fED\n93edrsH23xcNu36c6639+5Hzfvsxb2ZmRtJ3z8/ty22/HnfjvjSRSOy5hk8kEr70Seus4wsXLvSd\ndn5+fs/rsF0HpFKpoa/rnX3AS936SB0m3jj3Xzwok0kxt8XiqtWPWmZ+yGazsRm9cdBttn99eFlz\nz411H5ftt19Qa0UNK07DeA+yzdrXh5frplgstubfXsYbjUaoa+v6Jcy1SuJq2G3m5ehqbs07rqP/\nVatVNRqN0J8/nHPCYWoDh4WzzQbhbNd6ve7ZPu7MNw7r3m1ObaiwH3+c3xH248gghqlF6mzXcrns\n2b2Gc++2f93XarWh5sP1arzEIsnmPOUJe7JtcnIyNqNcDvpkbmJiorVdc7mcZzUoc7lca93vbw7a\nr/lou/Z448SvJp1ei9Mw3oNcPExNTbW2q5fHpomJida6b69Nlkwmhx5VKuwX2qMIc62S/Ya9qA2r\nYbeZlxfvzrz3r/thb/biOgJcOp1WMpkM/fWbUyPmMLWBw8LZZoNwtmu1WvVsH3fOs4dd96aaVptU\nq9W0u7sb+t9eq9XUbDZj8dDM2Wb9NJvN1nYdGxvzrGXL2NhYx3U/bNI7TjXyDyO2zUXDyEm8eD3M\nvdfiNDT8ML/V2a5eVhdun/f+5qD9mo/uF/b9cBRhbTIZZ4NuM+fGy8uLh/Z577/JGPamI643+lHh\nV/PwsPHyGOvMe/+6j9NDBzdwgxVNznb1sjy4Ne8odCUzLL+69PGa8xv86B7AtEG3WSKRONBc2AvO\nvPev+2EfnHD9Ei/cbQAAAAAAAMCY2PTJZlnWY5ZlLVuWtXznzh0/YgJwD+UPMIfyB5hFGQTMofwB\n8FtUmov2TbLZtv24bdtLtm0vHTt2zI+YANxD+QPMofwBZlEGAXMofwAwGpqLAgAAAAAAwAiTNc/c\nRi+sAAAAAAAAwCGFMsnm5VD1AHpzhpIH4L9BhrUH4B3btk2HAABAJPndJ5tlWWcty3rSsqyXLct6\nybKsf9NhGsuyrN+xLOuyZVkvWJb17n6/gyQbgKFEYSh0IKwymYzpEIBYi0pTFgAAoLqkX7Zt+62S\n3ifpFy3Leuu+af6hpAv3/j0m6b/2m2kok2xHjhwxHQICaGdnR/V6XZK0ubnp2XJI8gIHbW5uyrZt\nNZtN7ezsuDrvYrHY+jvuNSkTiVCetuGD1dVV1Wo12bbt6jmwVqu1zq3UpAS6y+fzkqRGo6H19XXX\n5ruzs9O69qQmJdBZe9koFAquzbfRaLg2L/Tnd00227Zv27b93L2/c5IuSTq9b7J/IukP7LueljRn\nWdZ9vebL1ToiY2dnR9vb254k2NbW1lo3FyTZgIPm5+dVLBaVSCSUTqdVq9Vcm3cymVSpVJJETUqg\nk3w+r2PHjqnRaCifz+vo0aOuzTuVSrWSu9SkBLpzykcymdTx48ddm+/09LTGx8clUZMS6CSbzbbK\nRi6X0/T0tGvzbr8Ghff8TrLtW/Z5Se+S9M19H52WdL3t9Q0dTMTtweiiiIxz5855Nu8TJ060/qYm\nJXBQIpFoXdRMTk66Om/n5gJAZ+039xMTE67P30myUZMS8N/YGLdrQC9zc3Otv2dmZlyfv9vXtfDd\nomVZy22vH7dt+/H2CSzLykj6E0n/1rbtQ1fb56gNAAAAAAAAYzyqrbth2/ZSj2WmdDfB9j9t2/5C\nh0luSjrb9vrMvfe64pEkAAAAAAAAYsO6m9X7H5Iu2bb9H7tM9iVJ//zeKKPvk7Rj2/btXvOlJhsA\nAAAAAACMGLYPNZd8QNLPSLpoWdbz9977NUnnJMm27c9K+rKkj0u6LKko6V/0mylJNgAAAAAAABjj\nd5LNtu1vSOq5UPvu0LW/OMx8aS4KAAAAAAAAHFIkkmwrKyvKZrOmwwAAAEDMbG1tmQ4BiKV8Pm86\nBAAucpqMuvnPhEgk2cbGxvYM3QvAP9vb26ZDAGKNmwzArIWFBdMhALGUyWRUKBRMhwEAe0SiT7ZT\np06ZDgGIrfn5edMhALGWyWRMhwAAgBHT09OmQwDgElM1z9wWiZpsQBxtbm6aDgGIrdXVVdMhALFW\nLBZNhwDE1s7OjukQAEQQzUUBGHX06FHTIQCxdfLkSdMhALE2NTVlOgQgtmZnZ02HAACBFYnmogAA\nAAAAAAgfkzXP3EZNNgAAAAAAAOCQqMkGAAAAAAAAY6JSk40kGwAAAAAAAIyJSpKN5qIAAAAAAADA\nIVGTDQAAAAAAAMZQkw0AAAAAAACAJGqyAQAAAAAAjKTZbCqRoP7SYVGTDQCAACmXy6ZDAGKL8gcA\niCsSbGgXqb3hySefVKVSMR0GEEvb29va2toyHQZibGJiwnQIxjQaDd26dct0GIixOJc/SarVasrn\n86bDAGLr9u3bpkMAcAiWZXnyz4RINRf9yEc+omKxaDoMIJbm5+dNhwDEVrPZ1KlTp0yHAcSWbdvK\nZDKmwwBiqdFoaGFhwXQYAA4pKs1FI5Vkk6SpqSnTIQAA4KtUKmU6BCDW0um06RCA2Eomk0omk6bD\nAABJEUyyAQAAAAAAIDyiUpMtUn2yAQAAAAAAACZQkw0AAAAAAADGRKUmG0k2AAAAAAAAGBOVJFvf\n5qKWZT1mWdayZVnLd+7c8SMmAPdQ/gBzKH+AWZRBwBzKHwCMpm+Szbbtx23bXrJte+nYsWN+xATg\nHsofYA7lDzArjGVwY2PDdAiAK8JY/ra3t02HAGBElmV58s8EBj4AAAAAXLC4uGg6BCC25ufnTYcA\nAPTJBgAAAAAAAHOi0icbSTYAAAAAAAAYE5UkG81FAQCHVqvVTIcAAAAAAEZRkw2RUa1WlU6nTYcB\nxFIqlTIdAhBbtm1H5ukvEEaUQcCcYrGoqakp02HABVE5jlKTDZFBgg0AEEdRuSgFwooyCJhDgg1B\nQ002AAAAAAAAGBOVBxbUZAMAAAAAAAAOiZpsAAAAAAAAMMKyrMjUZCPJBgAAAAAAAGOikmSjuSgA\nAAAAAABwSNRkAwAAAAAAgDHUZAMAAAAAAAAgycckW61W82tRCClnHymXy4YjGU6z2VSlUhnqO37/\nxmaz6evyINXrddMhDKXZbIYuZsfNmzcHntb5jbZtexWOq3K5nOkQ4KNGo2E6hKFks9mhv2PiNx7m\nnBu2axKMxtnOzv/VatVkOAMrlUpDf8ftfdqra8xu8+Watjtn3RSLRcORDC+MMQ973ez8Rvbh7pzB\nD9z8Z4KrSbadnZ2un6VSqZHne+PGjaGXF3c7OzuhuzBMpVIql8uamJiQFJ4DUKFQ0Pr6+sDTO7/R\nzZv8crnc82Z81Bv1crms3d3doZfXPl3cOOtmbCxcrfHbY97e3tb169dDs/1Onz498LTOb3TzpFsu\nl3ser0ZJRDjznZ6eHnp5jmGT/1HgrJuw3CA7stmsqtWqksmktre3tbm5GYrtNzc3N9T0zm/0O8md\nTqdH/q5zTTKKMGxD3OXsI8lksvU6DNtvcnJy6MS18xvdkkgkVCgUun4+6gO8RCLRMfHSb3lx5qyb\nqakp06EMpV6v74k5LPf4Y2NjQ91jOb8xkaAxYTdRSbK5ehc4Ozvr5uxazpw54+vyoiCs66b9YjYs\nB6CZmRnNzMwMPL3zG90s9BMTEz1vBEbdH7rNt9/y2qeLm0HXTdC07yPz8/Oan583GE249NvewyYi\n+s130P1rfHx8pOWGmbNuDpNUMaF9H4ly2XO2i98XvaauJ+JYBsPK2UfaKwWEZfsNmzQ7TMWHbjo9\nEHIc5qFjt2RRr+XFXRjXzf59JEz3scPcAyI+wpHFcMEo1akRfO1PGU1s42KxGIonnYAXhmmm6YXt\n7W3jMQBB4XczTK6rALPCVmMX8FJYugFBd17UYotEc9Egm5ycNB0CPNDeTNPENr527dpQTUXjKp/P\nmw4BHmhvppnP532/4J+fnx+qqWhc0a9b9JnYxlxXDY6mbdHUntg2sY2TyWTo+nE0gX7Bo6n9vFer\n1XxPpuTzea6v0NVISbZR+5eBGVFOAp09e/bAe37VLKtUKnrrW9/aMYZutra2Dr3cMD65zGQypkMw\nZnt723QIvshkMq2mYEG9oYzrzUicmzJ06lMyimZmZmJTqzos/bW2C2PzLbdE+SFbezNNE9s4mUy6\n3r9aL81mM5RJBS+ax4ZFlBOM7dc2Tr/e1WpVu7u7np8nqtWqMplMrK+vvBKVmmwjNZIftX8ZmHH8\n+HHTIfjKrz40RlnOwsLCoZcbtr6G4i7K/St1E9QbSj9vRhAMR44cMR2Cb8LW0fWowtJfK+6K80O2\nqEkkEiQVQiZOCUY/+2TlXsw7ppJibuNKBQAAAAAAADgkkmyIvEuXLpkOAYgtOkcHzIlyUyEgaDqd\n7+iMHfBHp/Md5S98otJclCQbIu+hhx4yHQIQW3SODgCIg07nOxLdgD86NY0NYx+eiAaSbAitjY0N\n0yEAAOCrYTqSd7s/HhIGwHCj+brdd1MYB78C3OQMbjAIt/vijesAWn6KSk22kQY+AIJgcXHRdAgA\nAPjKZEfycepEG+jGZOf/dLiOuEun08bKAQNoYVDUZAMGlM/nqXYMGJDNZnXx4kVVKpUD7xeLRUNR\nAfGwtbWl73znO7p58+aB94epVQdgNHfu3NFzzz2n69evH3h/Z2fHUFRAPGxvb+vSpUtaXV098H42\nmzUUVTR5UYstFDXZ6DwQcZbJZFStVg88PSmXy61ho71EMx3E1dzcnObm5jq+D8BbCwsLWlhYONBM\nZmFhgQdPgA+OHTumY8eOHWgqeuzYMcog4LH5+XnNz8+rUCgceJ/m2+4zlRRz21A12bjJR9x1qp7s\nR9Z/AHgAACAASURBVIJNopkOAMCcTs1kEgkaRAB+6XQN6lcZJJmHuJuenj7wHs230c1QR2ZnR9rc\n3JSkA013vLS2tubb8gbtTDEqy0V4tF/kHKaZ3LAJ80aj4WuzPJ4MxVPQH+TUajWVy+VDz2fYm5VS\nqXToZQ6q2WwaKX/cwJnHNggOtgWCJpFIuHYdOOz9nN/XBjSDjyc/8xroLpbNRR1Hjx6VJI2Pj7sa\nTC8nTpzwbVlHjhzxbVlBWC7Co/2J5dTU1MjzGbZWXDKZPNTyhsWToXgKem3NVCrlSozD1jyYnJw8\n9DIHlUgkjJQ/akSZxzYIDrYFgsit68Bh7x/9vjYwObgMzPEzr4HoY3RRAAAAAAAAGBOVPtlIsgEA\nAAAAAMCYqCTZqI8OAAAAAAAAHBI12QAAAAAAAGCEyYEK3NY3yWZZ1mOSHrv3smJZ1ovehjSwRUkb\npoNoE6R4iKW7IMXzvf0mCHD5k4K1LomluyDFE6RYhi1/ecuyNhWc+IO0LoMUixSseIils/sty3rM\ntu3He00U4HNgkNalFKx4iKW7IMXDNah7iKW7IMUTpFj6lj+Em2Xb9uATW9aybdtLHsYzsCDFIgUr\nHmLpLkjxDBtLkGKXghUPsXQXpHjCHkvY4/dKkGKRghUPsXQX5nNgkGKRghUPsXQXpHjCXP6kYMVD\nLN0FKR5iCb5Tp07ZP/uzP+v6fH/zN3/zWb/XN81FAQAAAAAAYExUmosy8AEAAAAAAABwSMPWZOvZ\nd4bPghSLFKx4iKW7IMUzbCxBil0KVjzE0l2Q4gl7LGGP3ytBikUKVjzE0l2Yz4FBikUKVjzE0l2Q\n4glz+ZOCFQ+xdBekeIglBKJSk22oPtkAAAAAAAAAt5w6dcp+7LHH+k84pE9/+tM9+2SzLOtzkn5U\n0rpt22/v8PmHJf1/kq7ee+sLtm3/372WSZ9sAAAAAAAAMMZQTbb/R9JnJP1Bj2m+btv2jw46Q/pk\nAwAAAAAAQKzYtv2UpC0350lNNgAAAAAAABhhWZZXNdkWLctabnv9uG3bw/aL937Lsl6QdFPS/2nb\n9ku9JibJBgAAAAAAAGM8SrJt9OqTbQDPSTpn23besqyPS/pTSRd6faFvc1HLsh6zLGv53j/3e6ID\n0BXlDzCH8geYRRkEzKH8AYBk2/aubdv5e39/WVLKsqzFXt8ZanTRxcVF+/z584cKEsBd165d08bG\nxsDpesof4B7KH2DOsOVPogwCbuIcCJgzyjkwDk6fPm3/wi/8guvz/fVf//Weo4tKkmVZ5yU90WV0\n0ZOS1mzbti3Leq+kz0u63+6RSBuquej58+e1vLzcf0IXlctlTUxMjPwd27bVbDZVqVQ0NTXlRYi+\nKhaLSqVSSqVSfadtNBpKJpM+ROW+RqMRmW3WzdLScLVWTZS/XC6nmZmZob7TbDaVSDCmCoItDOVP\nkur1usbG9p6qbdseqDp9pVKRJKVSqdiVyUqlovHxcdNhjKRSqUR+mw1b/iQzZbBer6tcLiuTyex5\nf2dnR7Ozs32/XygUND097VV4RmxtbWlhYcF0GDikMJwDS6WSEonEgWN5r3vD9mN/LpfTxMSELMs6\ncB4No2KxKMuyNDk52XfaWq2mVCoVynNhrVaLzDbrZpRzILxjWdb/K+nDutt32w1Jn5KUkiTbtj8r\n6Sck/YJlWXVJJUn/tFeCTQpBn2zd4u910Gj/jmVZSiaTkUnWjI+PD5w4c6arVqtKp9NehuW6KG2z\nMJuZmWmdqNt1uvF3tN8Ybm9vK51Oa2xsLHQn+U6GSVw7N1ejPCgwrVAoRGabhV2nREulUhlon0om\nkxobG1O9Xo9EwqbTsagbZ98N4/lvfHw8Mtss7MbGxg4k2CT1TLAVi8XW9YuTYMvn8x3nE0ZxSbBF\naZuFVbdkUq/zX/t1y8zMTCiTTN0Mcw/YbDYlKZSVLZrNZmS2GYbnUZ9sPdm2/X/0+fwzkj4zzDwD\nn2TrdoDtVfgGyfCH1SgHy7DdYCBYOt3UDvp0aX5+3u1wjBqm/Dk3V2FLsEmKXM2LMOuUaBl0n3LK\naVSeBg+aYGsX1vNfVLZZHHV6QEiyJnzYZtEQpWTNMNegzu8O47kkStsMwzORZPMCj0kBAAAAAACA\nQwpfehsAAKCLQfusA+CNQfusA+CuSqUi27ZD2YoCsCwrMtdv1GSLoGq12urwOm6y2azpEBBz5XJZ\n9XrddBhALMX5/JfL5UyHAEjq3WddlHENCtOSySQJNiAAqMkWQWHtg8YNcf7tCIY4X9zQUTRMi/M5\nYNiRoAG4a5R+IwE3hbEPNreEcaAjHBSVmmzxLYmIJEYkBcwhwQYAiCsGDQLMIcEWDVFJstFcFAAA\nAAAAADgkarIBAAAAAADAGGqyAQAAAAAAAJBETTYAAAAAAAAYRE02AAAAAAAAAJKoyQYAAAAAAABD\nLMuKTE02kmwAAAAAAAAwJipJNpqLAoCHKpWK6RCA2KrX66ZDAADAiGazaToEIJaoyQYAHhofHzcd\nAhBbY2Nc5gAA4imRoD4NwoWabAAAAAAAAAAkUZMNAAAAAAAABkWlJhtJNgAAAAAAABgTlSQbzUUB\nAAAAAACAQ6ImGwAAAAAAAIywLIuabAAAAAAAAADuoiYbAAAAAAAAjIlKTTaSbAAAAAAAADAmKkk2\nmosCAAAAAAAAh0RNNgAAAAAAABhDTTYAAAAAAAAAkqjJBgAAAAAAAIOoyTaCSqXi5+IAAAiEarVq\nOgQg1kqlkukQgNgql8umQwAA3/hak218fNzPxQFoU6/XNTZG5VXAhHQ6bToEINYmJydNhwDE1sTE\nhOkQAAScZVmRqcnGHTcQEyTYAAAAAABBFJUkGwMfAAAAAAAAAIdE1RYAAAAAAAAYE5uabJZlPWZZ\n1rJlWct37tzxIyYA91D+AHMof4BZlEHAHMofAIymb5LNtu3Hbdtesm176dixY37EBOAeyh9gDuUP\nMIsyCJhD+QPgN2fwAzf/mUBzUQAAAAAAABgTm+aiAAAAAAAAAHqjJhsAAAAAAACMMNm8023UZAOG\n1Gw2TYcAxFapVDIdAhBbtVrNdAgAABhRKBRMh4CQIMkGDGlnZ8d0CEBsFYtF0yEAsZVIcNkImHTj\nxg3TIQCxlUwmTYcQeVEZ+MDVqyWvbn46zbder3f8e/9r56lrvV4/MJ2b8fhlkAx6s9lUpVJpvQ7r\nk2fbtvtO4/xOZ9u+/vrrku4mwtrXwWE1m03dvn27NW/H9vb2UPMpl8uuxRRU7dvNqXWUy+VMheOq\nUY4hg+zHQZTP5weedmNjo/V3o9HwIpzWejx69OjI8/Aqtnq93vM4O+oxuNN8+yX5d3d3W383m03t\n7Oy4du7r9zu9VKvVlM1mtba21nO6SqWiWq3WOta2r4+wGPRBTq1WU6PRULVa1crKii5duqTd3V1t\nb29rc3PTtXiuXr2qb33rW7p48aLu3LnTev+pp546cMPfa32XSqVQbo9htV+neXXMMcXN66qgG+Za\n37n29MOZM2dafw97Tdleft3U7xwz6nVQp/kO25qk2Wy6dt5y61w6ikHX4f7fGsYHk6NsY+c7Xvxe\n55jebDY1MTHh+vyxF0m2fba2tnpmd4e5Yes3383NzT0n+v0n/faTSKFQ0ObmptbX1125OOj3O72U\nz+dVKBT6PsWqVCrK5XKtBFAYExybm5vKZrN9p8vlclpbW9P29rb+4i/+Qs8++6xefPFFXblyxdUq\nvd/4xjf0jW98Q3/wB3+glZWV1vsXL17c81rqfYCv1WpGTnhurot+26W9Od/k5ORA2zEMnHXY7wZ4\n/wVOGKuWZ7NZpdPpgaZtNBpaXFxsvXaOj6Me8zvZ3d3V888/f+CG9cqVK/r2t7+9572tra2u80km\nkz0/H1W9Xlcqler6+djYaN2fdprv7Oxsz+8cOXKk9XcikdDs7OzIyx8kHr+MjY1pbm5OJ06c6Dnd\n+Pi4UqlU60K4fX2ERb9t7EilUkomk0qn01pYWNBDDz2kiYkJzc7OHioZvd/999+vRx55RBcuXNDJ\nkydb73/oQx/ac8Mv9V7fk5OTnm2P27dv9zzmXL9+3bX5vvLKK1pfX2+9bv9buntd4HjjjTf0yiuv\n6Fvf+taB6dyKxy/Xr1/XjRs39PLLL/ecrlwua2VlRdeuXZPU/5ohiF555ZX/v707jZEku+u9/4vM\nrKx9666u3qZn6Vk8HpuxNW6PL5bxgjFgZBahi2Qj+0oXkGV0WV4gGYtH8iMwL5438MLijtEIoUcj\nMJZA4tEIwXMFg2E8Brenx0v33GnP4p7pruqurj3XyD3jvuiOdNaSlRlVEXli+X6kUndlRkX8Yzlx\nTpw4i65du9Z3uRs3buill15SsVjUU089pU9/+tP6l3/5F33ta1/z5Xy7/uIv/kK/8zu/oz/4gz/Q\nn/7pn3Y+/5u/+Zs95+OgIRUajUYgQy6k0+kDn7EO+5C733r7VTZ1lxMajYYcx/Et3+q3n0Ea9Bi6\n++oep4mJicBiCorXStl2uy3LsnT79m1NTEzItm3V63Xf4pmcnJR0p0zVXQHo9WVWVBu94HAsLxfy\nhQsXnEuXLgUYDpAcFy5c0KVLlwYueZD+AP+Q/gBzvKa/u39DGgR8Qh4ImHOYPDAJ7r//fueLX/yi\n7+v99V//9Zccx7ng+4oPwOAagEdMfAAASKIkdRcEAKAbrdEwKCrZAI94yADMoYADmDM6Omo6BCDR\nkjC2LxBWpobMSBLGZAMSanx83HQIQGJRwAEAJBUDrwNA+PkzGjIAAAAAAADgkcmWZ36LXCVbs9n0\nbaY0AACiot1uK5WiAToAAADiJy6VbJErrVPBBgBIIirYAAAAgHCjxgoAAAAAAADG0JINSCjbtk2H\nACQW6Q8AkFT5fN50CEBiMbsvBkVLNsCjiYkJ0yEAiUX6A8xhXEDArJmZGdMhAInFsFXBi0tLNl+u\nlJdfflm/+7u/q6eeekpve9vbJElvvfWW7rvvPlmWpUKhoFdffVXvfe97B1rf8vKybNvW/Py85ufn\ndeXKFf3t3/6t/vAP/1AjIyPa3NzUxsaGstmsXnvtNT355JN69tln9Z73vEeXL1/WE088obe//e26\nfPmyXnjhBS0sLOjee+/V29/+djmOo9nZWc/7+Morr+ixxx7TtWvXND09rWeeeUa/9mu/pueff17n\nz5/XyMiIHn30Uc/rHcTf//3fd7bdbDaVTqf18MMP6+GHH+75Nz/84Q/14IMP6rnnntMHPvABjY6O\nBhKbnzY2NvTWW2+pVCppYWFBzzzzjKrVqr785S8f+Hfb29uSpJs3b+qd73ynJOn1119XPp/XhQsX\nfIlte3u7cy2m02k99thjkqRLly5Jkp577jl98IMf1Dve8Q5tb29rYmJCJ06c2LGOUqmkX/3VX9Xn\nP/95FYtFtdttX2L74z/+Y128eFF/8id/okceeUTSnfO/vLysD33oQ6pWq/rGN76hj33sYwOtb2tr\nS5cuXdKTTz6pjY0NLS8v68qVK/rt3/5t2bat27dvy7ZtFYtFXbp0SR/84Ad169atzjXnXpvf/va3\ntbS0pJmZGaXTaT355JO6ePGifvInf9LzPt68eVPFYlELCwvKZrP6q7/6K334wx/WtWvXtLi4qLW1\nNX3iE5/wvN5B/NM//ZMeeOABvfDCC5qZmVG9XtfP//zP97yP2LatjY0NpVIpLS0t6dFHH9X8/Hwg\nsflpe3tbP/jBD3TlyhX92I/9mL70pS/p/vvv11NPPdXzb2zb1vr6uqQ7D9+jo6M6c+aMXnrpJS0u\nLurcuXO+xLa8vKzFxUV95zvf0bFjxzrX+eXLl/XNb35Tt2/f1kc/+lE99thjKpVKmpqa0sLCwp79\n+73f+z390i/9kvL5vJrNpi+xffWrX+3s+6/8yq9IuvOm8+/+7u/06U9/WqVSSVevXh04/7t9+7au\nXbumlZUVPfzww50Kjfvvv1+WZSmVSunKlSvK5/O69957NTc3p6tXr+r48eM6efKkJicn9cwzz+ht\nb3ubrly5opGREX3wgx/Ugw8+qOeff14/8zM/43kfX3/9dd2+fVuWZenChQu6deuWvvrVr+pTn/qU\n8vm8JicnO3m/39bW1vT000/r8ccfl23bqlQq+uhHP6p777133+XL5bLS6bRu3LihU6dOaWVlJbDY\n/NRoNHTx4kXVajW1221dvHhRmUxGX/jCF3r+Tblc7hT46/W6CoWCzp49q+eff16PPPKITp065Uts\n29vbSqfTmp6e1uXLl/Xud79bkvQP//APyuVyev/73698Pq9araYTJ07owQcf3LOOdrutp556Spub\nm/rN3/xN1et1X2KTpK985St68cUX9bnPfU5PPvmkJGlpaUkvvviifvmXf1nValWvvvqq3vWudw28\nv255YmlpSRcvXlQul9Nv/MZvqFwuq1Qq6ebNm3rttdeUyWT0nve8R9/85jeVSqXUbDb10z/90zp9\n+rTW19f17LPPampqSg8++KDe+c536lvf+pY+9KEPed7HW7duSZJqtZrOnDmj5557Tg899JDW1tY0\nNTUlSZ3z4rfvfve7OnHihC5duqTx8XEtLS3pIx/5yL7nWVLnGFUqFV27dk1PPPGE5ubmAonNT+Vy\nWf/xH/+hXC6nxcVF/f7v/77Gx8f19a9//cC/cVuWFQoFLS4u6tixY/re976n48eP+5YH3r59W/Pz\n83rllVdULpf1gQ98QJL0b//2b7p8+bLuuecePf7445qdndUbb7yhd7zjHXsq43K5nD75yU/qE5/4\nhM6ePetbGfSZZ57Riy++qPe///361Kc+JelOnn316lV97GMfU6VS0be//e2Br/utrS1dvHhR4+Pj\nmp2dVaPRUC6X0/33369z586pWq3qypUrnVkIH3zwQX3/+9/X6OioJiYmdM899+gzn/mMvvjFL+ql\nl17S6Oiozp07p8cff1wbGxsD58Xdbt68qddff12jo6M6f/68/vmf/1npdFoPPPCA6vW6LMvST/zE\nT3he7yC+/e1va3V1Va+88orOnj2ra9eu6Rd+4Rd6pvdKpaJqtarNzU1Vq1UdO3ZMZ86cCSQ2PxWL\nRf3rv/6r2u22CoWCvv71r6vdbuuZZ57p+Tfuvkp3yl2jo6M6duyYXn75ZRWLRf34j/+4L7Gtra0p\nk8loa2tL1Wq186z5wgsv6OrVq5qZmdHCwoLm5+c1PT2tc+fOaWxsbMc6CoWCPv/5z+v06dP6yEc+\nokaj4UtscROn2UUtx3EGXvjChQuOW6kwCPdhp1arearkyefzex5gi8Wipqend8wu6jhO50RUKhWN\nj48PvA2v1tbWtLi4uO93QW9b2v+Y9NJsNmVZlhqNhsbGxjwf/yhxKx2lnTXf6+vreyq5gmLb9qFa\n11y4cEGXLl0a+E5yUPr73ve+p3e9612dY9B9ztvtttrt9sBvX9w0duXKFT322GNKp9Mql8uanJzs\nLLOysqLTp093fu9OA7ZtK5fLaWVlRfPz8zp//vygu9iTuz/b29uamZnRysqK1tbWdP/99+vYsWNH\nXv9B1tfXtbKyoscff1z5fF71er3vtdVqtZROp9VqtVSv1wO/P/ih0WhoZGRElUql8/9SqTRwOgqy\nhYu7bjcul3tdrq6uKp1Oy7btnpUv7XZbpVKp8+DhV/q7fPmyzpw5o1wup4ceekjSnfzKcRzNzMyo\n2Wzq2rVrnYrBfqrVql577TU9/vjjKhQKsixLtVpN5XJZ586dU6vVkmVZyufzsixLY2NjKhQKSqfT\nmpycVK1W07e+9S19/OMf19LSklZWVjQxMaFTp06p2WwequKlVCppeXlZDz30kEqlkl599VW9733v\nU7Va1dramhzH0X333ed5vYO4du2azp8/r2984xs6efKkUqmUZmZmeubH7v2uVCopk8locnIyEgW2\narWq69eva3p6WplMRlevXtW5c+cOvH+22225ZbhWq6VWq6Xx8XFtbm6qXC73TAtelcvlzjFsNBqd\nskihUND169d13333aXNzUw888EDP/LDZbOrFF1/U+Pi4zp07p5/6qZ/Sd7/7XU8nxksZtLt82Gg0\nVK1WNT09PdDfumXX73//+wNXzHWX0TY2NrSwsKBqtbrnQeuwtra2dOzYMW1ubmpyclLXrl3T5ORk\nYOmu29WrV1UqlfTe975XN2/e1JkzZzylKT+PQ5D8LMv7Xe7ufvbp5fr165qbmxv4WcGvPNBN86ur\nqzp58uSe75vNpra3twcuS7gVRGfPnpV05z7XbDbVaDQ0OTnZKV/Ztq1sNqtGo6Faraa5uTm1Wq1O\nWSGbzXbyroWFBR0/flxvvvnmocqkpVJJ+XxeZ86c6ZRHusvb5XI5sLKou73NzU01m02dPHly4GfC\n7vtgFKyvr2t2dlbZbLZzHx1Uq9WSbduanp7W1taWxsbGfO354B7L7ufLjY0Nzc/PK51Oq16vK5vN\nHni/W1paUiqV0tmzZ/XEE0/oO9/5TnROzpCcP3/e+aM/+iPf1/uZz3zmJcdx/Gl5M6BAK9kA9OZn\nJRsAb0h/gDle09/dvyENAj4hDwTMOUwemATnz593vvSlL/m+3k9/+tNDr2TzpdlBqVTqOxDgxsaG\nH5val5eKwqMqlUqd7lFhVSgUhnpMsNOwr49yudx3GbdLbdRtb2+rVCqZDuNADIpqVpB5zX4GudcG\n2S2g1WoFtu7d2u126O8lpVJpqMcE5i0tLfVN94Pkk1HgthIPM/JAswqFgukQ9igWi4Gtu1KpBLbu\n3QqFQujzwEqlMtRjgp24/8Hly5hs7ngQB/HS5NOrYTaFnZqaGmh/TXK7KDE4oxnD6qbq6u7G2UvY\nr9lBzc7Ohr7pexS6xcRZkHnNfga5Hlut1o5urn7q7jIftHa7Hfp7SSaTUaVSCX2c8M8g417FZbKG\nubm50I9vRh5oVhgnRhi0q/ZhZLPZwNa928zMjGq12tC2d1hRGKIkrrj/HV3Yn/MGFVipw2RNbtze\nYtu27bklRFwq2A5zHdm2HUAk0bL7rWFQD/jD1j0OBoIX5NvnuOueWMFLocvrhAy7x/0J6gHAcRxl\nMpnQ30vGxsY6FWxJbNHt12DmUddsNne0evby0BnW1tLuAPsmbG1tGdu2SX5NkJM0lUrl0HmR17/b\n/ZIpiJbjtVqt8zwy7DGu3Ql/BtV9r4t6fnCYFnmk2ehzJz/w88eEwCrZTBZug3irX6/Xjb29GB0d\nDf2DTVAOcx35OdBlVE1PTx+6oHHUAkoQ3XKq1aqxjDNulfZeHObtcxTe8g7DYVvOHLXFTRAPACbz\nv6Pcj5JYIR/1hyq/ZDKZQ7dmDGsryEEHtA9C0BMMhdVhXliHtZJ2mMbHxw+dFx01DwviHphOp421\nUBodHT10y7Sot+A9zH7HpZEJoi+wKzFuTVWH2Rx5t2F1BQqjuF1Hw3TYitmjVugO0n3VK5PNr5Oc\n/g4jrjMZe2Wqki0IJvO/pL5gOiweMACzwlpJmxRBlEFM3lcpgyJp4vKCNHyleeCIGHQSMIcupoBZ\ndJcBzNndVRnA8BylqzLgJ155InaSOA4PEBZuV2VaIAFmhLE1JJAUR+mqDOBo6AEVbSbHUPPb0Epi\nXt/qeFn+oGVt2w7ldNbwRz6f33P+Td9gB514YVhjfXmdCOKoE0d0/30ul1OpVFK9Xj/SOqMszhNx\n7HcN1+t1IxVs7jWWy+WGvu1+vA7e62X5g5Z1x6aJ8zWYdLvPv23bRirZ3GssjGPC1et1bWxsBLb8\nQcvWajXV6/VEv/yLc/7farX2nH9T59rdbtha8ZTLZU89TLwuf9Cy7hjBSc4DgxgnOSwqlcqe82/q\nXLvbjfPxhjdDKYltbm56eqvjdfndy3YnsHQ6bXQ8mTDY3Nw0HUJgarVa6N4YDjp+wjDHWfBa8eBl\n+d3LdncXnJub09TUVKILOHHWarX2nH/TBZy5uTkj2++l3W57qlD3uvzuZbvTX5In7XCFsdLHL/l8\nPnTneNB4hnlestmsFhYWAlt+97Ld98TR0VGVy+VE54FxLoNblrXn/JvOAwcdk2xYadBxHE8Vf16X\n371s9yy8Y2NjqtfriZ4QLe4V/LvPv6lz7W7X5BjScWFidlHLsv7Ssqw1y7Je7vG9ZVnWly3LesOy\nrMuWZT3Rb51D6S56/PjxQJffrTuBMQj30Y9nmC0uLpoOYY+wXXMTExOeMh2vy++u1Dh58mTfZZIk\nzoW7bDa75wHK1LkO6zWWSqU8vQjwuvzuZbtnhHVbFMb5Guwnzl0n95tt0vQDxqCtWON8Xnbfi+bn\n5w1FgqDtdx0HMfnTILxud1hp0OuLcK/L774Pdv+eTqcTP3FA2Boi+Gl8fNx476Xdkn69+cFQd9H/\nV9KfSXqmx/cfl/Tw3Z/3SfrK3X97imQph+6f/RUKhdi/vXC510OpVArsjXGxWFQ+n9dbb72ly5cv\ndz732g0sDhjQt78kTb5RKpW0vb2tlZWVfVu2+WF1dVWFQkHlclnr6+udz1977TXft4XoK5VKoWvh\nFaTuLjNBtk4pFAq6fft2YOuPijh3f/RLkvLA3ddDEN01S6WS3nzzTV2+fFkvvPBC5/OXX9630QUS\nrlKpJOr5pNFoaHV1VVIw3TVrtZpyuZzy+bxeffXVzuc3btzwfVsww3Gc5yVtHbDIL0p6xrnjW5Lm\nLMs6fdA6I1nJFuem534ZHR2NzcCB/WSzWdXrdRWLRbXb7UDeIhQKBTUaDd26dUvveMc7Op93N0tP\niji/FfNLku5RU1NTWl1d1ezsrPL5fCAtyk6ePKmZmRm9/vrrO47tI4884vu2EH1jY2OJmmHTfdHk\nVnQHoVKpaGZmZsdLrKS8yNuNMXf6S1JrjnK5rOXlZa2ururGjRuB9GbIZrOq1Wp65zvfqQ984AOd\nz8PYmyNoVHL3NzIykphyaL1eV6PR0NTUlEqlUiDdNUulkubm5rS+vr7j3nbvvff6vi2Y6S46BB34\n2QAAIABJREFUgLOSlrp+X777WU+RnF2U/s79dWfy1Wo11sfM3bfTpw+sUD6Ss2fvpKPdY2+cOnUq\nsG0iurq7YbRardg/cDz66KOSgu+q9u53vzvQ9SMeMpmMMpk7xZtKpRK67iR+c7voB5kHusfw/Pnz\nnc+S8iJvN7p/9tfdbXh9fV0nTpwwGE2w5ufnA78mstlsJ5/tlsRKtqRUHh2Fm/8lwX7DlvjNHXbp\noYceCnQ7CNSCZVmXun5/2nGcp4PcYN9UaFnWZyV9VqLGNqoajUasK9nijPQXfXGvYIsz0l/0xb2C\nLe5Ig9HXaDRMh4BDIv1FX6PRMDLjO3BYAb3A23Ac58IR/v6mpHNdv99z97Oe+nYXdRznacdxLjiO\ncyHOb6LirHsgbEQL6Q8wh/QHmEUajL4zZ86YDgGHRPqLPirYECVBdBX1qdLuWUn/7e4so/9FUt5x\nnJWD/iAy7Unj3uUR/mm322q324lqLh20YrFIZS1gULPZ5J6Gvmq1WuhmuI6DZrOparXKmKSAAZVK\nRalUinsb+qLlHg7Dsqy/kfRh3elWuizp/5Y0IkmO4/y5pH+U9HOS3pBkS/rv/dYZmRJ7UgfYhXe1\nWo1KNp9NT0+TcWEgXCfB6B7nD73l83nNzs6aDsMYHkKDkclkqGDDQKrVqgqFQiLHSwsK3f4Hl/RG\nKZQ/o8/EeK+O43yqz/eOpP/hZZ2RKbVzg8WgxsfHNTk5aTqM2CHjwiC4ToJxUCVbu90eYiThluQK\nNpiTtBfB7oy22GtsbIwKtiFL0mzS0p3GBL0kuYINCBOa+gAAEGG0cgPMStpMqzMzM6ZDADqS1nOF\nFsuIs7jkp76UzKvVqh+rORLbtk2HMDQbGxumQ0CItFot0yEkKv1tb2+bDgEhUqlUaNUxRMxUiN3W\n19dNh6B8Pm86hKEpl8umQwB2CMNz6LAUi0XTIQCBCunEB575UsnWaDR0/fp1P1Z1aBMTE0a3P0wL\nCwumQ0CIpNNpvf7660ZjSFL6Y1wedHO7p5t8yE5Sd9EwvFRAuDQaDeMVbUlq2UXLWXRrNBoqlUpG\nK7qS1JKNSciAaPDlrjQ9PU2iBwy6//77ValUGLtwCBhzDLs1Gg2jY4El6aGX8Waw25kzZ1SpVIzO\nrBqX7i2DoJyBbiMjI8bLRUmqZAPiLi75aXJK5kBMNRoNNZtNCr6AAUmfyQswrVKpKJVKMU4RAAAI\nBar+gYgLw1tEIKmoYAPM4gUTAADRZ3IMNb9RyQYAAAAAAABj4lLJRndRAAAAAAAA4Ih8aclWrVY7\n3dXS6bQfqwQwoHa7naiBz4GwabfbajQajAkFAEiUWq3W6eLF0CUAjoqWbF0cx1E6naaCDTAglUqp\nXC6rXC6bDgVIJMuyqGADDLFt23QIQGKNjo4qm82q3W6bDgUAQsOXlmwMOguYNTk5aToEILHi8tYN\niKKJiQnTIQCJx4smAH6IS5maPmYIFVpjAQAAYNjW1tZMhwAAiAFmF0Wo0CILAAAAw7a4uGg6BABI\ntLi0ZKOSDQAAAAAAAEa4k6jEAd1FfRLmAT+r1arpEIDECvO9AfBDrVYzHQIAAEY0Gg3TIfRE/gyY\nQSWbT8J8E3Mcx3QIQKDCXMBJpbjNIt4Y8BowK8wvU5n9FXE3MjJiOoSeyJ8RNW5rNj9/TODpzydh\nnmE1zLEBfghzAQcAgCCNjY2ZDqEnZn8FACQNY7IBAAAAAADAGMZkG7L19XXTIUQWY0LhqDY2NnxZ\nT7lc9mU9ADCIMA/lgOgoFAqmQwASy6/u0EnMD8I8nAqwH7qLDtmJEydMhxBZScxU4K+FhQVf1jM5\nOenLeqKEAg5gDuPRwA8zMzOmQ4isMI8Xh2jwqzt0EvMDhlMBzKC7aAIwJhtgDgUcAEBShXm8OABA\nuNBdtAdmEQIAJBFd8wEASdVsNk2HAACh4HslG7MIAebQNRgwh0o2wKxSqWQ6BCCxMhk6SAE4vCDG\nY2NMNh+sra2ZDgEwKonjTQBhwQMGYNbU1JTpEAAY0Gq1TIcAwAdUsoXQ4uKi6RAAAAAAAEOSTqdN\nhwAAHbx2j6l2u612u03LCgBAotRqNVr1AgASqdFoMOkWIisuEx9QAxNTqVRKqVSsGioCANAXFWwA\ngKSigg0wj0o2AAAAAAAAGBOXlmyRbOq0sbFhOgQgsba3t02HECmNRsN0CIgRridvqtWq6RAQM+Vy\n2XQIkVKpVEyHgBgpFoumQwCAviLZkm1hYcF0CEBiMXubNzTbh59arRbXlAdjY2OmQ0DMMBSHN+Pj\n46ZDQIxMT0+bDgFAgBLTks2yrM9alnXJsqxL6+vrw4gJwF1hTH884CMpwpj+qDRCkoQxDVJphKQI\nY/oDEF+WZQXyY0LfSjbHcZ52HOeC4zgXTpw4MYyYMADbtk2HgCEg/QHmkP7CiS6zyUEaBMwh/QHA\n4USyuyikdDptOgQAAIaO1rSAWaVSiaEjAENqtRqzaCO2EtNdFOE06M21VCoFHAmAXhh0PVi1Ws10\nCAixer1uOoRY4/gm16AVbJubmwFHgkKhYDoEDNmgz4BM0hI8yqHohZZsMcebRsAcxs8KFm9ycRBa\nvAUrm82aDgEhd/z4cdMhxN7MzIzpEBBSjB8ZPMqh/qMlW0j0G5vMtm1qmRGYuF5btVptoH0bJP25\n60P47T5P7Xbb0997Xf4wurcR15Y0zWZTzWbTl5aQ9XpdzWbTh6ii1zIzagU195xH5X4ZlTiPol9L\nkHw+3/f7SqXiWzxRGo/QvVf7uf/DUC6XD9ULZNj5nyRtb28Hvk0T2u222u123zxnkO+r1apv5yZK\n13KlUoncTMjuOd/e3pZt257OW6VSCTwNDmMbCGbyAxNCn/r6FXAmJib6fu9nLXOr1fJtXdhflJo3\nx/V6yGQyymQyfTOTQdJfs9lUJpO8RrPuA2iUCmXuOXfToJcCWq1WC7xAt3sbcW1J46a/fi0h+6XP\ndrutbDbrW/qLUstMtwLWrwrGYXDPuWVZngvyw6hw3r2NOL/BLxaLKhaLmpycPHC5fq2IZmZmND4+\nrmKx6EtcjuP4sp5hcO/VUWpN457zqakp1Wo1T10xU6lU4F03d29jfn4+0O2ZkkqllEql+uY5/fI2\n957qV9kkSnlglNKdyz3n8/PzGhsb8/RSYXx8PPCXELu3EbUXjxiu0D/59ivgDBsTDgQvbOf8IP0q\nmaLKz+s8iRVs0o8eQKNU0HHP+2HS4DAeuOP8UH8Y/R4covYW209uBWwU7z+HqTweRoVzXCu19zM9\nPT3Qcv3ekLvfD7q+fpJ0DkzoPk+jo6Oe85xhdN2ke+iPDFLJ5qeotY6OslQq5Tn9DbscGqVK1yiJ\nSzrzrQReKpVoQgkY4jhOIrruAGEUpS5cQFzlcjnTIQCJ1Gw2KYMCQBffKtmmpqZ40AAMabfbtPIJ\nIQqdyTAyMkK3gRDya1w7hJ9t25FqBZ8kURoCBIeTyWQog4bQIOPaAWESxHhsplrG+dqOlhssYAbd\nmMOJe2Jy0G0gfNyx7RB/cR26IQ6o/ATMGGRcOyBs6C4KAAAAAAAAQFIEJj4AAAAAAABAfNGSDaFm\n2zZj5AEAAGDotra2TIcAJJJt26pUKqbDABKNlmwxNTo6yjhdgCGtVov0BxjSaDQ0MjJiOgwg0Y4d\nO2Y6BCCReAZElNGSLaGiMksLN1fEUbFYNB3CQEh/iKtms2k6hL5GRkbkOI7pMBKDYz08zWZTpVLJ\ndBgDyefzpkNIDI71cFQqlUjMGs/M2sNTq9U41tgXLdk8ikphsl6vy3EcZjccAo718ExPT0eilUq1\nWmVmwyHhWA9XKhX+d3P1el3tdptZ1YaAYz1cmUxGU1NTpsMYyOzsrOkQEoNjPRzj4+OmQxhIOp2m\nTDQkHGv/xaUlG1eFR1G5wWazWdMhJAbHerjCXsEmiQfOIeJYD1cUKtm4Jw8PxxoAwoVKn+HhWPvL\nsqzYVLJ5Li2XSiWaRQJ3tVot2bY9tO2Vy+WhbQvATlFpyQwMQ61WU7vdHuo2l5aWtLGxMdRtAgCw\nW6PRiMQQGjDDc/VrVJqpA8OQTqc1MTExtO1NTk4ObVtA2JXLZWUymaF11Y7L2zXAD6Ojo2o2m0Nt\n3Xju3LmhbQuIglKpxLMZYEC73WaooADEpawd2n4f9Xq98/9cLtf5f7PZ1LVr17S5udlpUee27rl1\n61Znue7WRYVCwbe4crmcbt++rVwuJ9u2O7EFPRCtuw9etlMqlXYcuyhot9u6ceOGpMHO25tvvqmb\nN2+q0Wh0zklQ3Gtye3t7x+e2bWttbU2S+r7Vf/XVV1UsFpXL5XZc40fRvf39Pu/1fS/r6+u6efNm\n5/dGo9H5/+bmpqQ7+3H16tUd++Cmx+50Id25Dv3aV0laXl6W9KP7wptvvunbunvxsg+2bQ8lpiBU\nKpXOW7lSqbTnWt+Pbdud6yWo+427jevXr++Y/GJyclKvv/66bt68qWKxqEqlou3t7Z7X+1tvvRWJ\nae2701z3IMvdLVmbzaZs2973Leru+5Bf90X32BeLRbXb7c7vwzimtm172k4UzvNu3edd6r8PtVqt\nk+bccxJkbK1Wa8/nmUxGzWZT6+vrajQaB8ZcKBQCOy9vvPHGgZ/3+n4/rVZLFy9e7Py+3/2kVCrp\n5Zdf3tG6tVe6dcdt9UMul1OhUFAul+uc/1deeSXw1n3uPgy6nWHEFBT3Oh8kzy8Wi7p9+3anDBrU\noPj1el0XL17c8Zzjmpyc1L//+7/vSP+9rvf9/t4Pbtmw1+e9vt9PvV7X+vp65/fuY7q6utq5FldW\nVmTbduf77l5Wu3t9+Pls4G7P3caNGzeG0sPLtu2BtzOsmPy2+7ztzhP3U6vVOmk1qN4+5XJZ6+vr\nunHjxo772ujoqIrFoi5fvqz19XWVy2U1Go2e1/utW7c639EzIv58qWSzbXvfhzH3817f97K0tLRj\nppzuh6rr169rYmJCtVqt87nbumdubq6z3e7Z/fwcMySbzWpsbEzZbFbpdFrZbFZvvPFG4G+R3H0Y\nZDu2bXdimp6eDjQuv+Xz+c6079lstm8hZ2FhQePj4yqVSp1zEoTNzU3l83ldu3ZNq6urO767cuVK\nJ9PN5/Oq1+s9r/fJyUk1m01NT0/7VlNfLBa1uLjY8/Ne3x+0vu4CSXdmsbm5qUqlooceekiPPPKI\nbNvuZGru2FjFYrGTFqU716xfBZxSqaR77rlHpVJJc3NzKpVKOnPmTOCVye4+DLKdYrE4lJiCYNt2\nZ3yJqampPdf6brVaTaOjo5qenu6ckyBjm52d3fdFg23b2tjYkG3bWl1d7Xm9z87OeqpwHkSvGW+7\nK6S8yOfzO66d7rekIyMjWl5eVqlU6rQectPn1tZWZ3v7VYb4wc1Ppqen1Wq1Or8Htb3dBtmOe7xb\nrVZkZmF0pVKpHQ+U/V40pdNpzc3NaWtrq3NOgtBut5XL5ZROpzvXmatYLOr69euS7sR/UMyO42h7\ne9v3Fy+5XG7fFuXu572+76Xdbuv48eOd37vvJ//5n/+pixcvdvbDtm3dvn1b0o+uz1wutyPdlstl\n3/LAkZERpVIpjYyMaHR0VCMjIzp79qwWFhZ8WX8v7j4Msp1cLteJKSozgruWl5c7L43K5XLnpV4v\npVJJ8/PzqtVqnXMShGw2q+PHj+vGjRud9OZ66aWXdN9992ljY0PLy8taXl7ueb3XajW9+OKLvuYT\n+Xx+R3rZ/Xmv73tZW1vbcX/orjhxr/nbt2/r9OnTmpiY6Bxztwyaz+d3jNVar9d963HiTvRSr9c1\nNjamer2uxcXFwGccdfdhkO3k8/mhxBSEdDq9o5K7XyVbu92W4zidPCWoMXodx1G9XteZM2f2PGcu\nLS3pvvvu04kTJ5ROp9VoNHpe7/V63VNaSCp3XDY/f4zsh5ea1AsXLjiXLl0KMBwgOS5cuKBLly4N\nnPJJf4B/SH+AOV7T392/IQ0CPiEPBMw5TB6YBI899pjz13/9176v94knnnjJcZwLvq/4AKHtLgoA\nAAAAAABEBfPOAgAAAAAAwBgmPthlkMEJAcRbFMchA44iLAPskwfHz36TWuwn6HMflms8CqI2Bhlw\nVGEZwN1xnEiOQ4beBs0Dg74Gw3KNI1p8qWSr1+tDG/j4IKVSKZKzqaC33YMs9xL0ANd+DtLsN3eW\nQdPK5XKgA98jvIKa0ck1aEHLhPHxcdMhSFJnwgrEx6DXfdDnPizXeC/uhCemLS0t8ZAfMysrKwMt\nt7S0FGgcYSjj9RKG5z/pTuuXoCaegBmDTmYXdMunsFzjSRDEpAemWsb5UjLzc/bOowh6hk8MnzvT\naD/Dmt01jDKZTCgesN1ZfpE8QZ/7MFzfYReX5vX4kUFnSkv6uZ+YmPBt9sCjOHfunOkQ4LPTp08P\ntFzQ5z4M13cv5M8ISljyNq7x4QrLeT8qJj4AAAAAAAAAjoiqWQAAAAAAABhDS7ZdWq3WnrEoyuWy\nL2P1rK2t9fzOtm21221JO8fN6o4lLn2p3f3oNz6Yu5x7XIIeLylIURnfxOSYbfsNSt1qtdRutzvX\ngFfucd89iLP7+e6BtrvTWPf/u8dI9GtcrWq1umddQY/Z5R7jQccILBQKarVanfMQJZVKxXO6G8Y9\npldMwxyUfb+Bld1r76DxQL1eA73uJ4PeZ7pjyefzvl2Du9dzlHuMF+4xHnT/o5znN5vNzn4OOsbs\nMCa9qNfr+55rL/dex3GOfG4OGn+1+zjszrv8HLi6UCjsWac7ZlahUFCxWNxzTvwqy+w+hmEfkDvK\nE0GsrKwMnLaGdc+p1Wqd66+Xft8HMb5bv/0/Shlt97prtVrnXlStVjv3y2az2TOd+ZVP7Vf2HFYZ\nzz0Og+YLUSt77hbGe1u73d73Guu+Lg661w+rzIRw8K0lWzqd3jNAoV/j9CwuLvb8rnucgu5xs7oH\nvxx04MSwc/ej3/hg7nKp1J061CiPlRWVQUxNjtm236DUR73m3eM+PT297+cjIyM9t9f9/+4xhfwa\n02C/cYqGNfD3oGMEzszMBBlOoA4zyPkw7jG97gXDHJR9v4GV3WvvoPGz3HvxoHrdTwa9z3THMjs7\n62nbB9m9H17367DcYzzo/kc5z+++lw06Jtvu+3EQeh17L/dey7KOfG4OGn+1+zjszrv8fDPu3t+7\n1+mWRXvd+/0qy+w+hmF/47/7PETJoOOxScO754yOjva9lvqVP4IY363f/h+ljLZ73d37v7uM2Ws7\nfuVVu9c/zLG63OMwaL4wrPw5KGG8t6VSqX3TX/d1cFD6jPo5GZYwnvvDSNTZjkqrqIOEeYYhE2zb\n7pzXUqkU2BuCUqnk27GPw3XoRVz2t1arJSb9DXrOuo/Hfq28/OI4Tmdb+7Wm8iLMMwUHodls7njb\nH1Xum+K43E8O4p6zQbjnNcjWbO66/Tj2STh/+ymXy0NtdRuUfD4f+GzuYTFIC+18Pr/jvOZyucDi\n2e/Ye83/KpWKtre3/Qwr9NrttqrV6sD31LBy9yMJ58/d1366z+tBLRmPys2Tt7e3d6S5SqVCy7SY\nsCzrZy3LetWyrDcsy/rCPt9/2LKsvGVZ37v788V+60zMmGzlcjnSLbpcYZ5hyG+DnLPu4zE1NaVa\nrRZI6zc/Zy+Nclemw8hkMp0m0lGeoSeTyWh0dDQ295KDuOes31u3iYkJNZvNzvJBtTxtt9uamJjY\nc+y9pvdKpTLUlm9hEJbZh4/Kvcbi8obzIIOes3a73WlhNjIyomq1OnArBy9GRkb2Pfb1et1TK+5m\nsxmZ1ul+KhaLkW7R5SoWi5qZmUlEGhz0nHUfD9u2Aysb2Lbd2VahUOi0VkulUjt+72d8fDxxeWAq\nlQrkvjhsqVRKmUxG8/PzpkMJ3KDnrDuvDLKs4653fn5+R7lzfHzcczk0qHw6Toadx1iWlZb0PyV9\nTNKypBcty3rWcZxXdi36DcdxPjHoeqNf8h5Q3B+K4+gw5ywKBfgkVZRKe7svR5W7H0m4l3jp+uIW\nPoLsLtPr2HtN70l7uIibVCpltGt+2Oy+pwZZcN/v2Hs9F3Go7D2MOFSwSfHZj0EMuq/7dRkOQve6\nd1eoRXl4CniT1HtoL8M8Hu62dpc7vZZDqWA7mGVZJl7kPCnpDcdxrt2N4WuSflHS7ko2T6L91AsA\nAAAAAADstWBZ1qWun892fXdW0lLX78t3P9vt/ZZlXbYs658sy3pHvw32rQK+G8RnJenee+/ttzgA\nH5H+AHNIf4BZpEHAHNIfgGELqCXbhuM4F47w99+RdK/jOCXLsn5O0v8n6eGD/qBvSzbHcZ52HOeC\n4zgXTpw4cYTYAHhF+gPMIf0BZpEGAXNIfwAS4Kakc12/33P3sw7HcQqO45Tu/v8fJY1YlrVw0Erp\n3A0AAAAAAABjDIzJ9qKkhy3LekB3Ktc+KelXd8V0StKq4ziOZVlP6k5Dtc2DVkolGwAAAAAAAIwZ\ndiWb4zhNy7J+S9L/kpSW9JeO4/xvy7I+d/f7P5f0XyX9pmVZTUkVSZ90HMc5aL2RrGRrtVqBzmQH\nAEAYeZ0uHgCAuGg0GhoZGTEdBoAYudsF9B93ffbnXf//M0l/5mWdkaxko4INMKdcLmtyctJ0GEAi\nUcEGAEiqdrttOgQAATLQXTQQfSc+AKKi2WzKcRy1Wi1tbm4GlhG3Wq1A1hsVVLBhP6VSqfP/er1u\nMBIgmUqlUiffazQavq7bTdO1Ws3X9QJxsbGxsSPvu379uq/rX15e9nV9UcWLJuxne3tbpVJJ9Xpd\nm5ubyuVyvq27Vqspn89L8j9vRXxFsiUbsJ9isaj5+Xml02lls1mlUv7VIdfrdaXT6c4PgJ3Gxsa0\nvb2tbDar0dFRtdtt39JgtVpVu93WxMQELSmBfbRaLU1MTMiyLDmO42t3qnq9rkaj0UnbAPZaWNg5\n0dx9993n6/rvueceX9cHxMn8/Lwcx5FlWTp+/Liv606n05qdnZVES8qgWZYVm5ZsVLIhNubn5zv/\nn56e9nXd2WzW1/UBcZPJZHakQT+NjY11/k8FG7BXkC9/stkseSAAINSCqpzJZH5UXcKLpuDFpZKN\n7qIAAAAAAADAEdGSDQAAAAAAAMbQkg0AAAAAAACAJFqyAQAAAAAAwCBasgEAAAAAAACQFJNKtna7\nrVwuZzoMIJEqlYrpEIDEajQapkMAAMCIcrlsOgQAPrIsy/cfE2JRyZbP5zU9PW06DCCRbNs2HQKQ\nWKlUSqVSyXQYQGItLy+rWCyaDgNIpHQ6bToEAD4JooLNVCVbLMZkm5+fNx0CkFjHjx83HQKQWOl0\nWlNTU6bDABLrnnvuMR0CkFhjY2OmQwCAPY7Ukm19fd2vOAB4ROsVwJzt7W3TIQCJtrKyYjoEILHI\nAwEEIS4t2Y5UyXbixAm/4gDgEa1XAHNoQQ2Ydfr0adMhAIlFHggAvcWiuygAAAAAAACiyVTLM79R\nyQYAAAAAAABj4lLJFovZRQEAAAAAAACTaMkGAAAAAAAAY2jJBgAAAAAAAEASLdkAAAAAAABgiGVZ\nsWnJRiUbAAAAAAAAjIlLJRvdRQEAAHAkzWbTdAgAABhBHohuVLIBPtra2jIdAgAAQ8cDBmDWysqK\n6RCAxEqn06ZDiAW3y6ifPybEqpJta2tLS0tLpsNAgh07dsx0CMbcunVL29vbpsMAEqlSqfCABaPG\nxsZMh2BUvV6Xbdumw0CCnT592nQIxmxubpL+YFRcujnCH7Eak+3YsWOJruQATDp16hQZDGDIyMiI\nFhYWTIcBJFY2m1U2mzUdBpBIx48fV61WMx0GgCOKy7NkrCrZAJiTSsWqYSwQKZkM2TkAILlGR0dN\nhwAAkqhkAwAAAAAAgEG0ZAMAAAAAAACOwOREBX6jfxcAAAAAAABwRLRkAwAAAAAAgDGJaclmWdZn\nLcu6ZFnWpfX19WHEBOAu0h9gDukPMIs0CJhD+gOAw+lbyeY4ztOO41xwHOfCiRMnhhHTkdm2bToE\nwBdRTH+rq6umQwB8EcX0VywWTYcA+CaKaTCXy5kOAfBFFNNfPp83HQKAI3DHZfPzx4RYdhedmJgw\nHQKQWCdPnjQdApBY09PTpkMAEm1ubs50CEBizc7Omg4BwBEkprsoAAAAAAAAgIPFsiUbAAAAAAAA\nooGWbAAAADDOcRzTIQCJxlhggDnVatV0CMAOtGRDbNRqNY2OjpoOA0ikZrOpTIYsBTChVqtpbGzM\ndBhAYjEWGGAO+V88mJyowG88ESE2qGADzKGCDTCHBwwAABB1calko7soAAAAAAAAcEQ0PQAAAAAA\nAIAxtGQDAAAAAAAAIImWbAAAAAAAADCIlmwAAAAAAAAAJNGSDQAAAAAAAIZYlhWblmxUsgEAAAAA\nAMCYuFSy+dpd1LZtP1fXsbm5OdTtxUGUj02j0ZAk1et1w5EMplqtev4bdx/jLpfLmQ4Bh+Be01E4\nf61Wy3QIajabB6bpw6b3ZrOpQqHgeXtJ5h6bSqViOhRPumNut9uRycMrlcq+1+hBy0t39jEqyuXy\nof+2WCz6GAmGLQrnb3193XQIajabB37vOI6v6+23PVetVjvUdqPMPTaHPeamOI7Tidm958bx/EXt\nvODwfKtk29raUjqd7vl9qVQ69Hr3uyD7bc91mAqQqHOPTVQqqVylUkn1el2tVku3bt1SoVCIxPlr\nNBqeHojcfRzmjfYoDwlHMTc3Z2S7YTBoITAsyuWyms2mbNvW2NiYms1mJM5fOp3W1tbWwMu7++hn\n+ms2mxoZGen5fSZzuEbjzWZTMzMznreXZO6xGR8fNx2KJ5lMphNzs9mMTPzj4+P7XqMHLS9JqZS/\nQwKvrKwcWM5cWlo69Hr3+9t+23PF8SGxH/fYRKWi2LW0tCTbtrW6uqrLly/rlVdeicT58/pSwd1H\nPyu60+n0gcfqsC1T0un0vums3/Zco6Ojh9pulLnHJgwvIL2wLKsT8+TkpBqNRiTOn9fkY3KKAAAH\nkUlEQVQXnu4+UtnWm9tl1M8fE3zrLnrs2LEDv5+amvJ1vf225xobGzvUdqNs0GMTNt3XyJkzZwxG\n4s309LSn5bPZrKThNoednJwc2rZwx2ErVkxxrxE37ijF7+Wel8lklMlkfE1//fKZw26r13qTmK8N\nKqrHpvsacfMIDO706dMHfn/u3LlDr3e/dffbnmthYeFQ242yQY9N2LjXyMTEhE6ePGk4msF5LS9P\nTExoYmLC14puy7ICqRCxLGvf58egthcHUT423eXOqLxI9Bqnu49x6RKJ3hIzu2iUuibgcNrt9tBb\nD0WttSAQJ7wJHEwUWmPAu+5umibO8erqqqeuogD8ZaqXQtQwvEL8cY7jIy4t2RJTycZDRjx1d0eo\n1WpDP89bW1uR6xJhAplfPHV30zRxjnO5nKeuokkV1bfaOFh3N00T5/jkyZOeuoomWRSGvoB33d00\nq9Wq1tbWhrr9lZWVyI0/aUJUWkXh8Eyc46gNCxMVVLJFTFTGNwlCnN80T0xMdP4/Pj7e6fI2rLd7\np06d2hHDMETxpp7kAk6cH666u2mOjIx0xgEZRsvhVqul+fn5oXaPp0V09Bx2PNgo6m5ZHddrNaqt\nV6PajdkPcc4Du58txsbGtLi42JksIehrtVgs6qGHHvL0fHPU54Eolj+TLqmVsMO4Vr0Oq0KDn2SJ\nzqA7OLQktmKI8xhkURorC8kaX2mY95pBJr7xm9+DtSN4Sarc6L7XxPVaZRyb6DFxrzbJHac36GvV\n63jAko7c8pTyZ/Qk9SV3GK/VJD6Pe2Wy5Znf4lkKww4kasCcuD7sAlEQxoI2kCRJfcgHwoA8EDCD\npz/EXpK6CwEm7dctYXt720AkQPLs1z0mrt1GgajI5XKmQwASK85DJsVVXMZko3obsbff9N8A/Lff\n2DCzs7MGIgGSZ78WC+12m9a0gEFzc3OmQwASi8l5oofuogCARGo2mwO3kPH7AZ+WOUi6SqUy8OQ+\nfncVYuBzAIBptFBD2NGSDQDgickxPmiVg6QzOVs64/sAAEyjhVp80ZINSJi33npLa2trez5fX183\nEA2QHLZt6wc/+MGe8d1s29bGxoahqIBkKJfL+6azQVvTATiacrmsH/7wh3vGPS2Xy7ToAQJWqVS0\nsrKypwxaqVRUrVYNRYWw45UkMIBms6lTp05pbGxsz+cnTpwwFBWQDBMTE3r00Uf3/XxiYmIoMbRa\nraFsBwib8fFxZTIZVavVHXmgyRZ1QJJMTk7qwQcf3PdzAMEaHx/fN78jDwxGXFqyeapkYywcJFUm\nk9m3m8wwu84wFg5gTjqdNh0CYEQqldLo6Oi+nw8TZVAAABAFnkpIqVRqT1Plw/LaKsCv7QIHCXNr\nFbdCz+2i02g0Dr2uw+znUbbnRblcVq1WG8q2dm8XZoU5/bkcx5F0tAf+w6SlYVYwUKGfTMO6xx9W\nKpWSbdumwxiKUqlkOgQgMGHO602UP01uFz8S5usyKSzLCuTHBM/NcPxqGum1VQBNMjEMUWit4nYP\nGBkZOfQ6DrOfR9meF6a6P9DtwrwopD83sz5KK57DpKVhthpicPtkGtY9/iiG1T3ctKmpKdMhAIEJ\nc16/X6vdOG8XPxLm6zJJ4tJdlIkPAAAAAAAAgCOikg0AAAAAAADGmOgualnWz1qW9aplWW9YlvWF\nfb63LMv68t3vL1uW9US/dVLJBgAAAAAAgMSwLCst6X9K+rikxyR9yrKsx3Yt9nFJD9/9+aykr/Rb\nb99KNsuyPmtZ1iXLsi6tr697DhzA4ZH+AHNIf4BZpEHAHNIfgGEz0JLtSUlvOI5zzXGcuqSvSfrF\nXcv8oqRnnDu+JWnOsqzTB+6HO1PagDtdlPTqwH8QrAVJG6aD6BKmeIiltzDF8zbHcaYHXThk6U8K\n17Eklt7CFE+YYvGa/tYllRWe+MN0LMMUixSueIhlf/dJ+r8cx3l60D8IWR4YpmMphSseYuktTPFQ\nBvUPsfQWpnjCFIun9JcUlmX9/7pznvw2Jqna9fvTbvnDsqz/KulnHcf5jbu/f0bS+xzH+a2uuP5B\n0v/jOM4Ld39/TtLvO45zqdcGvU4h9qrjOBc8/k0gLMu6FJZYpHDFQyy9hSkey7J6JsweQpP+pPAd\nS2LZX5jiCVssXpZ3HOdE2OInlv2FKR5i6e1uGhy4kk0hygPDeCzDEg+x9BameCiD+odYegtTPGGL\nxXQMYeQ4zs+ajsEvjMkGAAAAAACAJLkp6VzX7/fc/czrMjtQyQYAAAAAAIAkeVHSw5ZlPWBZVlbS\nJyU9u2uZZyX9t7uzjP4XSXnHcVYOWqnX7qJemvUHLUyxSOGKh1h6C1M8XmMJU+xSuOIhlt7CFE/U\nY4l6/EEJUyxSuOIhlt6inAeGKRYpXPEQS29hiifK6U8KVzzE0luY4iEW7OE4TtOyrN+S9L8kpSX9\npeM4/9uyrM/d/f7PJf2jpJ+T9IYkW9J/77deTxMfAAAAAAAAANiL7qIAAAAAAADAEVHJBgAAAAAA\nABwRlWwAAAAAAADAEVHJBgAAAAAAABwRlWwAAAAAAADAEVHJBgAAAAAAABwRlWwAAAAAAADAEf0f\nq8fngCsEvvAAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "convout2_1 output shape : (20, 30, 30)\n", + "convout2_1 output shape : (30, 30, 20)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAAKbCAYAAACjPPjrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmwJld55/nnqOruS9WtuqVSlVSlkhCbZKFhuBD2YDw2\neAxhZFDgBkPYHUzbE4ohmrFnYsYGzfzBP16w2ya6I7pjYmS7p3FgGgiDw21HNJtsQeAFuQqLRRur\nlhIlqUq13bp19zrzR115Svf8Xum59+Sb78nM7yeCQHrIN/PkOSdPZt6T5yHEGA0AAAAA0B5XDboA\nAAAAAIBq8aIHAAAAAC3Dix4AAAAAtAwvegAAAADQMrzoAQAAAEDL8KIHAAAAAC3Dix4AAAAAtAwv\negAAAADQMrzoAQAAAEDL7Bx0AczMZmdn45EjRwZdjJ5ijEkshND3/VW9nZfaX13HbrP19fUktmPH\njgGUxOzSpUtJ7Kqr0r/70L69eeswR079q/6mqP15Y3Woo569eo2Nm6m68l7/6hjefsC12X6Dei6o\ng7pG1LXuvb5UHajxZOfO9FE4p063Us+qPDnjRx1tXMe9ZW1tzXUMbx0cO3bsVIxx3xXb+Abzwfhc\njPEtVe2siBe9I0eO2NGjRwddDDPTF53q1ENDQ0nMe4NWHXh4eDiJLS0tJbHR0VHX/nIehFQdmOnB\ncGVlJYmpc/EODEodL0NV3xRVHc7PzyexXbt2ufZX9Uvi4uJiEhsbG0tiqg+OjIwksapvLjkP91W/\nGPR6uFd1o+ow5zirq6tJzHt9XbhwIYmpdlJjmepbaju1v5z6V3XgHQfVcaseO9RY6x3Pvde/2p8a\nZ9W5qWsTW5PzQl7HQ7b3nqv6kbqHKznXcM696ty5c0lsYmIiianzOHPmjKss6t43MzPjOob3WVC1\nRy8XL1507VOd3549e5KYt429VF84f/58ElPXgzoPVT41np86dcpVlt27dycxVf8hhMeSYLlmq9wZ\nn24CAAAAQMsUMaMHAAAAAHUo9VNm7xIBL2b0AAAAAKBlQtVvjtsxNzcX77vvvm391rsurte6s83U\nd+h1LPz3noeKeRcr58pJRDCo9Qx1tJ36bl+trVJrjVQdTE1NJbE6zkNdI8vLy0lMtaX6xr7qMnsX\nZ1e9RgHAC+t1f/WuUVfX7KASVSlqPFflG9Q4PajkRCVR92G1ntG7hlDd0+qaAVLXjboXq3b3rqXO\nUdL14BVCOBZjnLvi32NJ5bvSpUuXnlfWXGWeJQAAAABg23jRAwAAAICW4RsnAAAAAJ1RajKWqjGj\nBwAAAAAt0/gZPfVGrmKlLrp8jvcvC97/49Z+yPnrR5v/cqLaxLu4uyTqGhnkgvTNSLIClGkr99eS\nkqx4qQQXg1L6s8ygqH41NjY2gJLkU/fYkp4fSroecrT5ufRKjBgAAAAA0DK86AEAAABAy/AtFAAA\nAIBOCCHw6SYAAAAAoJmY0WuY9fV113Ys2EYVVKKfpaWlJKYSpbRlwTYAbOZNgtaVWQP0l+pva2tr\nSUwlpeF5UOvKtUnrAwAAAEDL8KIHAAAAAC3Dp5sAAAAAOoNPNwEAAAAAjVTsjN6lS5dc27V5kan6\na0NX/gJRArX4uWv1r66vsbGxAZSkm0j4AJSJa64eagxUsTY/C5rp/kbCszxduYbbfWUAAAAAQAfx\nogcAAAAALVPsp5sAAAAAUDU+3dwQQviPIYRnQgjfuiL2b0IID4cQvhFC+PMQwu4r/re7QgjfDSE8\nEkJ4c78KDgAAAADQPDN6/8nM/r2Z/ckVsS+Y2V0xxrUQwu+a2V1m9oEQws1m9m4zu8XMDprZF0MI\nL4sxrm+1YGphrTdBi3d/3kQH3u1yqGPs2LEjia2vp1VZ118lcsqotlPtqdppbW0tie3cmXbdnP6h\nyry4uOg67vDwcBJbWVlJYktLS0lMne/4+LjruN7681peXk5iqu7VMUZHR5NY1f1ydXU1iak6eOaZ\nZ5KYqtO9e/cmsccffzyJXbx4UZbn0KFDSUwlqslpk5w69F6HJSUd8pZ5ULzlU2OHN4mR6m/q2pyZ\nmXHtz0v1A3VcNd71osYPNTaqOlTHUddSTl9V56zGGe8zgCpz1deS6oMqdubMmSSmxsGpqakk9tRT\nTyUxdf+69tprk1hOghBVz6q/ePuB2p+qK7W/ksYdM11upY5yq3r1Piuoe7bqM/Pz80lM1cH09LTr\nuJuFEJjRe06M8ctmdnpT7PMxxuda9R/M7LqNf367mX0ixrgcY/yBmX3XzF5XYXkBAAAAAC+iimQs\nv2xm/3Xjn681syeu+N+Ob8QSIYQ7QwhHQwhHT548WUExAAAAAABmmclYQgj/l5mtmdmfbvW3Mca7\nzexuM7O5ubn+fxsJAAAAoPO68unmtl/0Qgj/o5ndbmZviv//B7tPmtmVC1eu24gBAAAAAGqyrRe9\nEMJbzOw3zOy/jzFeuXL8v5jZx0MIH7HLyVheamb3becYdSRAUW/zOQk9vLxJTbzJNuqoKzNdX2qh\ntFqQ7l2oq6jEBpOTk67yeamyTExMuI7hbSfVxt5jqDbOSfKhyjwyMuI6rtqujr+MqQXbKlnEwYMH\nk5j3ulYJLg4fPiy3zenTXqrcOXWt6kuVWdW1d5yp+jpU9ayohEVV85bPm1RCjZUq4YDqB1Un0VG/\nVUmWtkL1I3XOVSeW8lLnrPqRN6lEHeOg996ixjJvIh2VqKqOhCWq/lQfUtt5676OcaIfvM+IdVBj\njzdhnDdZj+qr58+fT2KDSnbWJC/a40MI/9nMftLMZkMIx83sQ3Y5y+aImX1ho6L+Icb4P8cYHwgh\nfMrMHrTLn3T+6+1k3AQAAAAAbN+LvujFGN8jwn/8Atv/lpn9Vk6hAAAAAKAfujKj1/9vIwAAAAAA\nteJFDwAAAABapohVqZcuXbKlpaXnxR544IFku6uvvjqJ7dq1K4k98sgj8hibPfXUU0nsDW94QxJT\nCTMefPBBV/muvTb9vxFUZfnBD36QxNTi2/Hx8STmXTid6/Tp00nsoYceSmK33XZbEpufn09iBw4c\nSGKb+4GZ2bPPPpvEHn74Ydf+rrvuuiSmqAQIFy9eTGLT09NJTCVZ8C7oV8kxxsbGkphK+LC6uur6\nraLKrBZYq/2puqp6Ub4qizpfbwIZb/nUta7O10y3iapXdc0qX/ziF5PYY489lsRe//rXJ7Fvf/vb\nSUyNUceOHXOV73d/93eT2PHjx5PYl7/85ST2C7/wC0lMjYNPPPFEEvvYxz6WxH76p386iakkIbfc\ncksSyxkH1bX5h3/4h0nsxhtvTGJq3FFjx5EjR5KYGnc+85nPJDF171P18o53vCOJKY8//rgrpsbZ\nXgku1L34hz/8oas8d9xxRxJbWFhIYqqf33rrrUnsmmuuSWLqvvSP//iPSUy1p7puVCKonD6oxphv\nfOMbrmOosqhP1fbt2+c67te//nXXduqe8ZrXvCaJKercvv/97yex1772tUnsySfTBO/f+973XNup\ncf+d73xnElP9RZVZlc9Mt4l6rvrSl76UxF7ykpcksdnZWdcxcqg2/uxnP+sqixr3VV3v2bMniakk\nfOr+pZ4BVEzh000AAAAAQCMVMaMHAAAAAP0WQmBGDwAAAADQTLzoAQAAAEDLFPHpZowxSbSgFnyr\nheZqwbxadK0WdqoFm2qhqJreHR4eTmIzMzNJTFH7O3nyZBJTyQXUYvSqp59VshgzswsXLiSxl73s\nZa59qvpS1KJyVZ79+/cnMVU+L5VMQCVPUFS/9B7DS/02Z3/eMisqsYlKgJLTL73XnPe33vJtJXFC\n1QloVNIRRSV8ecUrXpHEfu7nfi6J5bSJGlfn5ua2vb9Dhw4lsbvuuiuJqbZT43nVCajU/eH973//\ntven7lWKGtve9773uX6r6spLJZU4c+ZMEnvlK1+ZxD73uc/Jfaox+d57701ib37zmx0l1Em4VJKm\noaEh1/5UYhg1zpw7dy6JqXaqmkqEcd999yUxdR2qRDovf/nLXcdV9aL6h0oQklMvqi1vuOGGJKau\ndZUEZnJyMompZEfq2U3FTp06lcRUUh41Vvai7uPqOVQlfVJJ/KpOxqLuc+r6UvWVM06r8VL9Vt1H\nej3DbsanmwAAAACARipiRg8AAAAA6sCMHgAAAACgkXjRAwAAAICWCTmLt6syNzcXNy8wVuVSSQjU\ngnm1oFdN0aoFm2ohtreOvNPA3oWi6rjqt96F57m8CS3UAly1nUoIotru2WefTWJ79uxJYqoechJm\nqPPwJkDxJv9R+/MmO1F9wXu+3mtkfn7etd2uXbtc2+VQZVZ1oOq5qXLaXSVyUPtTMW/im0HJScBR\nNdUeKnnH1NRUElPX//r6ehI7ceJEElMJy6pOEKR4+5CZHgPU+aly5yRV8vKWZWlpKYlVnSDLy1tm\n9bxU+nWtqPNQ/UDVgUreofantlN1pcZU9dutJIZS7elNQKXGQfVsVDVVh6r+VeIbdX/29kvvOKiE\nEI7FGP85a9HOnTujem4pwenTp59X1lzM6AEAAABAy5CMBQAAAEBnkIwFAAAAANBIvOgBAAAAQMsU\n++mmmlJVizhzEgl4k6JUPb2rFuqqsqiYWgysFoD3Y0pa7VPFxsbGkpg3oY1q44MHD7p+621PxZtA\nRiV8UIupp6ent10WRZUlJ/GCN3HFzMzMto9RtUEl26iLWuDuTdajqN+qa2QriQP6zVsHJfUFVX85\n141qXzUGVt1uKrGD997S636jxv2chCVV39e8ia9U4rBB8V7/TUy84k00k3Pvy2nLfiTbUefiTZY2\nqH7p7VsqAVVOMsK9e/e6fusRQuDTTQAAAABAMxU7owcAAAAAVWNGDwAAAADQSLzoAQAAAEDLFPHp\nZowxWaCpFmx6F8Kq36qFnSVN23qTlahFsHWdh7eM3u2UnIQqOVS95pRleXnZtZ1KKlFScoz5+XnX\ndmrRddW8iUTUgv6qk0L0Q06CAa+S+pbSxAQSdaij3VT/895beo353ntBSfdiNX54n0fqaCfvs0zp\niZcUVWZv4iVvQjslp+/XJaduBkUlD/TWq9qu6vtDaW3cL2Vf9QAAAACALSvrT9oAAAAA0EfM6AEA\nAAAAGokXPQAAAABomWI/3fQmJlCLi3MWIaup3JwkJN6pYXW+KqaOUXWimV7nq+qw9CQ3Xt76V1S9\nqJhaOO1NHDKoOq0jyYqScw3XkdSkH5pY7kEl2yjpGmmLnCRaahwz023ivY9491c1b5KmnPrK4a2D\n0hOvKDllVr9VdZWTYCg3OZH39+pZQcUG1Qe9Skt4tllX7hnNGwkAAAAAAC+o7NdtAAAAAKhICIEZ\nPQAAAABAM/GiBwAAAAAtU8Snm2oKVSVjUMkKvEkb1KJV9VslJ5FLDu9C4qoX5PY6j9IX/g7K2tpa\nElMLp5XSE3DkJEXJ0cREArm8Y5R3HMwZj7y/HdSnL1355KZO3uRfqu57JV3w3mOrTh5WR/If77UJ\nv5xnPCXneSk38QrK15X7SPeepgAAAACg5YqY0QMAAACAOjCjBwAAAABoJF70AAAAAKBlivl0c/MU\nak4yhpWVlRfdv1nvBeQlU+emzqNNU9J1LLbP0cR+pKyvrycxtRDem4SgpDZqAlVf3uQOarxUSYJK\n76vea72J51a6foyzdYwBVR+jjgQyqId6XhoeHq70GHX1AzXmqb6qEsHRV7Wu1AszegAAAADQMvwJ\nFAAAAEBnMKMHAAAAAGgkXvQAAAAAoGWK/XTTO6WqFpCrxAQqppJPeJPAeBNS5FDHUOUb5GJgdWxv\nHarfqvZU7ZSTuELxHmOQ9d9vqv6q7tPYmpzkJGo7b3IdldhElaWOcVBRZanD8vJyElPJDxTvuKjO\nTSWVGBkZce0vR26Clpz7+KDGVW87qXtGHQZVV97nkap5z021hzdBU865qeP2YwxU5+J9bqmaut94\nzzmnfN7x19N2IYTWPLu9GGb0AAAAAKBlip3RAwAAAICqMaMHAAAAAGgkZvQAAAAAdEZXZvSKfdHz\nLjjOSQaSk1hjUAkH1CLYuhKE5Byn6u2qrn+Sjmjnzp1LYqofTE1N1VGcgVhdXZVxVQ+D6kfepANK\nTvKkqs+3pPFXqSMBiqqDQR3XayvJcbz3cWVQCUEuXLiQxFSb1NEv63g4Ve05qARIOc8O3t/m9KG6\nXhYWFxeTmErGMjk52feyqH5edT14+1tXXtZy8OkmAAAAALRMsTN6AAAAAFC1rswGMqMHAAAAAC3D\njB4AAACAzujKjF4RL3oxxmRRqVpkqqiGWllZSWIqocL4+HgSGxoach1XHUOVZXh4OIl5Fzqr/anF\n6HV1VlXG5eXlJKbKo+pVLehV7X727FnXMaanp5NYHUkM6uDtH1XbtWtX349ROu+YkEtdS2oBvhq3\nLl68mMS8182+fftcx1BjqDrGzMxMElPJYlSfVsdQY60aJ+roqyophyqfOjdVLyoJxOnTp5PYo48+\nmsRUu6nx7uqrr05iirq3qHNT10OvhEVLS0tJTNXNxMSE6ziq/6q+n5MoRSU8U/1X1VcdVF2rMqt6\nHh0dTWKqD6pjnD9/PompelExb4IQ1V9UH1TnobZbWFhIYqrddu/encTGxsaSmBp31DFU+cz086DS\n63rabFAvKupepfqgou4tqg+q6/rEiRNJTPWttjz3VYVPNwEAAACgZYqY0QMAAACAfgshNPrTzRDC\no2Y2b2brZrYWY5zrtS0vegAAAADQHD8VYzz1YhvxogcAAACgM5o8o7cVxbzobV44rBYSq4Ws3oXw\n3oXYilooqo7hTdrgXfys9tdrke+gqDJ6E9Uoqm5Uu6vFtqoOvYty1SJw9Vu1GFstPlfbeRfvq76q\n6kUtfla/9da9ajd1XEXVAbZG9Tdv/1XXiEowoPqMt43Vta4Sgnh5kzapcxtUIgy18F/dCxTvdbhn\nzx5XrGreZEAqcYrazsxsfn4+iamxQt3XVLurcVr1aW/SC2/SN3VclayjDir5h7qG1djhvdZPnUon\nCc6dO5fE9u/fn8S814Pivb96xwQ1nni3U9Q17E3CtxWqPKpucuo6hzpnb9t5+6B6HlExdR22IBnL\nbAjh6BX/fneM8e5N20Qz+2IIYd3M/h/xv/8zns4AAAAAYPBOvdCauw0/HmN8MoRwtZl9IYTwcIzx\ny2pDXvQAAAAAdEaTP92MMT658d/PhBD+3MxeZ2byRY//ewUAAAAAKFwIYSKEMPXcP5vZz5jZt3pt\nz4weAAAAgM5o8IzefjP7843y7zSzj8cYP9tr4zCoxZxXmpubi1/96lefF/Mu2PSW35tQRS0oVb9V\nHcRbFrWd2p9aNOytl35QZVSLY9UCXHUuKnGISqjiXYCbk4hE8baT2k4lCFC/9SYxUf0yJ8GQt2+p\n8ygp8UpOG+UO8v3Y53blJASpum/l8CZZ8SZFqFodY7e65tT+chM+QCvpus5R2vODhzdZlPd5zttu\nTayrQVLPad428bbnxYsXk5jqH9PT0z3LeaUQwrEr172Njo7G66+/3vXbun37298+5lij50ZPBgAA\nAICWKedP8wAAAADQZ02cqd8OZvQAAAAAoGWY0QMAAADQCSGEzszoFfOit7nCc5LEqOQC3kX+XlUn\nsVFlLq0TehOqqHPxJnxQi3K923nL5+Wtf7Xd0NCQ67eLi4tJTJW56sQLqszesgyK6kPLy8tJTC0U\nHxkZSWKjo6NJbH5+Pon1WpQ/Pj7uKmMddehNCKK2K6mNS0+A4B0TVL9UVFKpnOM2VU4yoTqUlKBF\nlUVd696EYOreovqvSsJV9diRk+grJymSqit1bnWNlYOq/xyqDtUzhbrvqpi3TZSqn/ebruy7KgAA\nAABgy4qZ0QMAAACAfmv7lxLPYUYPAAAAAFqGGT0AAAAAncGMHgAAAACgkVo5o+fN3FR15kyv0jPf\n9aLKXfVfRFRGLG/GySb+dcabda9qqq4GVRYvdY2ozJc5pqamsn5f0nVcegbLNlPXkjcTXE7mwaYq\naewuqSyK9/lhZWUliXnHeG+m69J5y1x1VutcKkt0SbxZxXP6keqr3vtrE/tqP3XvjgIAAACgs0r/\no05VeO0FAAAAgJZhRg8AAABAZzCjBwAAAABopGJm9DYvnlSJUrzJU9R2XXlzL4FaCOtdHFtHwpc6\n0AcBXIkEAahTTnKtLiYEQvVy+pE34QteHFczAAAAgE4IIXTmj+/8iREAAAAAWoYZPQAAAACdwYwe\nAAAAAKCRipjRizHa6upqEtssZ2HnpUuXklhX3ubbaH19PYnt2LFj2/s7depUElOL2ScmJlz7U31r\nZWXFtR2LkNEvahwkSUj51P1QtWXOGKjG1Krvw2b+ezH35/JVnXRsYWEhian74fDw8LaPQaK05vIm\naeSe9nxFvOgBAAAAQB268oLPay8AAAAAtAwzegAAAAA6gxk9AAAAAEAjFTGjF0LIWkS+XSzKba6q\n22l2drbS/Smqj6vEBEC/qOtmbW0tieUm3EC1VLtVfc+s6x5M4pVmqiORkzfZWQ76WnOptst5hupK\nX2BGDwAAAABahhc9AAAAAGgZvs8BAAAA0AkhBD7dfE4I4T+GEJ4JIXzritieEMIXQgjf2fjvmSv+\nt7tCCN8NITwSQnhzvwoOAAAAANA8M3r/ycz+vZn9yRWxD5rZPTHGD4cQPrjx7x8IIdxsZu82s1vM\n7KCZfTGE8LIY43q1xd46tWhYJWNBPm+95vw1pepF4HVQyQ4GkYQI3aWuORKvVK+OxBVN1ZW/og9a\n1cnm6L/YqjoSHuY8Q3VlLHrRKzfG+GUzO70p/HYz++jGP3/UzO64Iv6JGONyjPEHZvZdM3tdRWUF\nAAAAADhs9080+2OMJzb++Skz27/xz9ea2RNXbHd8I5YIIdwZQjgaQjh68uTJbRYDAAAAALBZ9jc7\nMcYYQtjyN5AxxrvN7G4zs7m5Ob6hBAAAANB3fLr5wp4OIRwwM9v472c24k+a2aErtrtuIwYAAAAA\nqMl2Z/T+i5m918w+vPHff3FF/OMhhI/Y5WQsLzWz+7ZzAPWmnbOwU22nFsyX9IbvrYNBUgu019fT\n3Ds59VrHgl5VZhVTC39V+dbW1pKYSnqhzqOkBC3qPJSqE3qoOl1YWHAdd3R0tNKyrK6uyrjq+6o9\nSWLQHt4xoeo2946BOWOl+q33fNW9dCu819KgeM+vjnZfWVlJYqpNqh6Tc/qCt17U+Xr35+37an8l\n3XN7qSPJnZeqQ1W+Ouq16veCNnrRkSCE8J/N7CfNbDaEcNzMPmSXX/A+FUL4FTN7zMzeZWYWY3wg\nhPApM3vQzNbM7F+XkHETAAAAALrkRV/0Yozv6fE/vanH9r9lZr+VUygAAAAAwPbxf6AEAAAAoDO6\n8ukmi0cAAAAAoGWKmNGLMSaLO70Lzb2LcpWqF7NXzbs4vuqF7L3qTy2sVQvD1e9VbHh42FUetfBX\nxbz7U7wJFVS9qoQlQ0ND2z5uSQaVXES178TERBLz9vOcxePetsyl+pG3D+YkMVBKSiDjTZSk2qnq\nsdt7/atxUSXH8I5ZKiFQzninqHPzJvToNY7lJJEpiTfpWNXPD+q3qp97y+el2tN7r8o535wEed7t\nShrbtsL7PFjH/cr73L20tOT6rXcsU2OtN0HeZiEEZvQAAAAAAM3Eix4AAAAAtEwRn24CAAAAQB34\ndBMAAAAA0EhFzOiFEFwLfate6FxS4hWvOsrX6xje5A5nz55NYnv37nUdWyUduHDhQhJTiTlU+bwL\nyNVxvYt8vQlLqk5CUEffryNZjLcs3kQY3sQ6aiG76ge9Fu+rcnuTVyg5vx1U0pw65CSGqJqqUxXL\naUs13nmTsQzqfthrHMtJpFHH/T6nLFUnQfNSx1VJL0ZGRpKYt3xqXF1cXExi6j6cM+6UlJystOfD\nQfU3r/n5+SS2vLycxGZnZ137U789f/58EpuZmUli3vG3pPrrp3Y8CQAAAAAA/hkvegAAAADQMkV8\nugkAAAAAdeDTTQAAAABAIxUzo7f5zVol1lC8C2ZLWlibk5SjtAQLqp2mpqaSWM75qaQDarFtTnvm\n7E/VQUlJCLxJdAZ1jXgTrygq8Y9KJHDNNdckMbXwf2VlxRUzM9u1a5eniMCWTE5ODuS4Odd6P8aJ\nqvdZ2vlVSY1RQ0NDScyb7OTpp59OYuq+XtrzSJVKb3OzssqokkiNj48nsZx7u/pt1UnM2qi9VykA\nAAAAdBQvegAAAADQMsV8ugkAAAAA/RRC4NNNAAAAAEAzFTujV/Ui39Lf3EsvXy8qUUoO1e51JCfI\nqf/S+6q3fE3sg7Ozs5Xub2xszBUDgFJMT09Xur9rr7220v2h/Q4ePFjp/vbv31/p/pQmPvNsBzN6\nAAAAANAyvOgBAAAAQMsU++kmAAAAAFSNTzcBAAAAAI3EjB4AAACAzmBGDwAAAADQSLzoAQAAAEDL\n8OkmAAAAgM7g000AAAAAQCMVMaMXY7SlpaXnxdbX15PtxsbGXPtbXFxMYisrK0lsZmbGtb+LFy+6\nyuL964Aqy/DwcBJbWFhIYhMTE65j5Lh06ZKMb24jM91Oo6OjSSzGmMTUOa+trXmKaKurq0nM2z8U\ndW5eO3bsSGLz8/NJbGRkJImpNp6dnU1iqv5UmXP6h9rfVVelfwtaXl52HVf9NoeqA9X/VB/auTMd\n6lRM1cHTTz8ty3Pw4EEZ32xoaMi1XZuptlPjpXdsVGOU6m/quF5N/Guvuh7U+KScO3cuial6npqa\nSmK9xm3Vnuo4asxT7a72p64v1RdUTJ2fqkPvWKv6TNX96PTp00lsfHw8ialzU3WqxkH1DKXuaeoZ\nqqTxTrWlOg91jah+rnjvN72odlLPN+r5oepnU0WNoeqcVbvnPMN67xmqLKr/qn01cYzfDmb0AAAA\nAKBleNEDAAAAgJYp4tNNAAAAAKgDn24CAAAAABop5CxWr8rc3Fw8evRoZfvznpNaqLuVRbT95k0+\nUVKZ0X7eRBhV8y7Obqqqx2Lv/rxtV8e9ouqkASVR51Z6nXr1SuDlTXaikmGUdF9TyTFUvdZRZlWn\ndSSBAZox8KvVAAAgAElEQVQshHAsxjj33L9PT0/H173udYMsUk/33HPP88qaixk9AAAAAGiZcv5k\nBgAAAAB91pVZb2b0AAAAAKBleNEDAAAAgJZp5aeb3unYkhZ7K4Na7A28kDoSryhd+cyiKt76KimJ\nibcsTUxIUVI9V63XmKDiTbyHDQ0NDboI/2xQ4y/QNiXdH/qJEQMAAAAAWqZ5f1oDAAAAgG0IITCj\nBwAAAABoJl70AAAAAKBl+HQTwJaopBJd+QQCZdixY4druzYnQMFgefsWYyNQpq5cm8zoAQAAAEDL\nMKMHAAAAoDOY0QMAAAAANBIvegAAAADQMny6CWBLuvK5QwlUwodLly4lMW9ykrYgycrgkIzpsi6e\ncynUGHjVVcxbYGu6cg1zZQAAAABAyzCjBwAAAKAzmNEDAAAAADQSL3oAAAAA0DLFfrq5vr6exNQi\n8J0701NYXV1NYmrxroqNjo4msTqmd1WZFVUHw8PDVRdH8tbhhQsXkphKFjE1NZXEzp49m8ROnz6d\nxA4dOpTEhoaGkljVvIkIVHt6+28di8pzklmU9LnD2tpaElN90lvPql7Onz8vj71r1y5PEd289aqu\nJfVbb1+tOrmGt2+VVJac/al+5E0W4T3fpaWlJKbuVVWfr7q+1Hn0aiNVD2psVPusYzxXvGVW5RvU\n2K2elxYXF5PY2NhYElNj4/z8fBJTdTA+Pp7EVL/MkTMmqHrxKi3BleqXyqCS0nif2dV5qGdY1X8X\nFhaS2J49e5KYpw5CCEU9y/QTM3oAAAAA0DLFzugBAAAAQNWY0QMAAAAANBIvegAAAADQMsV+upmz\nEFYtklaLykdGRrZ9jKqpMnsX9NdFTXOrdtq9e/e2jzExMZHEVNKWqhdKq4XEKuatg+Xl5SSmFrOr\n7dTiYtU/VPnUwnpFncfFixdd262srCSxycnJJFZ1G6njqvJ9//vfT2IqQcCRI0eS2PHjx5PYU089\nJctz0003JbHp6ekkllMP3oQlijeJgffzlaoTpeQco46yKHUcQ/XzQSUm8Y4nW6Guh34cZ7tUGw8q\n8YqXqlM15nnLrNpD3W/qSARX9bXuTeClEtfUxZsESW1XR5t4E/OpZwr1jKeoZyOVlEr1j5yEYG1U\nzkgFAAAAAKhEOX9GAwAAAIA+Y0YPAAAAANBIvOgBAAAAQMsU8enm/Py8/c3f/M3zYt/+9reT7d7y\nlrcksa9//etJ7OGHH05i3/3ud5PYDTfckMTuvPPOJKbK8uCDDyaxt73tbUls3759SeyJJ55IYn/7\nt3+bxG688cYktn///iR2/fXXJ7EcahGsmdknPvGJJHbw4EFXeXbt2pXE1Lk8++yzSexzn/tcEhsf\nH09iBw4cSGI//uM/nsQUtZg9J4mGSk5StaoTGKg6VQa1SN27yPwVr3jFto9x6NAhV2yQvEl4vIkX\nzp8/n8RUIgdV/yrBkFoI700m4v2URiUsqToJgbcsarxUib5UXal2yzkPVRbVlsojjzySxNTY+1M/\n9VNJTCVdMLPkvm5m9vTTTyexs2fPJrHf/M3fTGIXLlxIYvfcc08Se+Mb35jE1LigyvL5z38+ib3k\nJS9JYurerhI05XweptpT1enJkyeT2E/8xE8kMTV2qOcMdX3de++9SUzVn0py9eY3vzmJKX/5l3+Z\nxP7oj/4oib3zne9MYmrc+fjHP57E7r///iSmEm6pZzI1pv7BH/xBEnvve9+bxMzMbr/99iSmngd/\n+7d/O4ndcsstSey2225LYj/6oz+axHKSOam+8Du/8ztJ7Hvf+14Se//735/E1DWsrle13e/93u8l\nMZWQ5jWveU0SU5r+6WYIYYeZHTWzJ2OMaefawIweAAAAADTHr5nZQy+2ES96AAAAADohhFDsf5zl\nv87M3mpm6ZT3JrzoAQAAAMDgzYYQjl7xn3RNmdm/NbPfMLP0/8BwkyLW6AEAAABAx52KMc71+h9D\nCLeb2TMxxmMhhJ98sZ0V8aI3NjZmr3rVq54XU0k55ufnk9hb3/rWJKYSYRw+fDiJ3XfffUlsaWkp\nif3Yj/1YEjt+/LirfGrBtkrucN111yUxlaxELTi+dCl9ofcmYlBUIgEzvcBVJbmZmppKYirhgzo/\nFVOLi9XifaDJVJ/evXt3ElMJPLy/VQlBpqenXeVT1/DExEQSU0mM1LilYqdPn05ie/fuTWLq8xYV\nU8fI8eijjyYxlXxC3QvUuKjK1ysZ1mZqnFaJCbxUMhbVX1Ryhscee8y9z+985ztJ7Oqrr05i6r6m\nko4888wzScz7+ZOqr4ceSpe8zMzMJLFBJaV64IEHktjs7GwSU89Q3sQ8KhHGN7/5zSSmxg51XK+X\nvvSlSeyuu+5KYuo5QT27qXpR17AaK1WiE5U45X3ve18Se/WrX53EelFJ0H75l385ialxUP02J4mc\n18/8zM8kMTW+qevGWz712/e85z1JTF3D6rlbaXAylteb2dtCCD9rZqNmNh1C+FiM8ZfUxny6CQAA\nAACFizHeFWO8LsZ4xMzebWZ/3eslz6yQGT0AAAAAqEODZ/S2hBc9AAAAAGiQGOO9ZnbvC23Dp5sA\nAAAA0DKh6sXq2zE3NxePHj36vJgqV84Ca5WcJCdhSdXU+aqF8Mrw8HDVxXFTZVTJBNQicJVU4uLF\ni679qcXTSs7UvEo6oMqsFoGrPqj2NzQ0lMRUggt13DqohAgLCwtJTCUmqKPMqp5VsoKbbropial6\nPnXqVBJTyRnMzG699dYkphJBeevBOxZ7t1tfX3fFVFIPdd2ovqDkXHPq3FQbq3FHtWcd9zd1Xas+\neODAgSR2zTXXJDGV9EIlO1FJwvbs2ZPEcu5zqs23Uqeqv6nfq2tEJW2oOvGYN0mQGuPVcb3XUg5v\nnXrvNyqmjuE9jzqeq1T5VH/x3ofVuQ0q2U4vqu+rc6mjDyqqTc6dO5fEVH9TiVzUuamEYCohjYqF\nEI5dmclyZmYmvulNb0q2K8GnP/3pYy+UdXOrynnTAQAAAABUgjV6AAAAADohhNCZZCzM6AEAAABA\nyzCjBwAAAKAzujKjV8SLXowxWTSrFherRZxqO7Uot3QquYA6j9LOzbu428u7sLZq3v6mBoY6ylcH\nVQdqYb1aOD0oKonDbbfdtu39zc7OJrE3vOEN297fVuTcdNRv1eJ41Z7eBBd13BS9yT9KukGr5AdH\njhxJYipZjHLjjTcmMZXIZWZmJolVnXxK1b06315UebwxpepEH96kQ+q46l5cR7/0PgPkJMMa1HOG\nSp7ivTcrg0qYk0sl/1H90vuMUgfVZ9QY5U3mpJIMqvszXhyfbgIAAABAyxQxowcAAAAAdShtJrdf\nmNEDAAAAgJZhRg8AAABAZ3RlRq+YF73NiQO8C769DeVdADooauFpaYkJSk+KkEMlrlDJCdqSeEUp\nqS3b3Nf6wZuwwJtoYlDjpSqLSiqhyld1mXP6m0pC4KWStngTueTwJu/JVVLyH0UlBFGxnGQndfDW\nc0lUmXP6Qenn24s3YUzpz7U5iZdQnWZeBQAAAACAnsr+kxQAAAAAVKgrs4vM6AEAAABAyzCjBwAA\nAKATQgidmdEr4kUvhJAsPs1JGqBi3kW53iQQ3kWwOR3Je9y6OmubLwq1sN672D5n0TtJRzRVByoh\nwo4dO1y/bYKcvpCzXc6C/qrHQbWdur5U4pDSk2OUTiUEy012pn5fR4KMnGtJJcJQsdITYTQxEYnq\ng02kxiwzf5vkXHd13P94bmmW5o0EAAAAAIAXxJ9AAQAAAHRGV2YhmdEDAAAAgJbJmtELIfxvZvY/\nmVk0s2+a2b8ys3Ez+6SZHTGzR83sXTHGM1mlBAAAAIAKdGVGb9sveiGEa83sV83s5hjjYgjhU2b2\nbjO72czuiTF+OITwQTP7oJl94MX2t3lxZ87i/ToWsnqTBnSlI7WRN8mKauOlpaUkNjo6msRUH1TH\nVUlHuqbtyTZUu6v+4e0L3mQRVY+DVSd8GdQYWnqyjaqpflVH0rF+qLo8JJ8YHJV4yTsGqt+qe3jV\n99y6EuEMqg/S95sltzfuNLOxEMJOuzyT90Mze7uZfXTjf/+omd2ReQwAAAAAwBZs+0/kMcYnQwi/\nb2aPm9mimX0+xvj5EML+GOOJjc2eMrP96vchhDvN7E4zs8OHD2+3GAAAAADg1pWZyW3P6IUQZuzy\n7N0NZnbQzCZCCL905Tbx8vcO8tuPGOPdMca5GOPcvn37tlsMAAAAAMAmOYteftrMfhBjPGlmFkL4\njJn9d2b2dAjhQIzxRAjhgJk9U0E5AQAAACBbV2b0cl70HjezHw0hjNvlTzffZGZHzWzBzN5rZh/e\n+O+/8Oxsc4XnLIRfXV1NYiqRQ9WNnLMAV52vWkjclY5ZAm97qjZZW1tLYqqN61q07aHKp64ldW5j\nY2NJrC19tddYVPX5VZ1Y6sKFC0lM9beJiQnX/ryqTmKi+tvi4mISGx8fT2JtTmJUddKbfshJUFbS\n+KHqtfTxvC1yrmFv/2vCOKHORT0jDg0N1VEcNEjOGr2vhhD+zMy+ZmZrZvZPZna3mU2a2adCCL9i\nZo+Z2buqKCgAAAAAwCcrX3mM8UNm9qFN4WW7PLsHAAAAAMUIIRT11UA/8Z0BAAAAALRMu/8fiAEA\nAADgCl2Z0Wv8i55ajKoWRKuFrIpalFvHQmzV4VQCmUEutleJOVR9VZ1UQrWxqptBUfWiEkOoOlD9\n0tuPcn6rqHoeHh52xeqwtLSUxEZGRly/zRnQ60rGotrOe70vLy8nMZXERPVLldhEtbF3HKz62vT2\n6ToSYSwsLCQxNQaq+ssZF1dWVlzHrTqpRM64babHqKrLqI5dxwPcoB4SvQlGqi6fGk+89/86qPLl\n/FaNJyqm7pv9SO6i+rkqdx2JB9V4pHgTw3jLp54B1FhLUqTnozYAAAAAoGXKmRYBAAAAgD7ryqeb\nzOgBAAAAQMswowcAAACgM7oyo1fsi563AXIWvXoTHQyqM6gkH2rh7+joaB3FcSdZyKkv9Vtvkoqc\n43qT9aiyeBcce/dXx28Vb/sOKvlBXf18syYs7FZtt3v3btdvvckEBpUISpVlcnIyieUks/HyJify\nXiM5CW5KaqNex606Mc+gzk8ln1DXzcTERB3FcanjHqn2149EJB45fS1njB/U+ZrVk4RHUc88g3oG\nGGSCwqYo/wkGAAAAALAlxc7oAQAAAEDVuvLpJjN6AAAAANAyzOgBAAAA6IQQQmdm9Ip40Ysx2tra\n2vNiCwsLyXZqIaZaJH3+/Pkkphbq7tq1y3WMzWUzM7t48aLrt96F+mpht4p5k4b0w9LSUhJbXl5O\nYqqux8fHk5haAH3mzJkkduLEiSS2Z8+eJKYWCO/duzeJKU1IuFGKrgyOdVPjjLqWvMk6FPVbb1IP\nbzIRr5z9eZOYVE2N50pOIgw1FqnEXKq/jIyMuI6hqP0tLi4msa0kvTh37lwSU/c1lThIJTZR9z91\nL1b3Am8iB1U+xbtd1bzPI6ofeZMYqXZ/4oknkpiq55mZmSTmTQyljnv27NkkptpStcfx48eTmGrz\ngwcPJrF9+/YlMdX/Tp48mcTU846ZfuZU1HOtiqn6qiNpmXo+V89uarz0Pner/d1///1JTD3jeeu5\nK3i6BQAAAICWKWJGDwAAAADq0JWvk5jRAwAAAICWYUYPAAAAQGd0ZUavmBe9zQtpVYIAtdh2bGws\nianFyipBi1pIrBazq8XnapGpd3G26lzqt2qRtEp+UhdVblVGtWDZmyhhamoqialzVmWpYxEy0C8q\n4YYaF9QYpa4RtZ3anxprvTdAtT9vApmc/XkTyFRtfn4+ianECypxlUouoqjEGup+k9O+ikrsoMqi\nxmh1vmY6UYW6P6i68SZKUYkhvMkYvMdQdeOt16p5k6Kpe7N6XlLbXbhwIYmdOnUqic3OziYxdY14\nk7Goa139Vj27eZNUqfZV/c+boM2bGK4XVW7v7wf1zKPGHlUP6hrxJrRS2918881JTNXBVuq/C/h0\nEwAAAABappgZPQAAAADot658usmMHgAAAAC0DDN6AAAAADqjKzN6RbzohRCSxZ1qsafXzMyMK5aj\n6kWw3vP1LmTtB3XOKqYWF3svKLXd/v37t70/L5UIQ52HiqkFx2p/asG8WiyuFoar81WL8lX/8C4q\nV4kXvEkv6lgUrhbRq3rxtpGXSsRgpttO8S4MV2OAt+2844fanzo/bwKqqhNSqMQa6noYVCIM1c9X\nVlaSmEoIpsYEb7KIc+fOJTGVcEQlOvHWlapnb5IKlZDGTN93Vd14+7nqg9dcc43rt4o6rjqGNyFQ\nHVSbqPpXY6P3vqn61mtf+9okpuol596sxsqcxBoqkYs3aZ66j6j+kvOsaqbrS10j3gQ0dchJspJz\nratEUKr+u/IC51XEix4AAAAA9FsIoTMvhKzRAwAAAICW4UUPAAAAAFqGTzcBAAAAdEZXPt1s5Yue\nWpCuFoDmJA2pWkll2QpVbpVQQS0kVotoVduphcm5C6A3y1nwrajzUAvcFW+7V50AZWxsbNtlqcOg\nkh+oeukHb2IZL5X8R9Wh6kfe8VLJKfPk5KSrLIOikk+oWM61qZJtqD6o2jKnrvpRz6pPq7FWJcgY\n1D1Rjd0ljYPesqjkWuq36ppTiYNUvajkGCXJSU40SN5EX4Pql2qsULH5+fkkppJ/TU9PJzHvfaQJ\n7TlorXzRAwAAAAClpD/g9FM5fyoFAAAAAFSCFz0AAAAAaBk+3QQAAADQGV35dLOVL3reReUlNXJJ\nZdkKVe7x8fEkphKqKGoRslpQXbrh4eFBF2HLmtoH+61X/yspSYiiriXvwvWchCpe6hil16mXSi6i\n2sNbB6UnE+vFW8aSEiqUVBbFe42o8/D2jybev5S2jCdNpZ4FvXLuX3i+Vr7oAQAAAIBS2h/G+oU/\ndwAAAABAy/CiBwAAAAAtw6ebAAAAADohhNCZTzd50UPl1AJo7+Lu0hfq51BJPVgsXr662mh1ddV1\nbO/14E3+geqpNvLWfZvaqCsPUiXKSYQxNDRUYUnQVTnPbjwbVYcXPQAAAACd0ZU/RPHKDAAAAAAt\nw4seAAAAALQMn24CAAAA6IyufLpZzIve5kQVVS/EVAvcVXKMtiT+aBPVTkpOn1lfX09iVfcFFhfj\nhXgTFuUk9VAx1S/blBCkDdQDiRoXcx5c1tbWXPvLHRe5FzeTd0wo/eHZe92Ufh5dpPqgenZTici6\njNoAAAAA0BldeZlnigEAAAAAWoYXPQAAAABoGT7dBAAAANAZXfl0s5gXvX4nqlANSsKBZlB9w5ug\nxWtQC/9VH+zK4IPnq2M8YsxrpjrGiboSGFSdRAb1qCMhUB1IitZcqm+ReOXFUUMAAAAAOiGEUPwf\nJarCnzYAAAAAoGV40QMAAACAluHTTQAAAACd0ZVPNzv9oscizv6oI3FAExdUq4Xrqq4GlRimLUhw\n05u6bkjQUr319fUkpvpgE8exXIxv7dHF/gs/dW9RMfpRf/GmAwAAAKAzuvIHYF6jAQAAAKBleNED\nAAAAgJbh000AAAAAndGVTzeLfdFTi9m9iQS8yRi8sUEpbSHr2tpaElPlGRoaqvS43npQqq6bnEQf\nJGPw89ZzHYlXevW1qsvj3V8dZSkpQUtOvVR9XJVQSV3D6rcqCUlJ9azkXIdbUdJ9VykpwZO6D6u+\nVXqdelU9Bnp/2wQl9cuc5270V7EvegAAAABQta68dDKdAAAAAAAtw4seAAAAALQMn24CAAAA6IQQ\nQmc+3SzmRW/zQk61uFhpc0OVtNDWzL/ge3l5OYmpJAZjY2Ou46rfVp3YYGVlxbWdN6HK0tJSEhsd\nHU1iq6urru0GZVAJgVQ9nz9/Pont3JkOYap8IyMjrt8qqi3Nqm8n1RdUYqOqE3iovq/q31tfdRjU\n2KiOodrt2WefTWJqvNu1a1cSU+d27ty5JKb6hjpGTr3k1umgEulUTd2D1HnUcY14732qX6r28CZP\nU0lgvImIvP1IJeHz7i8naVsTEomoPqjaRLVn1eVWx1XHUPdO1WfUvVTtT92rVL0MDw8nsS4r584N\nAAAAAH3W5omiK7FGDwAAAABahhc9AAAAAGgZPt0EAAAA0Bld+XSzmBe9zQsqvclY2kwtWlWLleuq\nK+/iWLUQ1ntBqYQbarHt9PR0EstJCJKzeFct5J6YmHD9to62y0lcUdKCdNXmXqqfevuuN2lQLm9i\nGS9vwgJ1XHUtVV2WHDkJGrz78/62V7KezVTiFS9VPjXG5LSRSrDQj+QiTXy48t6L6+C9Dy8uLiax\nqampJKb6jEqodvr06SS2d+/eJJZzL636ftjEvtaLN5FOHeesxgU1DqoxRd3HVZlVAqpnnnkmiR05\nciSJVZ0crumKedEDAAAAgH5r0x8CXgivvQAAAADQMszoAQAAAOiMps7ohRBGzezLZjZil9/j/izG\n+KFe2/OiBwAAAADlWzazN8YYL4QQhszsKyGE/xpj/Ae1cTEveiRf8SmtntRiYLUAV22nqMQXKkFL\n1X+JuXDhgqss3kW+OUlz1OJ4lZDGuz9VV97EC+q4VS90VuerYt4EIep8VYKAnMQV/eDt095y5yQi\nKUnV51s1NU6Mj48nMW9fXV1dTWI5iVy8cu4tpfehXOr8+pGoZrtU8hTVL71tPD8/79qu6mQgOYnD\n2q70ehgdHU1iIyMjScx7Hqr/XnfddUnM+2zZJvHyhfLcQ+vQxn963gDLGakAAAAAoI9CCCW/PM+G\nEI5e8e93xxjvvnKDEMIOMztmZjeZ2X+IMX6118540QMAAACAwTsVY5x7oQ1ijOtm9t+EEHab2Z+H\nEH4kxvgttS0vegAAAAA6o+AZPbcY49kQwt+Y2VvMTL7o8X+vAAAAAACFCyHs25jJsxDCmJn9D2b2\ncK/tmdFDFvUXkZzFseq3e/fu3fb+vCYnJyvdX9WJDapOwuNNJFB14hVFna/3L205f5Fr6l/z6qib\nOvbXluNWnZRDJQ7y6uL1ALPp6elK97dv375K9+dFH2yXnPbMGQc74ICZfXRjnd5VZvapGONf9dqY\nFz0AAAAAndHUPyzEGL9hZq/2bs+nmwAAAADQMszoAQAAAOiMps7obRUzegAAAADQMrzoAQAAAEDL\n8OkmAAAAgM7g000AAAAAQCMxowcAAACgE0IIzOgBAAAAAJqJFz0AAAAAaBk+3dwkxpjESp/ebWKZ\nm2B9fT2J7dixY9v7W1paSmKjo6Pb3l8dVB2o/rZzZzlDyaVLl5LYVVf5/qY1yGvp3LlzSUz1j5GR\nkSS2uLiYxMbGxqop2AtYWVlJYsPDw0nMey15z0Mdd2hoKImpvuClynf27Nkktnv37iSm2nJ6ejqJ\nqfKp4y4sLCSxiYmJJOZtD0XVvTrurl27kphqXzOz+fn5JHbq1KkktmfPniQ2OzvrKuPa2loSm5yc\nTGJqjFL7U2OAqld13L179yaxnPFD9Y+LFy+6Yup6UH1L9Ut1vidOnEhiMzMzSUxdr6osijrf5eXl\nJKbaUsXUPXd1dTWJjY+PJzHVvqr+VH/pdb9RZfRes+q6UdupcSHnucV7P/WOjd7tVNt5y6faU+nK\nczIzegAAAADQMuX8GR4AAAAA+owZPQAAAABAI2W96IUQdocQ/iyE8HAI4aEQwo+FEPaEEL4QQvjO\nxn+nH3EDAAAAAPom99PNf2dmn40x/osQwrCZjZvZ/2lm98QYPxxC+KCZfdDMPpB5nJ7UQljvdmpB\naUlTud5FsHWVuWtJX7wLmFU7eWNqwbFKtjGoelYL0lUfrKNveBNreBOvKIPszyqBhKISX6g+o+rL\ne36qPVVMXSO9EnN4tlPJBdR5VJ14RVHl8yZUUW3pvVep46qkPFUni1JJNLwJfXol21DlVklWvP3S\ne414ec/Pm9yhamosU3VQdb2o6/D666+v9BiKOt+cpFI5fbquBGPeZElVJ/rx8t5PVUKVnO3qSFTX\n5ufXK237iSiEsMvMfsLM/tjMLMa4EmM8a2ZvN7OPbmz2UTO7I7eQAAAAAAC/nD9Z3GBmJ83s/w0h\n3GZmx8zs18xsf4zxuTy8T5nZfvXjEMKdZnanmdnhw4czigEAAAAAPszovbidZvbfmtn/HWN8tZkt\n2OXPNP9ZvPytivxeJcZ4d4xxLsY4t2/fvoxiAAAAAACulPOid9zMjscYv7rx739ml1/8ng4hHDAz\n2/jvZ/KKCAAAAADYim1/uhljfCqE8EQI4eUxxkfM7E1m9uDGf95rZh/e+O+/qKSkPXinXps4RZuT\nVKIfmliHdVDtpGJ1Le6ukkryMSilXQ8lyUlK1UTe5D9Vn2/O/tpS97m4jwBbx3VTrRBCZ+o098nz\nfzGzP93IuPl9M/tXdnmW8FMhhF8xs8fM7F2ZxwAAAAAAbEHWi16M8X4zmxP/05ty9gsAAAAA/dCV\nGT2+hQIAAACAluFFDwAAAABapnnZIQDURiWQuHTpkuu3O3bsqLo46KBBJV4BALQXn24CAAAAABqJ\nGT0AAAAAncGMHgAAAACgkXjRAwAAAICW4dNNoAeVdOSqq7r1txH1aQNJVurj/bSka4lIuna+g+JN\nhAMATdOVsaxbT60AAAAA0AHM6AEAAADohBACM3oAAAAAgGZiRg8AAABAZ3RlRq/YF73V1dUk5k0M\nsby8nMRWVlaSmFpoPjEx4TqGStThTVKhjqvOd3193fXb0dHRJNaPpCHq2EtLS0lscXHRtd3BgweT\n2MWLF5PYo48+msQOHDiQxKamppLYzp2+Lu5tE7U/1S9V26n9DQ0NuWJ1JEVQfVrFBpWgxXs9zM/P\nJzF1XQ8PDyexp556yrWdmdnk5GQSU23nbSe1XU4b54wBa2tr296fN1GK2l/OuKr6Rx285VPnpurK\nuz91T8u5DlVZvMfo1TfU79W9QO1TXbNVXyPecd97Pah7cdVUWVSZz549m8TU+DQ7O5vE1D333Llz\nSRE8tzQAACAASURBVOymm25KYmNjY0ksZyzyXteqD6n+p+rP+yyo9OPerMqoxg+l1/2qSqpNVEzd\ni9U1oupa9V8V279/fxIbGRlJYl3Gp5sAAAAA0DLFzugBAAAAQNW68ukmM3oAAAAA0DLM6AEAAADo\njK7M6BXzord5QataNOylFmKq/eUsXM/5repcagGtWtxaR9KLrVALr1X9exdjq3a6+eabt16wLVJt\nosqizsO7GNu7v9INanD0Ju/Iuda3ktio6kXvqh/lJCJQC/pV2+UkQPEm61G81403YUYdY6O3/lSf\n8SZ3UlQijF27diWxnIQ0VY+BZvr8vPfnOsZGdc6qzKosgxoHVT9XZVHJybzJYvbt25fEZmZmkphK\nouFNxuSVc117k515x52qkwH14h0XBkW1iYrt3bt328fYvXt3EvM+b+L5mveUCQAAAAB4QWX/2QAA\nAAAAKtSVTzeZ0QMAAACAlmFGDwAAAEAnhBA6M6NXxItejDFJHLCwsJBspxb+qoXwKysrSUztTy22\nPXDgQBJTC9yfeuqpJHbttdcmMa+nn346ie3fvz+JLS0tJTHvAutcp0+fTmJ79uxJYt7kBIpaKK3O\nWVHlO3jwoOu3qj1PnjyZxG688cYk9uSTTyaxs2fPumLXXHNNErvllluS2PHjx5OY6ueqfGqRtCqz\naiP128nJySQ2Pj6exHIsLy8nMdUeqq+pBeCLi4tJTJ2HGvgfe+wxdxl/5Ed+JIl5r09VRnU9qMXn\nanxT26k+403CocZLlSRE1b8aQ1V/e/TRR5PYkSNHXGXxJuvxUn3/xIkTSUzdMy5evJjE1DWi6kUl\n0fEm/lHXiBpjlL/6q79KYl/60peS2M///M8nMdVuZmZ/93d/l8S+9a1vJTGVWOYjH/lIElP1/9d/\n/ddJ7B3veEcSU0m9Hn/88ST26U9/OokdOnQoib3qVa9KYjfddFMSy0kqo67X3//9309i6lnhtttu\nS2IqocpLXvKSJKbupZ/85CeTmHomU9fDHXfckcSUH/7wh0ns2LFjSezWW29NYup6/ad/+qckpp61\n1Fj+i7/4i0lMXa9///d/n8Re97rXJTEz3U5qDP3mN7+ZxNR1rO4t1113nTz2dqkkUg888EASm5+f\nT2KvfOUrk5ga39S5qfuhOu6ZM2eS2OzsbBLrMj7dBAAAAICWKWJGDwAAAADq0JVPN5nRAwAAAICW\nYUYPAAAAQGd0ZUYvqEXtdZubm4tHjx4ddDEaKyf5ST+UVh6PJ554Iol97WtfS2Ivf/nLk5hKJPCV\nr3wlialEAmqgefe7353E1IJoldTgFa94RRI7fPhwElMJbh555BFX+aanp5PY9ddf7/qtlxqX7r//\n/iSmFtarpAtqEf0NN9yQxNSCcrUA3Ewv4FfJf1760pfK33eJqn+VPKHqY+SounxKHfWSw1u+Xklv\n1LivEtWosWJsbGzb5fHKuVepZBGqzIOiyqeoMuckMcq516u+oWLeZFEqyZpK3qGSmqjEWqosFy5c\nSGK9koGoBFmqnc6fP5/Edu5M52VU39+9e7c89napvqASyKi6mZqacu1PlVklbVHJplR7qqQ3s7Oz\nx2KMc8/9++HDh+Ov//qvJ9uV4Fd/9VefV9ZcZT99AwAAAAC2jE83AQAAAHRGVz7dZEYPAAAAAFqG\nGT0AAAAAndGVGb1iX/S8i67Vgk0vtbhVUYt8q040ofa3srKSxFSZ60p04l243sSL59ChQ0lMJdZQ\ndaDO9/bbb3dtp/q0d6H5gQMHXMdQ1DHU4nO10Fz9tuo2V/u79dZbk9gtt9ySxNTYMTw87DquWjw+\nN6fXRHvHDy9VblUPajvVJqqvqt+q7dT+lJxkXt6ED+oYKjmRauOc8qm6UuOdOg+VNGB8fDyJTUxM\nJLFTp04lsdOnTycxlXBAJUrKuTZzE8N428lbxqoT1XiP6702q35W8FLHVTHvs4LaTvVLlYgs53lE\nXSMq5jU5OZnEcsZtdb4qthUqGY43EZF6/q06GZ767czMjCumkpvlJCxS48nLXvayJFb1vbnp+HQT\nAAAAAFqG114AAAAAnRBCaOTXZ9vBjB4AAAAAtAwzegAAAAA6oyszesW86G1eQKoWXaqF2DkJVbzq\nSDSheBNI1MW7oLeJF8/y8nISU33LmyjFm3jFq+o6VWVRi7hVsoi6kv9sNqgF1nUdVy2s9yZf8iY2\nUdQxcsZLL3UMbyIdb/+tmjcZ0zXXXJPE1Lkps7OzSWzv3r2usqiYd9xZWFhIYurcVHKMXmNCSQlL\nlJwkaCMjI679Dcro6Gil+1OJfrxJm7xU3atx0ZugxTu2ldRuZv7ruOrkRFVTyc28VNsdPnw4pzid\nxaebAAAAANAyxczoAQAAAEC/lTaT2y/M6AEAAABAyzCjBwAAAKAzujKjV+yLnnchsXdhbVsatI6F\nxL0SMeQcu/T6V8kEvAkpvNupZAzquIOqK1UWlaRGbacSEwxK6fXcS9UL69X5eZMT1JGMRfGWr47E\nK97+4S2fNzGJN2lL1fqRdKiJ92JvErRBXSODeuapIzmc6oODSoY3SINKeIZ2ojcBAAAAQMsUO6MH\nAAAAAFVrwuxuFZjRAwAAAICWYUYPAAAAQCeEEDozo1fMi952F5+qRe9qMbt3IbHaX0kLY+vomL2O\n0eaLwpsEQlH9w9uPBrWg32tsbGzQRdiyqpOa1MU7zqg+4+2DOYkc6uir3sQwdYzTOedb+nWt5CRU\n6pVARvUjb19VvGOo9xrJUUditK7JSZo1qH7gLYtZPYnz6IPYrJw3GAAAAABAJYqZ0QMAAACAfuvK\n7CczegAAAADQMszoAQAAAOiMrszoNf5FTyVeULGcxBolYfFtf3gTUigqkYD3t6W3nffcSj+PJvAm\nT/EmpKh6fzl9Oic5iSqfGuO95wvNW1feBCu95CRe8Zan6vHIW+Y6dG2sVXWvrn9vP6gjkVNdbcTz\nIDzKfqsBAAAAAGxZ42f0AAAAAMCrK7OfzOgBAAAAQMswowcAAACgM7oyo9eZF70mNuj6+noSU4uQ\nMVilJ/DxUovUvUkIdu7szFDSN96kKIpqp9XV1STmTWKQIycBijd5wsrKShIbGhpy7Q9aTl31+u3a\n2loSq6MP5iCpT1lynnnUGJibTKgOqr95Y8BmPJ0BAAAA6IQQQlF/YOqnsv6MAQAAAADIxoseAAAA\nALQMn24CAAAA6IyufLpZ7IueWhBd2oLZfiPxSn3UouauDALPUdcX12HvhDRV14O3D6rtvImb1G9V\nYhNvch21v6rrRe1vdHQ0iak6qJqqK1XPqsze8cSbdKHqevYmXvKOE2b+Pq1+7+37Sk7dqN+qpDKD\nSpaWk2BEbeetZ28bVd0vvfWsyufdLuc+1497pLedvAm3quYda3PGQYXnke0p9kUPAAAAAKrWlT/m\n8yoMAAAAAC3Dix4AAAAAtAyfbgIAAADojK58ulnMi97mxb8lLbAc1OJ4tQBcLbTtSme9UtXJU0qv\nw0Eli1laWkpiqp+Pj4/3vSyDspVEE1UvhPcmQPAmBKk6OYY3gYeXd1z1Lsr3Ju/wGhkZcR2j6kQi\n3v3lnG/VCUy2ss+cY1fdxoq6Fw/qGWVoaKjvx6gjyYqXd0yto68NkkqAUkffVwaVKLD057RSFfOi\nBwAAAAD9FELozItjM/+0AQAAAADoiRc9AAAAAGgZPt0EAAAA0Bld+XSzMy963uQC3ljVVPl27mxm\n86hFw3Us3lUL5r11qOrfmxhCna+KqX40PDzsKp93fzmJHNR2o6OjrrLUQZV5eXk5iak69S7AV/tb\nWFiQ26rEHGNjY9s+tuJN+LKyspLEvGNZToIndVxVB97xV/UtbzKWOsZpVT41xqh6Uf1SnYc6xurq\nqmt/ajvVHorq+/Pz80lMjQnqt2Zmp0+fTmKqT+/fvz+JTU9PJzF1ft4yTkxMyDJups5FHTdnPM9x\n/vz5JKb6m+qXqg5UcpdTp04lsSeeeCKJ7dq1y3UM1b6Kuh5UQjDvmKXGbvWcMDk5mcS845jqL72e\nd7z9Q5VRnZ/aro4+qI6r6kGN3eraVOem9nfmzBlX+dTY0WXNfJMAAAAAgG3oyowea/QAAAAAoGV4\n0QMAAACAluHTTQAAAACd0ZVPN4t50du8QDsngYSiFlOr/amFrOoYalGuN+GIOq6SU+ZBqiPximqT\nnOQ1auGvqmt1DLXduXPnkphawKwWs4+Pjycxtah5cXExiam+oBbbq/pT/c27KLwOqo1U4gq1eF8l\nTlH9VLWlSnRgpscA1U7eZBhqf6rtFHV+Xt7kOqq+csaenGRY6jqsI0mQNwmEKp9qX0W1ubcf5Iy9\nqu+q8Ukdo1eiE/V775jirdfdu3e7yqh4x3jvtV4HVddqjPH2GWXv3r1JTLWlqquc+4O6BynedlNU\n/1MxdYycpH69qH16kzR5nyXr4L1/eZ/jcxK55PT9NirmRQ8AAAAA+q2pM3ohhENm9idmtt/Mopnd\nHWP8d72250UPAAAAAMq3Zmb/e4zxayGEKTM7FkL4QozxQbUxyVgAAAAAoHAxxhMxxq9t/PO8mT1k\nZtf22p4ZPQAAAACdEEIo+dPN2RDC0Sv+/e4Y491qwxDCETN7tZl9tdfOinnR81S4t1HUYs+cZAVK\nzqJ37+LdQS327iUnGU5Jx1DUIl/FW5Z9+/YlMW8yBm//6JUAYbvUYnbVzwfVL71JKnL6kDrf2dlZ\n97Y5fVXVqzfBSM7Y6C2L97c523kTIJSehEDxJhhTiSFUP/Amn/Deq9S1pI67lb7hva95EyPlJr7Y\n7m9V+QaV8EHVn/ca8Z6vd3/e69B73Kqf02ZmZpJYTmIddc3lJIHrdWyV5GpQz0aKOuepqalKj6Gu\nL3UMVX8Fv8B5nYoxzr3YRiGESTP7tJn9rzHG8722K+ZFDwAAAAD6rckvhCGEIbv8kvenMcbPvNC2\nZU0ZAQAAAAAS4fIb6h+b2UMxxo+82Pa86AEAAABA+V5vZv/SzN4YQrh/4z8/22tjPt0EAAAA0BlN\n/XQzxvgVM3MXvpgXvSorvKmN10RqgbA3gYRa0Jvz2xxV9xm1P7WgX52vSsZQ9fkq3gX4g0rGoupU\n1ZU6D29SmeXlZddvzeppEy/vdZiTCMObDCAnUYq3LKVTde9NiqLO19vXqh7HvGXudVxvfyuJKl9J\nZVZ1rfrHhQsXXL+dnJxMYisrK0lM9UuVNKQk6l7Q1OfDJpZ7aWkpiamxUSWWU/d21S/Hx8e3Wbru\nKOdJBQAAAAD6rIkvz9vBGj0AAAAAaBle9AAAAACgZbI/3Qwh7DCzo2b2ZIzx9hDCHjP7pJkdMbNH\nzexdMcYzuccBAAAAgFxd+XSzijV6v2ZmD5nZ9Ma/f9DM7okxfjiE8MGNf/9ABcdxUwtwVaykZApN\n4L0ocuq1a21S0iL/ksqiqMQOKhmAutbVwm5FLexuYjIQM30tqXoY1M2uifXqLbM3oYc3aYvq++q3\nTaxT5FPX8NTU1Lb3NzY2llOconmTSiHfyMhIEvMm3FPj4OjoaHaZuijr080QwnVm9lYz+6Mrwm83\ns49u/PNHzeyOnGMAAAAAQBVCCMX+p2q5a/T+rZn9hpld+Sf0/THGExv//JSZ7Vc/DCHcGUI4GkI4\nevLkycxiAAAAAACes+0XvRDC7Wb2TIzxWK9t4uU5cvktSYzx7hjjXIxxbt++fdstBgAAAABgk5wF\nUa83s7eFEH7WzEbNbDqE8DEzezqEcCDGeCKEcMDMnqmioAAAAACQqytrM7f9ohdjvMvM7jIzCyH8\npJn9HzHGXwoh/Bsze6+ZfXjjv/+ignJuiVq4rmLAC2HRdjN5k7Z4f1sXbzIc72J21VdVghYSeNTD\n226qPby/LQ3jJQaJ577B8t6DvL9lPNmefqQ4/LCZfSqE8Ctm9piZvasPxwAAAACALevKi2MlL3ox\nxnvN7N6Nf37WzN5UxX4BAAAAAFvXrf/TMgAAAACd1pUZPT5gBgAAAICWKWZGz5MQIOftWy1mV/tj\n8W43LS8vu7YbGRnZ9jFI7tJMvcamOtru0qVLL77RFn6rxkE15tEvy9fU8WRtbc21nTdpA+rhHYuq\nfoaqup+r/qfOzZvAC4Ol2o7n+OdjJAUAAADQGU34w1gVeO0FAAAAgJZhRg8AAABAJ4QQmNEDAAAA\nADRTMTN6/X6z3rFjRxLzJIBBN+QkWfFqavKEruvVRlW3p0qUUge1cJ2xsSzeNmpCu5EooZkG1W5V\n3yPVeQxq7EU+nqFeXDEvegAAAADQb115SeRPawAAAADQMszoAQAAAOgMZvQAAAAAAI3U6Rm9rrzN\nowwkIWiXJo4fqg+q82hCUo+SXbp0KYnlXP9qf03VxOumibzXcNfaQ12Hw8PDAyhJ+9WRgK5r/Xc7\nOv2iBwAAAKBbuvKSyBQDAAAAALQMM3oAAAAAOoMZPQAAAABAIxU7o7e+vp7E1MJOtbB2ZWUlie3Y\nscN13KGhIdd2dVDnu7q6msSqXkjca+H/2tpaElNlHBkZqbQ8StULzdX+vP3N21dVH/QeY1BUX1B1\nWsdfxtR1ra7XqsvS63qoup289ZqTKEX1wdITfeRcwzlU+3qvB++1nqPqvuG933jvpWZ6bFTl3rmz\n2EcRM/OP8VWfhzrG0tJSElN1Ojo6WmlZcp7JcsZKdVxF1YH6rTchVWmzPaqu1Xi0letzu8dV44Kq\n16qvh9LvVaUqe3QFAAAAgIqEEIp7me+XcqYOAAAAAACVYEYPAAAAQGcwowcAAAAAaKRiZ/RyFpRW\nvQi5JFUnXlF6/ZXDm/jCm7DAu5BYbVdSwhJ1bt7ylXQeiqr7QSVO8Ca48CaA8I4xvdpIHTvnL4Te\npAOKahNvIo2SEu4o6rjq3FQdVJ2cRFH15617bx/0JiKqmqpTb5KaXr+vOilNHbyJPurgvQ+rpC2q\nzOPj4679KVWPE6p8Oc+C3vtrE/pkSeOv9zlU9UFV12NjY9suS852XVHsix4AAAAAVK0rL4RlTycA\nAAAAALaMGT0AAAAAncGMHgAAAACgkYqY0bt06ZItLi4+L6YWe3oTCeQkkFALRb1JQxT1W3UMtWi4\n6mQPXr0WJqsy5iye9rZnHdbW1pKYN9mBNzlBzsLwqtvdewxvMoWc8nn3p/rL/Px8ElNjh2pLddzN\n45CZTqxhppMY5CTIyEls4B1TFLWdOm5OwgLvNeJN2lRHkg/v/lRZVMw7tqm6UskKvPcWL9XPcxO+\n5CSqGtQ4o6gyV50YLae/qfuXOjfVj9Rxz5w5k8TUvX7Pnj2u43qpPugdn3KSSuWMd/14JlPHVrGc\nRDU5x/VewyoxovcZW/UFlZRqYmIiiXVlps6riBc9AAAAAKhDV14I+XQTAAAAAFqGGT0AAAAAnRBC\nYEYPAAAAANBMRczoXXXVVXKRsPe3npiXNwmEV9VlqcNWypyTqEbJSUiRI6edqt5fHeebc4yqy5ez\nP5WEQNX9yMiIa38qGUuvJBrT09OufXp5EzJ5DSqBj/e3VZdlULz1UnodqMQr3vbttV1bxpk65JRP\nJWhR92HvMVSSlZzEa15qnM7pgyX1v9xjD+q5oI7r0JsITvW3qp/d2qiIFz0AAAAAqEPpf/ypCq/C\nAAAAANAyzOgBAAAA6Axm9AAA+P/au/dYO67rvuNriY/70OVLvCLpktTDhSBDsmpbJuK0AoLAbmsF\nDaL8FdhtYqcNIBROWqcw0Mou0PxroEXa/pEWFmTVrm34ActBhCKtI8gJYgOOLNJJasuqKlmqJdrU\ni6TMx32Tu3/cI+eS+3ekde/Mmdkz8/0AgnjXPefMnr337Jl9Zva6AACgk7ijh0rUAv4q2vqGpe5F\n5WjGvn37av28/fv31/p5m1H6ovLSy1e6useYuj+vq4kroNXdJk2cI+mDeB3XZPVhogcAAABgMIby\n5QBf0QIAAABAz3BHDwAAAMBgcEcPAAAAANBJTPQAAAAAoGd4dBMAAADAILg7j24CAAAAALqJO3oA\nAAAABoM7egAAAACATir2jt6ZM2ey2K5du7LYNdfkc1X13pWVlSymZvOHDh3KYqurq6HY9PR0Ftu+\nPa/iy5cvZ7Hl5eUsdunSpSx28eLFLHbw4MEsNgkXLlzIYmtra1lsx44dWUzts2rPpaWlLPbaa69l\nsbm5uSwWrX/UT7WvOjYxXkopi6njYWZmJoup+j99+nQWW1xczGKHDx/OYqrt1DZUmbdt25bF1Fir\nxg51vJ4/fz60jdnZ2SxWhdo3FVtYWMhianyKHiPqXKBiO3fuzGJqDIxS+zE1NZXFVFueO3dOfqZq\nJ3XuVHUzPz+fxdT5L3puiVLHjWpPdZ5rYsw7depUFjtw4EAW+8lPfpLFjh49uuVtqL6lxiLVvtH2\nUO2rxsDdu3dnMXVsquNGtVG0zOp16jpN9Q0zfcwq6lhU46U6PtUYqo7DKtTxrrah2k69bu/evVlM\n9QXVnqoOouMgd/QAAAAAAJ3ERA8AAAAAeobn2gAAAAAMBo9uAgAAAAA6ydUC1qYdO3YsHT9+fEvv\nVeVXs3S1YFYtyi1phq8WmavylVTmIYombVAJgdTC5HELudugjhvV35pIQqDqVB0jdS887wJVD4pq\nT7V4v6QxRZW5rTaOni9Lqr/SqPaMJppoiyqzMsSxpxTR80M0qVQ0cUpTVB9U5W4iAV0Xx0F3P5FS\nOvb6z29729vSgw8+2GaRxrrrrruuKGtV3NEDAAAAgJ5hogcAAAAAPUMyFgAAAACD4O5FPVo6SdzR\nAwAAAICe6fwdveiMvIuLpFWCixKS5+BK0QQ509PTTRSnVuq4aasPqjrt4nE9CdFkOE0kzalbtMwq\nyULd+zuUb4AnSR2zpR/HpZcP8fNDV9uypHL3ZRzsy368me6d9QEAAAAAb4iJHgAAAAD0TOcf3QQA\nAACAKB7dBAAAAAB0Enf0OmYo30CgDNHEK+p19FXUIdqPuphoBt116dKlLKb6IOMg6qDOsdEEVPRB\nbSj1wpkRAAAAAHqGiR4AAAAA9AyPbgIAAAAYDB7dBAAAAAB0Uqfu6EUXngKTohbgb9u2rYWSNGMo\n33iVSvU3tSh/+/ZODeVA5/V53Ed51LmYPrh17j6Y6xtmSQAAAADQM0z0AAAAAKBneN4HAAAAwGDw\n6CYAAAAAoJOKvaOnEq9EZ99ra2uh96pEByqpgUr4ohIiVPl2QJVFUdtVC3In8U2F2rZqp+Xl5Sy2\nY8eOUGx1dTWLnT59OosdOHAgi9WdmEf1o+g2VL0oTfStKkpKgKTqRcUUVX8qtrS0lMXGHZvXXntt\naNt1iyZeqVI3bbV7tI3bOm6i9bKyshJ6nWrLc+fOZbGpqakstnPnzixW9/6q8VhtY1yfVMdTtJ3U\nPjcxDqoyq7pW5wd1Tqu7zNEETWfPns1iu3btymLT09NZ7Pz581lMnYePHj2axdT+Vhk7qpxLVV1V\nue5rSvTao60yRq/P1bWgOpbUfqjjMLq/0XMkd/QAAAAAAJ3ERA8AAAAAeqbYRzcBAAAAoG48ugkA\nAAAA6KRi7uhFEwdE3qdm6WpRuXqvWkxdtypJJdpM1BEtt0pEoKi6XlhYCG1DLaiOJtyIqpLkJpq0\nQfXLJvqgohaAq0XNqu5VXdUtmpTjtddey2J79+4NbUPt27j+rJKx1H18qvdGx4omEhHUnbQlmjRL\naSsxgTqGlejxpfqbiu3fvz+03SqqjkVqXFD7XNI362qfVd9qIvGKosqitrtnz54sphJhKHNzc1ls\nZmYmizUx7lc5rtXYEa2DNkWTibQl2ibRxCvRbdSdNKekcWeSuKMHAAAAAD3DRA8AAAAAeqbs+8MA\nAAAAUBN359FNAAAAAEA3FXFH7+LFi/ad73zniti3vvWt7HXvf//7s9hLL72UxR599NEs9uyzz2ax\nxcXFLPapT30qi505cyaLff7zn89i9957bxa76aabspgq8wMPPJDF7r777iymvoF497vfncWqGJdc\n4HOf+1wWUwkpbr/99iw2NTWVxW655ZYstry8nMUeeuihLKYWwqvF4h/60IeymKISJUQTc6h9U22s\nXnf+/PksdvPNN2cxteD41VdfzWIq6Uh0YffLL7+cxa677rosphLmqNfV7eLFi1lMJQNQfUMd66q/\nqMXj6r1mui+oRDAHDhyQ77/at7/97Sz29NNPZ7E777wziz3//PNZ7LHHHstiTz31VBa74YYbsthH\nPvKRLHbq1KlQ+d7znvdksVtvvTX03scffzyLqcQQt912WxZTx02VZBGq3dVYpPrMO97xjiymjn91\nflhaWspi3/jGN7KY6n9vfetbs9h73/veLNaUthJLVRHtM23dDYhut0rSEbWNJhKEqPOhGvdVohlV\n5p/+9KdZTI3RihpP1DbUeXPcmB89Hl588cUstnv37lB51Hmtbmqf1XETTVimyqzqSrWnEk3gxR09\nAAAAAEAnMdEDAAAAgJ4p4tFNAAAAAGgCj24CAAAAAIrg7g+6+8vu/v3Q69XCyKbdeeed6Zvf/OYV\nMbXwV8XUwlq1KPTChQtZbH5+PotNT09nMbVAWNWbWiyrqEX0ahtqwXF0YXIV4xaynjt3Lovt27cv\ni6m6VokI1GJblRRFJf9Qn6fqJpokRO2b6m+zs7NZTCVFUa+L7seuXbuymNo3lbimSlKU5557Loup\nBemqLGrRdd1OnjyZxY4cOZLFVD2r9lBUnarPM9N9//Tp01ls//79oW2rpE9qnFH7ohKHqKQearw8\ndOhQFlNJfdR71fF6/fXXZzH1zanqR6rM6r0q0YTqg3V/Y6uOkaNHj2ax6HiukiypPqjGVPV5ahyr\nO1HS5cuXs5jaj6pU3y/9G/im6gbA5rj7iZTSsdd/vv3229OXv/zlNos01h133HFFWa/m7r9gZhfM\n7L+nlN7+Zp/HCAQAAAAAhUsp/bmZ5d8Mj8EaPQAAAABo37y7H9/w8/0ppfu3+mFM9AAAAAAMWYvT\n6QAAF4NJREFURsGPgr/6Ro9ubhaPbgIAAABAz2x5oufuR939T939B+7+hLt/dBS/zt0fcfenR//P\nMxYAAAAAQMPcvdj/6lbl0c01M/tYSum77r7LzE64+yNm9ptm9mhK6ZPufp+Z3Wdm/+aNPuiaa67J\nMqaNy/x4NZX5bnV1NYup7IbRClVZEKtQ2SZVZj6VfU1lm6s7O5nKWmqms7yprHuq7aqUR+2fqkPV\nF6JUxlSVQU3tr8pQqN47NzeXxaL1ojIKzszMhN6rqDa68cYbs5jKOBk9NuumskOqY11lr1RlVse1\nypZ49uxZWR41plTpgyo7our7Kqb6gtpndQyrTMMqU6DatyrHtcoeqvp5W1lelRtuuCH0OnWsR7Mv\nqn6lYqofVOl/SnQsV+OimT6XqLGx7vdG61rVodqGep06PzfRL6NlVjFVp9G6UtnC1eeNu37YKjXG\nR8us3quuoaKfFz33baYOon1a1b/av7qvVxVVDyqmMmUfPHgwi6njRmUzf+GFF7LYHXfckcVUxvQ+\ncfcvmtkv2vpavpNm9nsppU+Pe/2WayOldMrMTo3+fd7dnzSzw2Z2z6gAZmafNbM/szeZ6AEAAABA\nEwpeo/eGUkof3Mzra1mj5+43mdm7zOwxMzs4mgSamb1oZvn0ff0997r7cXc//sorr9RRDAAAAACA\n1TDRc/c5M3vIzH43pXTFX2tN688YyL/InlK6P6V0LKV0TP2BXQAAAADA1lR6kNXdd9j6JO8LKaWv\njcIvuftbUkqn3P0tZvZy1UICAAAAQB26+ujmZm15oufrNfRpM3sypfT7G371sJl92Mw+Ofr/H0U+\n7+qFnGpxbLRR1GJbtVhcJfRogtoPtdBWLW5Vi0yb6qyqTVRMJXyIUvtX5fOqUPUaXeQbXTAfXQSu\nVHlvNNGBSpih+moTonV/+PDhLW9jfn4+FJsEtbBejVGqX6qxQvUPteg9mgyg7nFGfZ6qA9Xf1L5V\nSU4UFU2yUOXYjKq7PaJJSDaT0CM65kX3pe56VduNtnFbCR+iZV5cXMxiajxXVAIk9XkqEVkVKsGN\nqucqx2F0rFTqTjQzbtuqjCpploo1IZqERyUZjNahuo5XT/9Fz19DVmWkusvMfsPMvufufzWKfcLW\nJ3hfcfffMrMfmdmvVSsiAAAAANSDO3pvIqX0LTMbV0vv2+rnAgAAAACqmfzzJQAAAACARvX7rwoC\nAAAAwAY8utmglFK26FstyleLMxXVeG0lXolS5VP7qxbHN0VtW9V19HWli5ZZ7a+KVUlC0Ba10LmL\ni59VmSexsL5ualF+dCF8VBOJQ6LUODg3N5fFSiqzEh2nSzr+o8m2lM2cl6J9uqS6qZKopm7R86s6\nbqLtpJI2qVjdotd4UdG6qjtRWlWqH6mkVGr/pqamJlKmrdi9e3cWix7X6r0qhjdXxEQPAAAAACbN\n3Yv6MmmSyv5aFAAAAACwaUz0AAAAAKBneHQTAAAAwGAM5dHNIiZ67m7btxdRlEqqLOitkvijtM5a\nWnkmTe1vF+sg2lfbWuwd7fsq1oXEK6UnjFKaGI/aqpcq+1Z6spimqPpS5/poQqu2xtWS2rNKHZR+\nXqq7fG2127ikN1X2TyWqUYmNSlJ6fxuK7s+uAAAAACBoKBPRcr6mAgAAAADUgokeAAAAAPQMj24C\nAAAAGIyhPLpZ7EQvmtgkuog7qkpijSYW/lZJ+FJVnw+KaD+K1rVaJK0SgpSUcCBK9cEmkp2UXi9V\nRcctVQ+qv6nXqf7bRBKpKtbW1rJYNKFHnxNXlKRqXXWxrts8Fw9J3fWsxkr1eV0YO7qQZAztK3ai\nBwAAAAB16+IXTFvB108AAAAA0DNM9AAAAACgZ3h0EwAAAMAguPtgHt0sdqJXJRlANBFG6Y0cTbCA\n6qok4VFWV1dDryt9MbXqg2rfook/MF6V/lalH5XeTtF9Y2wsTzTJVd3jbxXRpEjRpB6opkqdLiws\nZLGpqaks1oWxQ/W3paWlLDY7O5vFurB/mJxiJ3oAAAAAULehTID5+gkAAAAAeoaJHgAAAAD0DI9u\nAgAAABiMoTy62fmJXjTxSt3vvXz5charsmhYLQBXZVleXg69bhJUEo7t2/MupPYlWjfqvdHttrUQ\nfm1tLYtFy6feW6U96x64VFlUezRR9ysrK1lM1XOVxA6q/6k2MtN101YfjCa4qPJ5St39TW13cXEx\ni+3cuTOLqb5Qt2hykbrPBeqYU/2v7nNB1X6ljh1VNyUlMYnuX0ll7osq/S3a19R1n4rt2LEjVJa6\nrwXHUce2KmMT1JisylL3sV7lmn3IOj/RAwAAAICoodzR4yspAAAAAOgZJnoAAAAA0DM8ugkAAABg\nMIby6GaxE73ootwqCzGrvLfuxbZq39QC/DY7ZnThb5UyqveqxAslqZIEookEElWoBChtaaIfbGaM\nKekkUXdZ2to3td2SkndUSfRTZRttjYFVkhiZ6WOnzYQWW6USfdSdSCtKJaRQddVEoiTVbm0lE4sm\nx1IxtR9RTY2Vqr81MR4pajyKjt1VRPtgSWNHCcq+ygQAAACAmrh7UV/WThLTXgAAAADoGSZ6AAAA\nANAzPLoJAAAAYDCG8uhmERO9lJItLy9fEVtYWMheNzMzk8WWlpay2Llz57KYWrA5Pz+fxebm5rKY\nWgR79uzZLLZnz54sFl1Ef/X+j6P2t6mF+qpNVLIOVV/XXXddFlMLZlXb/fCHP8xiu3fvzmLXXntt\nFjt06FAWU9QCd7W4Wy0GVrHo50UXUzexEF5RCXiqLFyvmyqLikWT3qj3qn5vZjY1NZXFVNtFt724\nuJjF1LGk2kT1t1dffTVUPnVsqmNJleXixYtZbHp6OhSLtl10jFFjd91UG6k6UGOyOn+ptlTnlpMn\nT2axvXv3ZjFVB/v27ctidRt3wRS9kCr9gksdw20l0moi4YtSdzI8RZ3nVFK66LlZjR1qjFFjeTT5\n3GaS8kSThJSeYGRc8qWrResmes2jrn9VvZSe5K5p1AYAAACAwSj9C6a6lPMVAQAAAACgFtzRAwAA\nADAY3NEDAAAAAHRSMXf0rl6gGV1Arhb5q0XqVRa3qoWdKpFLlW8H1GLgKq+bBJVMQMVUYohoXatk\nAu985zuzmKprtd0o1T/UNtR+qPeqhdwq4Y56XTRBSxOaWIAfpRZ2q/JVSRYTXahvpscFVcYolcBD\njW/Rhes33nhjaLvqvWobqq+qsTZKHUtquyrxUltUm+/fvz/03ugxPDs7m8VuvfXWLKb6SzRJgqLG\nz+gYOG670TE5OoZG+76KRc9B6hjuS3KH6LHe1jZU3VdJNqfaLZrQIyqatGUzotdQbZ2L1Xaj19hV\nEjQ1kXCrj/oxegEAAABAAI9uAgAAAAA6iTt6AAAAAAbB3bmjBwAAAADopiLu6Ll7tmhWLcpVC0DV\njHx1dTWLRRdsRxeAK1UWIatEHWoha5sLcqOJJtSi3Cptpz6v7kQEqt2jnxddyK2SekQTtDTR7mqR\nuqrnKgvXq4gmhlB9SC1ujy4oV59nphf611030eQTitpntX9qP9Q+q9dV+UY02iaqX6pjqYlvZ1Xd\nLy4uZrFoAokqCX1UXVUZE6KJppRxda/Ko9q97r5V5Tgs/Vv+6HVG3Ull6k62oUT7YLR9o9d4pVHH\nTVvn3ShV5mgCtWhyPRWr+1qwj4qY6AEAAABAE0r/UqcuZX9FAAAAAADYNO7oAQAAABgM7ugBAAAA\nADqp2Dt6VRYN172wuwkquUBpoglLVPIEFZuZmcli0QXHTSSgifaZ6EJ4VWbV7mrBcRNUWaLJGJoQ\nTbxSpW+ottzMWFRl29H3RvtllWQdTSQsiJZlenp6wiWJU31BxVZWVrJYtG+pfq6OzSYS/1QdZ6Of\nGR3z6k7+oUTL0lQStAh1vokmO4omwlBjbfS6pcqYVUX0PKxep65tqlyXboYaP1TfjyZ9qpuqG1WH\nCwsLWUyVWV0LqkR10fN96df7TSt2ogcAAAAAdRvKhJBHNwEAAACgZ7ijBwAAAGAwuKMHAAAAAOik\nXt7RG8osvQSqrtXC2qhowpfSVVm03dYi/0kkY6iTKp9a2K0SyEQTVzSRhATdFe1HVRLIqPd29ZwW\nTWzSVJKLiLYSXERFk/rUfQ4q6VwQpY5XdX4orc1LSkClqHpVsT179mx5G7Ozs1t+L65UzugKAAAA\nABPk7p39Am2zeHQTAAAAAHqGO3oAAAAABoM7egAAAACATirmjt7Vi7brXvirEnoMZTbfdU20k0oa\n0MXF54gnzOiC1dXVLEbCmH7r03mJMRRtov8BBU30AAAAAGDS+vSl2hvpz1ffAAAAAAAz444eAAAA\ngAHhjh4AAAAAoJOKuaN39aLZupOnqPeSoKUbVDup5Cnbt2+9O6t2J0EL3kgT4weJV2Bmdvny5dDr\nqiQiWlpaymKq/1UdAxlXMc7y8nIWU32jyrm+qX4OlKKYiR4AAAAATJK7D+bGDo9uAgAAAEDPcEcP\nAAAAwGBwRw8AAAAA0EnF3tFrYqY9lNl816l2qrIYW6mSxCCK5D/9QtuhKU2MT9PT0xPfhpkeB1Wy\nmSb2GWWZmpqa+DbUuK36H8lY0BfFTvQAAAAAoG5D+bKWr8wAAAAAoGe4owcAAABgMLijBwAAAADo\npEHf0WMB+GSQdESjDppB/0OJ6Jfr6k6kBWxGEwlfsO7SpUtZjCQ3zWPEBQAAADAYQ/mijdtXAAAA\nANAz3NEDAAAAMAjuzh09AAAAAEA3deqOXnQxu3qd0sXEK20u6FfJa5S26rX0ZAell6900fqjTjEp\nVRJ4VemXbY0dVcd8VW71mV1M0NBWMrfV1dXQduuuU7W/0euvJuolet3X1fNDSdcPa2trWUwlWaq7\n3VVyly5exzetUxM9AAAAAKiiq5P+zWIqDAAAAAA9wx09AAAAAIPBHT0AAAAAQCcVc0fv6kWW0SQL\n0cXeJS0ajlL7oRZiT01N1brdcYua1UJYZWVlJfS66enp0OuWlpaymFr4q9o4uiA9ushXbSO6KF+9\nVy1qVmUu6ZunthaFqzZS/eDcuXNZbHZ2NvReZXFxUcZ37tyZxVQ9RMcUVa9V6rruvlXSwn/VF6Lt\nERVN7qDG5GjCkWh7qG2oOpiZmRlbzq2oej6sMiaXrq1rBVV/qiyqD0b7ZZVxrArVp6v0l+jxX/d2\n+y567rxw4UIWU9erauxW1DgYvY5USrqumqRyZjUAAAAAgFow0QMAAACAninm0U0AAAAAmDQe3QQA\nAAAAdFIxd/TqXPjal0W0avFz3YlXlHHfcuzYsSOLnTlzJoupMkaTBCwsLIS2ceTIkdDnRVXpM1UW\nqUcXNZekrW/BVF2pRCmqPaq0r0pgME6VvhBNQBWljtcuUu3eRMKiaHu89NJLWUwlCNi3b19ou+rz\n1P7Oz8+HPi9KJb1Rdb+ZBEHR17aV4Kmt7UZFE8apZCIqVmWMUZ+nxsYq4040KUqVhHvROogmWWtK\nSf0ySl33qTqMtpPqH8vLy1kscp3s7p2s063gjh4AAAAA9AwTPQAAAADome49NwYAAAAAW8SjmxW5\n+93u/pS7P+Pu901qOwAAAACAK03kjp67bzOzPzCzf2BmJ83scXd/OKX0g3HvuXrha5uLXiet9AXg\nmzE3N5fF1GLs6P6phdeHDx/efMEwCOpYiiYhUFRyl3HJBepO+lRlXGhiTCmpfCWNl7Ozs1msStKs\n3bt3Z7FoMqsqJpHELNpObbVnSf1Iqbv+oolSVCISdQzXnfBp586dodfVfX3Y5+vNpqhzp0rmFK1r\n1d/UWNuX88gkTap3/5yZPZNSejaltGJmXzKzeya0LQAAAADABpOa6B02sxc2/HxyFPsZd7/X3Y+7\n+/FXXnllQsUAAAAAgH7YzPK41u5Xp5TuTykdSykdu/7669sqBgAAAIABef1v6ZX2X6Dcry+P+yUz\nu83MPujut417/aQmej82s6Mbfj4yigEAAAAANm9Ty+Mm9ecVHjezW9z9Zluf4H3AzP7xuBefOHHi\n1W3btv1o9OO8mb06oXJh82iP8tAmZaE9ykOblIX2KA9tUhbaY7Ju3PjDiRMnvu7u820V5k1Mu/vx\nDT/fn1K6f8PPannce8Z92EQmeimlNXf/HTP7upltM7MHU0pPvMHrf/bsprsfTykdm0S5sHm0R3lo\nk7LQHuWhTcpCe5SHNikL7dGslNLdbZehKRP7g+kppT82sz+e1OcDAAAAwIBsankcfzwEAAAAAMr3\ns+Vx7r7T1pfHPTzuxRO7o1fB/W/+EjSI9igPbVIW2qM8tElZaI/y0CZloT0Qstnlca7++jwAAAAA\noLt4dBMAAAAAeoaJHgAAAAD0TDETPXe/292fcvdn3P2+tsszRO5+1N3/1N1/4O5PuPtHR/Hr3P0R\nd3969P99bZd1SNx9m7v/pbv/j9HPtEeL3H2vu3/V3f+Puz/p7n+XNmmPu/+r0Xj1fXf/ortP0x7N\ncvcH3f1ld//+htjYNnD3j4/O9U+5+/vbKXV/jWmPfz8as/63u/+hu+/d8DvaY8JUm2z43cfcPW38\nu260CepSxETP3beZ2R+Y2S+Z2W1m9kF3v63dUg3Smpl9LKV0m5n9vJn99qgd7jOzR1NKt5jZo6Of\n0ZyPmtmTG36mPdr1n83sf6WU3mZm77D1tqFNWuDuh83sX5rZsZTS2219YfoHjPZo2mfM7Oq/SyXb\nYHRO+YCZ3T56z38ZXQOgPp+xvD0eMbO3p5T+jpn9XzP7uBnt0aDPWN4m5u5HzewfmtnzG2K0CWpT\nxETPzH7OzJ5JKT2bUloxsy+Z2T0tl2lwUkqnUkrfHf37vK1fwB629bb47OhlnzWzX22nhMPj7kfM\n7B+Z2QMbwrRHS9x9j5n9gpl92swspbSSUnrNaJM2bTezGXffbmazZvYToz0alVL6czM7c1V4XBvc\nY2ZfSiktp5SeM7NnbP0aADVR7ZFS+pOU0trox7+w9b+9ZUZ7NGLMMWJm9h/N7F+b2cbMiLQJalPK\nRO+wmb2w4eeToxha4u43mdm7zOwxMzuYUjo1+tWLZnawpWIN0X+y9ZPA5Q0x2qM9N5vZK2b230aP\n0z7g7tcabdKKlNKPzew/2Pq34afM7KcppT8x2qME49qA8337/pmZ/c/Rv2mPlrj7PWb245TSX1/1\nK9oEtSllooeCuPucmT1kZr+bUjq38Xdp/e9x8Dc5GuDuv2xmL6eUTox7De3RuO1mdqeZ/deU0rvM\n7KJd9VggbdKc0bqve2x9Av63zOxad//1ja+hPdpHG5TD3f+trS/T+ELbZRkyd581s0+Y2b9ruyzo\nt1Imej82s6Mbfj4yiqFh7r7D1id5X0gpfW0Ufsnd3zL6/VvM7OW2yjcwd5nZr7j7/7P1x5nf6+6f\nN9qjTSfN7GRK6bHRz1+19YkfbdKOv29mz6WUXkkprZrZ18zs7xntUYJxbcD5viXu/ptm9stm9k/S\n3/wRZdqjHX/b1r+g+uvROf6ImX3X3Q8ZbYIalTLRe9zMbnH3m919p60vQn245TINjru7ra89ejKl\n9PsbfvWwmX149O8Pm9kfNV22IUopfTyldCSldJOtHxPfSCn9utEerUkpvWhmL7j7raPQ+8zsB0ab\ntOV5M/t5d58djV/vs/W1xbRH+8a1wcNm9gF3n3L3m83sFjP7TgvlGxR3v9vWlwH8SkppYcOvaI8W\npJS+l1I6kFK6aXSOP2lmd47OMbQJarO97QKYmaWU1tz9d8zs67aeNe3BlNITLRdriO4ys98ws++5\n+1+NYp8ws0+a2Vfc/bfM7Edm9mstlQ/raI92/Qsz+8LoS6lnzeyf2vqXZrRJw1JKj7n7V83su7b+\nONpfmtn9ZjZntEdj3P2LZvaLZjbv7ifN7PdszDiVUnrC3b9i61+QrJnZb6eULrVS8J4a0x4fN7Mp\nM3tk/TsR+4uU0j+nPZqh2iSl9Gn1WtoEdfK/uXsPAAAAAOiDUh7dBAAAAADUhIkeAAAAAPQMEz0A\nAAAA6BkmegAAAADQM0z0AAAAAKBnmOgBAAAAQM8w0QMAAACAnvn/FRisL/PFJyYAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAKhCAYAAAC1lfQ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQHHd5//HvrFbae7W3VlrdyJIv2ZK9vkDExmBTJg4J\nEAgJUOQgEBwTrpBASCpFigAFZUKF4OIKCYSEI6EqQAoCJoAxjsGRZRvfki3Luo89tfeuduf3R36u\nyvbzeexvd+/M7Frv1396aqa7p/vb3+7WzvOZQrFYDAAAAACAdKoqvQEAAAAAsBTxMAUAAAAAGfAw\nBQAAAAAZ8DAFAAAAABnwMAUAAAAAGfAwBQAAAAAZ8DAFAAAAABnwMAUAAAAAGfAwBQAAAAAZVKd5\ncUdHR3Hjxo3zajMzM3rB1XGLVu+fm5uL3qaamhpTKxaLUbUQQqiqss+ThUIhat2zs7NRrwshhDNn\nzpia2vZSUduq9rPaH96+U8dYLVMdY298JNf/1FNPhb6+vqgDosYnsvPG97Jly8q8JYvXgQMHco3P\nNPtYnYfq3PKWWVtba2pqrvPOdyV2rlTL9N6r5kr12kqPQ7Wdal7z9qf6TGr+jJ2nVT3N+Gxubi52\ndnbOqzU0NMjXqn1//PhxU1uxYoWpTU5OymWq/blp0yZT6+/vNzXvniH5eTzqGB08eFC+tr293dTU\ntdy7xsWeM2k8+uijprZ58+ao123fvl0uU23nI488YmpNTU2mtnLlSrlMdewPHjzYVywWow5US0tL\nsbu7+1mX6W2DGidTU1Om5p1far5tbm42tenpaVPz5mV1jqiaMj4+LutqO9OM0dj79zSGh4dNTc0j\n6nh6c31ra6upjY6Ompo6Ht4+Tl4nDx06FPr7+5/1pE21xzZu3Bh27949r3bkyBH52o6ODlNTA/To\n0aOm5p0c6uRWE4baceqECSGE+vp6U1ODTp0IY2NjcpnqtYODg6amtr1U1PrVPlE3XOoiF4I+xmqf\nnDhxwtTUSRCCPR7Pf/7z5esUNT6R3enTp2VdXTzOVr29vdGv3bhxY7j77rvn1dTEH4Lex+o8PHz4\nsKl5x+388883NTUnx/7HSwj6gqTm6TQXs76+PlNbvny5qXk3bHl4n1PdbKubg7a2NlPz5k91w6Lm\nT3XDpObpEOyNbZrx2dnZGT7ykY/Mq1111VXyteoh65ZbbjG1devWmZq6IQ9BPyT90z/9U1RtYmJC\nLvPNb36zrCepm8+bb75ZvvZ1r3udqW3bts3U1FgIQY/lvHbt2mVqX/3qV03t8ssvN7Wf/exncplq\nO9X7r776alO78cYb5TIffvhhU7vpppueki8Wuru7wxe+8IVnXWYIIdxwww2mpu55Hn/8cVNrbGyU\ny1Tz7XXXXWdq6r5Y3YOFoM8R9Z/Cal6+99575TJPnjxpaup+s6urS77fG7t5fOc73zE19SCuHvi9\ne47XvOY1pnbnnXea2oEDB0zNu/9OnssvfvGL5euS+JofAAAAAGTAwxQAAAAAZFBI8/343t7eYp6v\nUcV+99vrw1Lfm/S+21pJsT1fi3HbF5ve3t6we/fuqC+Z5x2f6itX6msB3tdUkt/lDiGEDRs2mFop\nvuaRhvpqrfpzu9fTF/t97jTUV3vV8VBfLa2kco5P9TUPNX97XytTx20xzkGxvUjlpOZ09XXGUvTD\n5FHO8Rnb/6x6q0II4dixY6a2c+dOUytXr7F3H6K+hqq+xrpmzRr5/nLN/2q+qHTvtlIoFO4pFotR\n30fNO0bVdUbVvK9Kq/G8du1aUyvXfOXN9eraqT6ndz0txfareyl1/fK+wlwpsXPo4ruSAgAAAMAS\nwMMUAAAAAGTAwxQAAAAAZMDDFAAAAABkwMMUAAAAAGRQ1oik2OSoSqed5aU+Z2zCHypH/VCfqqkf\nSFxKVMqU+tHLciaoqQSfxZbqU2ner8AnVTr5Lq/Y60SaH8PNazGmHi42sddtlXD6TPVK8T7P6tWr\ny7wl2aj5InYOea6Kvc60tLSUY3Ny8+a6xbj9lU6NLDWuEAAAAACQAQ9TAAAAAJABD1MAAAAAkAEP\nUwAAAACQwdLuVF5CaGDGYjE1NRX1OhVKEUIIDQ0NC7k5wDyxc+VSD9rA0jQ9PW1qJ06cMLXW1lb5\nfhVqBCykmZkZUxsbGzO1FStWyPfX19cv+DY913GHDwAAAAAZ8DAFAAAAABnwMAUAAAAAGfAwBQAA\nAAAZ5O7gLRaLsj43N2dqZ/uvb2Px6OvrM7WOjo4KbEn5Pdd/iXwpUY3CIeh51WsWBlA+6jxct25d\nBbYE0JYvX25qLS0tFdiSswd/mQIAAACADHiYAgAAAIAMeJgCAAAAgAx4mAIAAACADHIHUKigiRBC\nKBQKUe9XDdjee9VrVTN9VZV9RvSCMmK3M3Z7vGWq/aSaBPNuk0d9/tnZWVMbHx83NS+wQNUnJydN\n7ciRI6a2ceNGucy8ISXJz/nUU0/J1zU1NUUtr7+/39TU+ApB/+K92h+1tbWmlnd8qrHoja+RkRFT\nU/vjzJkz8v3V1bmnDWNqasrUpqenTU2dR97xUJ/p7rvvNrWTJ0+a2o033iiXWS7q2Kkx4o0bRe0n\nNQeUKyjIu3aoz6S2qRRzuid2P01MTES9LgQdZHDq1ClTq6+vN7W6ujq5TO9cyOqRRx6RdfWZtmzZ\nYmp33HGHqY2Njcllqs90xRVXmJq67njHPHZ/qLnuzjvvlK/dsWOHqe3du9fULrzwQvl+79jloa6x\n6prwnve8x9R+//d/Xy7z+uuvN7XPfOYzpvYHf/AHpnbgwAG5zObmZllPIzlvqHuWEPSYUPv+9OnT\npjY0NCSX2dnZaWoNDQ3yteWg5osQ9NyitrMU13KPOu/V+vft22dqmzZtkstUn+nBBx80NXUv4F0/\nksfYu04l8ZcpAAAAAMiAhykAAAAAyICHKQAAAADIgIcpAAAAAMiAhykAAAAAyCB1lEcyASNNopJ6\nrXqdSvYKQadqeElzCy1Nkpaqq20vReqUR6VRqW3yknEUte9VMo5aT5okxDy6urpkXW27So8bHR01\nNZXaF0IITz75pKmpFJpSJKip9LeDBw/K165fv97UVCqQSi4qldj9fOutt5razTffHL2eY8eOmdrj\njz9ual6aXzKRKDbp52nJucFLG4tN6VMpZN65pRKeVJpS7PwVQvy4Vcv0Prs6D9X7y5lEpdavrlOx\nrwtBHw81/6qEwHXr1sllLrTzzjsv1/vb2tpM7bLLLpOvVXOYl0i60NRY2rp1q3ztypUrTe388883\ntVKk9nnUXKlSIP/sz/7M1Hbu3Bm9nte97nWm9pKXvMTUNmzYIN+vzu20kvcIjY2N0e9V8+Xw8LCp\nrV27Vr4/dr7Mm7IaK+81Wt2LhFCaRNfY1EN1z5QmMVG9tqOjI/MyY48Pf5kCAAAAgAx4mAIAAACA\nDHiYAgAAAIAMeJgCAAAAgAxSdfAODQ2Fb37zm/NqX//61+Vr3/zmN5uaatD/4he/aGr33HOPXKZq\nUt+3b5+pqSbzP//zP5fL/Nu//VtTu/jii01t//79pvaOd7xDLvMtb3mLqakmthtuuEG+P08Iw+Tk\npKyrxlPVSHvNNdeYmtdIe/nll5uaaqD+6Ec/ampeY3Fzc/O8fx85ckS+Tpmeng6HDh2aV+vr65Ov\nfeihh0xNNeK+6U1vMjU1PkLQ58KBAwdMTe339773vXKZN910k6mpAAnl7W9/u6z/6Z/+qan94Ac/\nMLU/+ZM/ke9XjfN53XbbbabW3t5uaqrx/vbbb5fLvPrqq01NNYrfeeedpvbAAw/IZX7mM5+Z9+/D\nhw/L1ymDg4NmjPzsZz+Tr1UBGGqb1Ji766675DIvvPBCU/vSl75kanv37jU1bztf9apXmdquXbui\n3p+8ljxNNdOreemSSy6R788TWqCa0UMI4YMf/KCp1dbWmtpLX/pSU1NBACHo7R8ZGTG1z3/+86am\nQilCCKG3t3fev735r1y2b99e0fXnsXr16ujXqmZ2L7QlT+CAxxtjSWnCJhQV9pAmACLvtWNkZCT8\n8Ic/nFdT83cIIbz85S83NRU89Y1vfMPUvv3tb0dv01e+8hVTU0EVn/jEJ+T73/3ud5taT09P1LrV\nvBRCCNdff72pqc9eivPTC9/4+Mc/bmrqXujKK680NRUcEkIIO3bsMDUVHqKuNd75mbwGxM6h/GUK\nAAAAADLgYQoAAAAAMuBhCgAAAAAy4GEKAAAAADIopPml5p07dxZ/9KMfzat5DYWqCfjEiRNRrxsY\nGJDLVI33qvGzv7/f1LzPqX4ZWVENv2o9IYTQ1dVlakNDQ1Gvy8tr1Dt16pSpqQZbte+95lbVgK1+\n4Vw1dXu/Pp3cTzfccEO4//77oxI5Nm3aVPzLv/zLebVVq1bJ16rwDxUC8aIXvcjUvve978llqkCO\n1772tab27//+76b28MMPy2Wq4JBYKqwhhGBCOkII4Tvf+Y6pvexlL8u87rSuvfZaU0s2GoeggyrU\nMQpBNwHfe++9pvb973/f1FRIRwj2ePzDP/xDOHbsWNT4vOiii4rJ/ew1wba0tJja6dOnTU2F8qgA\nnhBC2Lp1q6l1d3dHvX9mZkYuc+PGjaamAnQGBwdNTW279341B6mgCu/9sbzrxJ49e0xNBXqoa4I3\nz6vxqfaJ2nfevHby5Ml5/37Zy14WfvGLX0TtkN7e3uLu3btjXiqvE21tbVHvTUMFGsWGLYQQwuzs\nrKktW7Ys1zbFUsctBH/cnq0KhcI9xWKx99lfmW6MAguht7c37N69+1nnUP4yBQAAAAAZ8DAFAAAA\nABnwMAUAAAAAGfAwBQAAAAAZ2A7YZ7Bs2TLTGO01JqsmYNXsPDU1ZWpeg6lapmoYbm9vl+/PQ4Ut\neL9SrcIq6urqTK0Uv5CumppD0E3QKixCHc802xN7jNSvcYdgx4gKKPG0t7eH3/7t355XU037IYRw\n8OBBU7v55ptNTTVav/KVr5TLVGNE+eVf/mVTu/rqq6Pe61G/0v3AAw/I16rABRUOU05f+tKXTG3f\nvn2m9qEPfcjUjh8/Lpf5hje8wdS+/OUvm5r6ZfadO3fKZSZDSr773e/K1ykrVqwwv87uzQGq3tzc\nbGrqfFXzbAg69EU146t5LU+oQwj6l+69RnzVuF+upn3vc1500UVR71fXHm9OVhobG6Nq3rhZs2bN\nvH97AVGxjhw5Iutq/t67d6+pqbGowphC0Psp+XlC0IFGXnCICnJRRkZGTM3bTnV9v/vuu03t9a9/\nfdS6F4IKLlE19Zm84JDYgCwV6uPNQZ2dnVHLTOPo0aOyruY7dd6owB0VdhaCPhcVtZ+9MRo7t6kx\n6i3zwIEDpqZCyFTwUwj553tFhfOo+7N3vetdpvae97xHLvP5z3++qX360582tbe+9a2m5o0bFcwW\ng79MAQAAAEAGPEwBAAAAQAY8TAEAAABABjxMAQAAAEAGPEwBAAAAQAap0vyKxaJJj1JpUCHEJ8Cp\n96uUuRB0MlEpUkcUtR6V6hNCCGfOnDE1lUqXJ7UvLbWfVW3VqlW51qM+Z2wqUF7FYtGMHW98emk9\nSSoNSqUkhaATyxS1j/KmlXV0dJiaSs8JIYRrrrnG1Pbv329qahyHkC6dLFYy5c6j0vO87VRuueUW\nU/vIRz5iarEpkt74UorFYpicnJxX8xIg1dygkvvU+r0Es9j9VIo5VX0eleQagp5X1ftjz7eFEDse\nvHSthVaKa8fMzIxJ9fSucSrxUc1BKkHMm+uamppiNrMkx12tO3Z7Qghh69atplbO+VOlzKm55T/+\n4z9M7RWveEX0er72ta+ZmpqTP/CBD8j35/3sk5OT4dFHH51X8xICY8eJSqb0rvEqIVDNl7Epkmmo\n8ajShkOITx+dnZ2V9TTXtVgq6VQdoze+8Y2mlub+SN1LvO1tbzM1b27Lir9MAQAAAEAGPEwBAAAA\nQAY8TAEAAABABjxMAQAAAEAGqbsBkw22yYbqp9XX12fboqAbAhcjr3m8rq7O1MrVmOxR61eNk7Gv\nW4wKhYIJKVGhJR7VkKj2h2r2DSG+Sb1cvCb1sbExUxseHja1UjRKp2nKnpubi3q/Nwd5xympksdN\nhUqEoLcp73aW4njm4c3zbW1tprbYtt2jGrq987CcAUQxli9fbgKI0jTSj4+PR73u+PHj7vqTvGts\nOXhBWOpzqmvH6tWrF3ybvMAAta3q2vd7v/d7puYFwSi/8Ru/EVUrlRUrVoQNGzbMq6UJS1DXD3WN\n95apjr0KpSgXNVeGEMKTTz5pamrsbNmyZcG3KQ01r99www1Rr/PceOONUbWFtrhmcwAAAABYIniY\nAgAAAIAMeJgCAAAAgAx4mAIAAACADFJ19eZt8PeWWQ5eAIRqco9taEyz7XnWk4b3OWODJZZK2IQn\n2WSZZh+rhnjVFO01Q6owAVVTy/SOW57jkeZXwy+44AJTSxMWEct7rwqRUM3nKlQiNmii0gqFQkUb\n6vOEy6j5K4TShCgstn0UQvx+WipBGbHSXN/VWGhqajK1zs5O+X4VhKAa/vOEW6XhfXZVV5+zFLzr\nmbqmxF77Knm+pVVVVSUDvmKp81Od216oRJ4gMe96qpaZN2xo/fr1pqZCphajpRJAl8RfpgAAAAAg\nAx6mAAAAACADHqYAAAAAIAMepgAAAAAgg9zdsmma1FUTc56GvhB002uaYIVShEAo6tenS7Fu73Mu\n9WCJGHNzc+aX4L1fd29paTE1NZZOnjxpat3d3XKZ6lfoY5spK318xsbGTK2cwQ5LqQk6j9j5To0H\nNb7UHOLNK2r+jZ0/SxE04VGfUzX9lyK0pdLn4WKjrlsh6Ou7OofVsfTuGZZq43kIIYyMjJjaypUr\n5WtLMcaea8EnnmKxaMaPCi8KIf76peZLL6xBhZ/EhkWU8xipMdbW1la29Z+N+MsUAAAAAGTAwxQA\nAAAAZMDDFAAAAABkwMMUAAAAAGTAwxQAAAAAZJA7XiRNQolKhFJpP146ylJJWlJpRUtl25eyqqqq\nUFdXN6+W/PczUcftwIEDpqZS0UIIYc2aNdHrKoeZmRlZP3XqlKmpz+kl7HkpVXh2eeYBlWiXRrmS\nS/M6W5LJloI0x0Il/6k5yEvzU+M7zfy90E6fPi3rKkXy2LFjpqaS30LIfx4vNrEpoQuhUCiYeSxN\nEqza1t27d5vatm3b5PsX2xzqpW0ODQ2Z2r59+0zt4osvlu+v5Hm3VPGXKQAAAADIgIcpAAAAAMiA\nhykAAAAAyICHKQAAAADIIHenr2rGDEE3WqvG0zQNrqqZVYVVqG3yQgPyNBSmWeb4+LipeUEbpTA1\nNZV5/WmaSdW+n5ycNDWvCXehGzy9Y6Q+0/Hjx01t3bp1ptba2iqXeejQIVPr6OgwNXVueI2kDQ0N\nsp6HCspQ2+41UJfCgw8+aGpq39fU1JiaN5bUMVZj8ciRI6bW2dkpl9nc3Czr5VCKRm9v/k4qRYCO\nd26OjIyYmmoyV2OhVNS2qn2Xd/6KnT+96+ZCX1OGh4dlXYXQqM/+5JNPmpo3f65atcrU1P5QYzHN\nfUgsb+6Nvb6fLaFTpQqbUObm5sz5kCaA4sSJE6amrnN9fX3y/f39/aamrqfq/FT3YCHku8Z78017\ne7upqVCKco7RPXv2mFpPT4+pqf3h3YvEjj312VtaWqLeG4u/TAEAAABABjxMAQAAAEAGPEwBAAAA\nQAY8TAEAAABABqkDKJKNnmkaP/P+sn1sc61adyl+udprflONhuVs0lTK1ayt9n0lf007zX5fu3Zt\nrnWtXr06av3lGgve+fLAAw/ken8pqF+cV+vPG8KgmpVV2ESpfuk+T+BDKcZNJZvkvc+j9n2pjkes\ncp2z6nioMVuu46aCJjwqrELNqV5gjAoe8cIqkkoRQOGNuf3795vaE088YWrXXXdd5nWndfjwYVNT\n+07tey8IJvaeYXR0NKoWQgjd3d1Ry/RUVVWZ7UpzjNU+aWpqMjUv1GJiYsLUYuemcs5hx44dMzV1\nPU0T3pHXhg0bTE2Nx1LcL05PT5uamm9C0OMhBn+ZAgAAAIAMeJgCAAAAgAx4mAIAAACADHiYAgAA\nAIAMeJgCAAAAgAxSxevNzc2F8fHxeTUvEaOxsdHUxsbGTO3UqVNyPcq6detMTaWzqOSO48ePy2V2\ndHSYWn19vamptCCV7OK9Vn32cqbcqaQltf0zMzOmtmbNGrlMlU6jjueePXtMTe33EEJoaWmZ92+V\njOiZmZkJR48enVfz0oPOnDljaiqBaGho6Fm38WkNDQ2mphIs1VhInldPa2trM7XYVKDZ2VlZ37Jl\ni6l553G5qM80MDBgaqdPnzY1L4VR7fv+/n5T+9GPfmRqO3fujNpONdd45ubmzBjzxrdKWVLn5sGD\nB03NS7fq6ekxtdj5c3BwUC5TJR+puV+NRW98qnlJbZM6N0pFjTu1T9S1w0uHUsc4OX+FEMLDDz9s\nat68ljyeasyUSprkP0Xtu1jlTMvdvHlzVK2c8ibR5qHOd1VbCMVi0cwbTz75pHxte3u7qal55MCB\nA6amrtEhhHDuueeamrruq/GoEvZC0PcTas5Q95VeamKp9n8e6p5LUfdC3tyi5lB1/Xj00UdNTR23\nEOwcGnsPyl+mAAAAACADHqYAAAAAIAMepgAAAAAgAx6mAAAAACCDVAEUhUIhrFixYl7Na4RVVFPc\nqlWrTM1rTI5tMk1uYwg6vCIEv1k7RpqGWa/ZrVxUQ6OqqSbB2MCDEHRD+3XXXWdq3rFMNkyrY+mZ\nm5szjaOqcTwE3fQ5OTlpaqqx94EHHpDL3LRpk6nV1NSYmhoLXgBEmn0fSwWflDMMRVHNuSpAQu0n\n9TqPaizevn27qXkN3U899dS8f3thOUqhUDANs968oM4Pta6LL77Y1FSj8jNtU5Jq6l29enX0MhU1\njr05oLOzM9e6SkGdx+vXr1/w9ahG6xe84AWm5p2vyTGyfPny6HVPT0+Hw4cPz6t586+a59W1QwU/\neeOzr6/P1C666CJTi2069+qxwSWPPfaYrG/bti3q/eWkgkZij713jWxubs61TWnWFevMmTMm5Op5\nz3termV2dXWZmneNT3M+JXn3oLHUXO3dN6j5IW9ATF5qzlABGuo5QZ3zHvXZf+mXfin6/Ulq7lf4\nyxQAAAAAZMDDFAAAAABkwMMUAAAAAGTAwxQAAAAAZJA6gCLZgOf9wrpqOFYNdOrXhb0GVVVXzWF5\nQiW896ua9yvZ6rOrWp5mxrTUcVL7UzW5e9up9on6hXEVKJKmoTBWTU1NOOecc+bVVKiERzVIqgbs\nSy65RL7/vvvuMzUVjqCCS9IEucS66667ZP3CCy80NRXIUU5qP6kG6H379pma98vyKjRBNbzu37/f\n1LxwgWQTb9qAkOQ544UwqHNTnW/qvPZCMdRYVvOvOt/zbqcKJ/CCQ9QxUudMbCDRQlD7VDXTpwly\nUcdDzZ9qH3v7Ls81pbq62oQzDAwMRK9H7SM1r3nn6+bNm01NXSfUmPdCq2LDJpRKN+ynofaJmpuS\nATohpAtSUeNzaGjI1FSoQwj5g7hUiI+aL0LQQQZqjKp919PT464/qZzzUJI3RtV5U8ntDEHPY+oa\n39/fb2rePb26LgwODpqaCurwxn3ymhgb6MRfpgAAAAAgAx6mAAAAACADHqYAAAAAIAMepgAAAAAg\ng1QBFEreEAXVhFvpRrlYeZspy0kFdajGOtWo5/3KtmoeVMdOrSd23OQNE8n7y9lHjhwxNa/pUwU7\nqGbIUvyyvGrA7u3tla9V21TpAAq1Tx9//HFTU43NacaIGneq2dhb5qpVq551eZ5CoeAGB8SuPynv\n/Bv76+6e2O2M/dwh6MbxSlPXKbXvJyYmTM27nqllxgbWpA0+iVFVVWXWpdbtUWNJNfyvWbNGvv/g\nwYOmpq4dnZ2dppb3PFAhBEePHpWvTfOZykWdh2p/Hj582NS8kA41J6vwkL1795ralVdeKZcZ28zv\nUSEpaahzUQUeeNf4kydPmpoK5UheJxaCusarQJEQ9Hm7cePGhd6kVFTYkQrx2b17t6mtW7dOLvPS\nSy81NXXfcPz4cVPz7sOScysBFAAAAABQQjxMAQAAAEAGPEwBAAAAQAY8TAEAAABABjxMAQAAAEAG\nudP88loqyX3PRSoBKG/SnErPy5vgU0kq6S0NlT5XCirdy0v8Wr16dak3JzU1bmLTEVtbW6PXc845\n56TbMCDEp+c1NTXlWk+5kvvKRaWfebZu3VrCLXlmKg3wkksuqcCWZKOSaFV6W95Etw0bNkTVlhKV\nQuklGG/atKnUm+NS88D5559fgS3JRt1bqtratWtzreeyyy7L9f6k2GcUnmQAAAAAIAMepgAAAAAg\nAx6mAAAAACADHqYAAAAAIINUARTFYjHMzMzMq6nGzby8wAIVmIDFr1zH7cyZM6bhua2tTb62urri\n2SvIIE3YxFIwOTkp6yqQQ1FzJfPk0rWUwyaU7u7uSm8C8Iza29srvQl4DuAvUwAAAACQAQ9TAAAA\nAJABD1MAAAAAkAEPUwAAAACQQaou/EKhYAInyhkWMTc3Z2qxv06MylHH7cyZM/K1K1asyLWuZAN3\nX1+ffF2exujZ2dmodWNpUHPY6OiofG1TU9OCrrumpibX+wmbeO7z5hslzxx0+vTpcNttt82rnX/+\n+fK1PT09mddz8OBBWV+/fn3mZWJxKdV94eTkZHjsscfm1byQqc7OzszrefDBB2V93bp1prZy5crM\n60F5qPGo7ktDyD6H8iQCAAAAABnwMAUAAAAAGfAwBQAAAAAZ8DAFAAAAABmkCqBQStEA7S2TZuul\nSYWE5A2aUKqrq8vya+YTExOy3tjYWPJ1Y+GpeaWurq5i6wb+r3IF2zQ3N4frrruu5OvxwgmGhoZM\nraWlpdSbgxIo1bxWW1sbtm3bVpJl/1/eOTc2NmZqBFAsfmo8LnR4HX+ZAgAAAIAMeJgCAAAAgAx4\nmAIAAACADHiYAgAAAIAMeJgCAAAAgAxyp/mV0+zsrKmVK+nobDE3N2dqC516stSR2lc5U1NTpuYl\nR+VJjKz6u/xbAAAgAElEQVSuXlJTIxYxL73ubE1y7O7ulvWampoybwmgnXvuubLunctYOAMDA6bW\n3NwsX5vnOr3Q8y93yQAAAACQAQ9TAAAAAJABD1MAAAAAkAEPUwAAAACQQcm6rFWjnmr4UoEHnqUc\nNlGuYAevQTJ2P1d6H6cZD0ry8585c0a+Tn1ONT7V/pycnJTLVA3Uld6fitrHqlaKEIaZmRlZV8dJ\n7U+1TaXYx944XOhzlnCCpSFP+FHeYxl7LS2FU6dOybr67K2traY2OjpqaqdPn5bLXLVqlaktxiAY\ndTwGBwdNra2tbcHX7V3PHnnkEVNraWkxtZ6eHlPLO6f19fWZWkNDg3ytGg9pxd4jqM+lrj9qeV4Y\nylKZl6enp00tTyDTQjh+/LipqXNeBXzl3e/9/f2m5oVaJMWGjvCXKQAAAADIgIcpAAAAAMiAhykA\nAAAAyICHKQAAAADIIFV3Z7FYNA18XmOYav5TjVyqsddriCxXiENeqkl0amrK1LwmzVLwGleTVLiC\n14Cntl+NB9V06jVDJo9nml8cP3PmjGmG9faxGjcjIyOm1tTUZGq1tbVymUePHjW1lStXRi2znGJD\nNVQjaF7Lly+X9RMnTpja2rVrTe3v//7vTe3aa6+Vy9y4caOpqfF5++23m9rWrVvlMpP7JG1gSnLf\ne++PbbhV84q3j9WYV+updJO1ap5W81ddXZ18f57tT3M81b5X2+kdDxWuoI6ROje9IJfYpmpFXd87\nOzszLy8EPYdUev7LS40vFb5RCl4gx7p160xNBVCoRvzh4WG5zPb2dlNT17OOjg75fsUbt7FmZ2dN\ngIn6nB51fnvnp6L2lTrnKj2Hxoa9lfP+ubu7O+p1d9xxh6lt2rRJvnbz5s1Ryzx27JipqfEdQvy9\nctLiexIBAAAAgCWAhykAAAAAyICHKQAAAADIgIcpAAAAAMggVQBFoVBI1awXYzEGSOSlmkTVL8aX\ngtf4qH7RWwUmqKbuNE3N6tft1Xq2bdsm35/c/jSNnNXV1bkaplVzbRrq1+XTBhTEUAESafaTGove\nL76Xiwqb+OEPf2hqqqHda2xV+0Ttu6GhIVPz5rnk+tPOX8ltyjsveCEMS5kKp1HHoxRN3mmO5xNP\nPGFqanyuWbMm1zLVZ1eBA3nNzMyYuVrNaSGEMD4+bmr19fWmlibYRi1TzUuluJbGfp4Q4udfLzwp\nz7gdGxuTdRXCcOjQIVNTjfjedS/2enj8+HFT80ItzjnnnKhlemZnZ8187QWaqLGnziX1Ou/Yq7Gn\njol6f5q5RY0ddS/hnQtqjJXiXluFNXghKbEuuOACU/OOhwo0UcdYXeP37t0rl5kMn4o9X597TzIA\nAAAAUAY8TAEAAABABjxMAQAAAEAGPEwBAAAAQAY8TAEAAABABqljN2ZnZ+f920sT8ZJsYpQipSmv\nvAlqi/Eztba2mppKT0qTAqOSXJLpKCEszv2RV7k+k1qPStXxjpuqL3RK50JQn2lgYMDU0iTa3X77\n7aa2efNmU+vo6IheZhrJRKY055ZKcypFQlPe9eSdK5XFOF+otDMvdSpWV1eXqan0u1Lsj+XLl4dV\nq1bNq3nJXCpxUb3WS+5T8u67PNKsO3bfl+IYNTQ0RL9WpdydOnXK1LxkXUXNvyMjI6a2ZcsW+f68\n89WKFSvC+vXr59W8xNzYfaXGskeN5zz3uh41dtS9tvfZ8ybqxcp7PO+77z5TU4nMXqK0+vwTExOm\ndumll5raQifh8pcpAAAAAMiAhykAAAAAyICHKQAAAADIgIcpAAAAAMigkKZ5rlAonAohPFW6zQGM\nDcVi0XYkCoxPVADjE4sZ4xOLHWMUi1nU+Ez1MAUAAAAA+F98zQ8AAAAAMuBhCgAAAAAy4GEKAAAA\nADLgYQoAAAAAMuBhCgAAAAAy4GEKAAAAADKoTvPijo6O4saNG0u0KdmoaPdCoVCBLUnPi6Vfytu/\n0Nt+4MCB0NfXF7VQNT5LsY/PnDkj69XVqU6nilH7RNWqqhbf/7XkHXMLPWbTjM+mpqZie3v7vFp9\nfb18raqPjo6aWmNjY8yqc5ucnJT12tpaU1Pnhzo31OcJQX+miYkJU6upqZHvn5ubk/UY3jl86tQp\nU+vstD89ol7X0dEhlzk7Oxu1/uHhYVNbuXKlXGbyOB05ciQMDg5Gjc/29vbihg0bnnUbve1U55Ya\nCzMzM3KZy5cvj6qp4+vN88uWLTM1db6nWWbs/Km2vVTUcVI19dm9+S/2GE9NTUW9NwR9PPbs2dMX\n+ztTHR0d0WNUXb9UTY1Rb5mx41GtJ829iHq/2ia1P0MIYXx8POq1K1asiN6mWGk+p7quqGtK3uuP\n4m1n8hjHXuNT3f1t3Lgx7N69O81bSi72YKRRrgc0NQmF4A/wGN4AKcWNcexNUx69vb3Rr1XjM81J\nGGtgYEDW29raMi+znNS4U8eyoaGhHJuTyvT0tKmlOV/U54y94VLSjM/29vbw/ve/f17tsssuk6/d\nsWOHqf3kJz8xtRe+8IWm5m17motx0iOPPCLr5513nqnFPnj89Kc/lcvctWuXqf3iF78wtU2bNsn3\ne+d8DLWdIYRw6623mtpNN91kap/97GdN7Y1vfKNc5unTp6PW/93vftfUbrjhBrnM5HF69atfLV+n\nbNiwIdx+++3Puo0h6AdEdW4NDg6a2pEjR+Qyu7u7Ta2np8fURkZGTM17QGttbTU1dUOsHuy9h3I1\nvtT616xZI9+f517Cu8lX+0QdO/UfEN41O/kfPyHoz75//35TW7VqlVym+o+S2tra6B/h3bBhQ7jr\nrrvm1YaGhuRr6+rqTE39J1V/f7+pqf0Zgh6jsf/Rk+YBTV171edsaWmRy7zvvvtMrbm52dTU+RWC\n/x9VMdL8Z8nevXtNbevWrab22GOPyWVu27bN1Pr6+kxNnXPqXiKEEFavXj3v37HX+MX3X88AAAAA\nsATwMAUAAAAAGRS8r4Upvb29xeTXqNK83/vzX5L3NQ31J9rY75uWgvc1APVnX/Xnbe/9pfhKodr3\naj1pvued5tjHSm5Tb29v2L17d9QOUeMzDfVnX7XfvK++qK+bqd6GSvdWqa/eqG3y+nlivxqWRuz4\nrPS+S0ozPnfs2FG87bbbMq9L7Xd1vnr7SJ2vaq7K03O0ENRXTNS55Z2HpZg/Y/tH1LXLO49ir4d5\nXHfddeG+++4ry/wZa6n3CitLuXe70gqFwj3FYjHqu1TlGqOepXKc1Ryepl9usanknBF7jecvUwAA\nAACQAQ9TAAAAAJABD1MAAAAAkAEPUwAAAACQAQ9TAAAAAJBBWaOxYpPiyvnL4Xl4qYEquS/N+0uR\nkhe7T0ux7qVCJYap2mL8Mds01A/9qVScco6FpXLOV5L60UfvhyCXMvXjr2osqh/lDCHfj/am2SZF\njeNypPYtJUslQSyN5+JngrVUjnO5Eq3LZSns9+fWHgcAAACAMuFhCgAAAAAy4GEKAAAAADLgYQoA\nAAAAMihrAMXZIraB2lNdzWFB6czNzZlabIN9CCHU1NQs5OYA86jxqRqqp6amyrE5APCc5N2XLoXA\nh8WGv0wBAAAAQAY8TAEAAABABjxMAQAAAEAGPEwBAAAAQAYlSzqIbSJ+Llq2bFmlNwH/nxesoI7R\n2dJ0qT47Y7YyvLAZNVdOT0+XenMWBdUUPTMzU4EtgbqOh3D2XMuB57Kz5Z6nHJgRAQAAACADHqYA\nAAAAIAMepgAAAAAgAx6mAAAAACCD3AEUBw8elPXly5ebWnt7u6k9/PDDprZ37165TPWL9y960Yui\n1jM6OiqX2dnZKetJ4+Pjpnbs2DH52uPHj5va7OysqV1yySXy/Y2NjVHblIZq4L7nnnsy10II4Qtf\n+IKp/eQnPzG1a665xtRuvfVWucwbb7xx3r/TNt0n9/PIyIh8XW1trampMTs5OWlq3jLVcWtqajI1\n1dTtNYLmaRD1mvbVPlUBFGoflYo6t9U5c+jQIVPr7u6Wy1y5cqWp3XXXXaamjtH69evlMvOem8nG\n/bq6uuj3qjCV5uZmU1Pj2HP06FFTU59RhUKEEH9+NjQ0mJo3J3d1dZmaGgsnT56U7/dCPfJQn19d\nO9T5Ojg4KJepjmfs9UhdN0MIoa2tbd6/vePmSc5N6rwMQe9jFUqh5s+xsTG5TDVu1fhW+zjv/Kn2\nk9r2EPS8quZPNeZLRW2TOnbqnKmpqZHL7OnpMbUHH3zQ1Pr7+01tx44dcpkLcW+TPFbecVLUNW14\neNjUJiYmotYdQghr1qyJep0X5hIb/qSWqe5LQ9Bzi3p/S0tL1LoXgjpOqvbUU0+ZmrqnDyGEtWvX\nmtpjjz0WVbvyyivlMpP7JHYO5S9TAAAAAJABD1MAAAAAkAEPUwAAAACQAQ9TAAAAAJABD1MAAAAA\nkEGq2KNisWjSN7zUK5WioxJnLrjgAlPbsGGDXGYyqSgEnfKk0lHq6+vlMmOTOlasWGFqz3ve8+Rr\nW1tbTU2lkahtLxX1Oa+66ipT2759u6ndfPPN0cvctGlT1OtU2kwI9tip/f5MkolSXnqQSo5Sx0Ml\nVKmEqRDiU8TU/lDryStNwlVsolCpqPWr9COVkOWlUSnqPFRjTCX8hZAvXTEEe+y9RFA1RtS8cuTI\nEVPzxrxKlfNSkpJOnz4t67GJjyodyztfVArZk08+aWrqelAqaowMDQ2ZmjpGKoEyhBBWr14dte7P\nfOYzpvaWt7xFvvbEiRNRy/Qk5yFv/lXnqxqzap71rsVqXbHryXtexm5PCKVJi8wrdpvUOeMdD2Xd\nunWmptJUvWtk2nRJJXms0ySiKmq+9OZQtZ9j70HzXmPVGPcSI2P3s5cwWIr7EXWtUDWVwpvGtm3b\nTE0lxKq5WomdW/jLFAAAAABkwMMUAAAAAGTAwxQAAAAAZMDDFAAAAABkkKqTcnp62jQ833777fK1\n1157rampJub9+/eb2g9+8AO5TNWY/LnPfc7U+vv7Te3tb3+7XOaXv/xlU4ttpH33u98tl3nLLbeY\n2n333WdqO3bskO/P06TpNct96lOfMjXVxKyOkddkrhoqVSCJ+uzeZ/zkJz85798HDhyQr1PGxsbC\nz3/+82dddwgh/Oqv/qqpqbG8b98+U9u7d69cpgr0+J3f+R1T+/GPf2xqIyMjcplqO1Xgglqm10Ct\n3t/T02NqqrE4r4GBAVm///77TS02sKavr08uc+3ataamGmv/8z//M3o73/zmN8/7txekooyMjJjj\n5IXY7Ny509S+853vmNrFF19sag8//LBcpprDzjnnHFMbGxsztc9//vNymR/4wAdM7dSpU6amgi7O\nP/98uUy1/Wru95qvx8fHZT2G15T8W7/1W6b29a9/3dRuu+02U7vuuuvkMtV+UoEi5557rny/8sd/\n/Mfz/n348OHo9546dSp89rOfnVf72te+Jl/7zne+09QeeughU/vmN79panfddZdcpgpHUPOaumf4\nyle+Ipf5jne8w9SuvPJKU3v00UdN7ROf+IRcpmpwv/rqq03Nu77nCSJIBoA97U1vepOpqWvxNddc\nY2qqOT8Evf3Hjx83tY9+9KOm5oUIbN68WdZjjYyMmOv0hz/8YfnaP/zDPzQ1de372Mc+Zmo/+9nP\n5DJHR0dNTc1X6ji9973vlctUc6gao0888YSp3XrrrXKZl19+ual1dHSY2otf/GL5/jzUPgohhE9/\n+tOmdvDgQVNT90zqmhRCCLt27TI1Na+qdT/yyCNymclxr8a8wl+mAAAAACADHqYAAAAAIAMepgAA\nAAAgAx6mAAAAACCDQpqwg97e3uLu3btLuDmLQ7l+YV2FPYQQQlNTU+Zl5t3O4eFhU/OaScuxn3p7\ne8Pu3bujFrp169ZisiFThYGEoBvKVRhAsqE7BL+BWn32PXv2mJpq0Ew2fj/t9a9/valdf/31pqYC\nE1S4Sgg6hEE1Br/0pS+V78/TQK1+LT4E3eyt5hrVnKrCCUII4Vd+5VdMTTW8qnCFwcFBucwXvvCF\n8/79vve9LzzxxBNR4/NsmT9VA3BnZ2dZ1pNXKbbTU479lGb+VONThcCEoMNM1Lmt5govbEfNn42N\njaamQl+qq1NlaRmx2+5RnynPdbxUvHAARe17b/6OpfZpoVC4p1gs9sa8/+KLLy5+73vfm1fzAgJU\nQI26Z1HXcxWmEoIOcbjppptMTW3ToUOH5DJV0IcKwjlx4oSpPfnkk3KZ9fX1pqbCN1SYSl7T09Oy\n/vjjj5ua2k8bNmwwNS/oSW2/Cqu49957TU2FzoQQwhVXXDHv36997WvDQw899KxzKH+ZAgAAAIAM\neJgCAAAAgAx4mAIAAACADHiYAgAAAIAMcgdQnDx5Ur5W/ar2sWPHTE01NHrbtG7dupjNlL8+XVtb\nK18b+/lVk7u3TNVopxoXm5ub5ftLEXahmvJUg6l6nWrkDGHxBVCo8TkxMSFfm6dZ2mtMVg2eeZt4\nY5ug1Zj3jsWRI0dMTR3jVatWRa17IajjpM451RDvNXp752dSnjF/2WWXRY/PHTt2FG+77bZ5Ne/4\nqgAMFZCigkeGhobkMtVrVfCIaub3Qj5iqcACb+5VDcz79+83Na95Om+TvFJXV2dqKkDove99r6m9\n+MUvlst82cteZmp/8zd/Y2of/vCHTc0LrHnd614379+7du0Ke/bsKUtAitrvaY6Fmq/UuCmFNNcy\n1Qyv5l8VAhCCDgAqBfWZVACFtz3eHJikrifqficEfY1ME0CRZozGHtPx8XFT845dnvWUU+z11Puc\nK1asWPBtUtS+UyFRXghaS0uLqanr+U9/+lNT27Vrl1xmctzH3oPylykAAAAAyICHKQAAAADIgIcp\nAAAAAMiAhykAAAAAyICHKQAAAADIwMY2PYO5uTmTbnbo0CH52s7OzqiaSo5SyTgelQaiEmPSpBYq\napkqWSyEELZs2ZJrXXm3VYlN5ol93WI0OztrUtC8tBqVzqWSp1SKjBoLacQm9KWhkutU6lQIIXR3\nd5tauVKzPOp4qFoppBnzeVKapqenzXy5du1a+VqV9KnS49T8OTc3J5e5YcMGU8ubwBZLzZUnTpyQ\nrz3vvPNMTaXDqnTCUlHpWCqp84tf/KKpnTp1Kno9H/zgB03t/e9/v6mpVLYQbJKVNxaU2dnZMDw8\nPK/mjXc1PtW8pt7vXd/KlXKnqO307kPUXKmuM5X8PB61nXmT59rb200t7zXSMzs7a9JKveOkrnOK\n2ifetTN2jJeLSj4NobLX0zTUvlPXqTTU9fylL31prmXGWHxnOwAAAAAsATxMAQAAAEAGPEwBAAAA\nQAY8TAEAAABABqkCKJRLL71U1lWTaWwzrGqm995fyea/NE37U1NTprZixYqF3JwQgt+MqZrK1frV\ncfM+Z5rm4lh5jmehUDDb6jWSxoaUqJo6liHo5lQVEFAuXtCFal5Xx7i1tXXBt8mj9rMaC2rfe5+z\nkvteqa6uNs3a3vhUx0Odw6qp2Gu8ViEQ3vrLYfXq1bKu5jA1ZkvR4O81zqvxGRuU5C1TNY/39/dH\nLbMUn13Nn3mvr4sxhCGWdx+ipAn6yCPN9VUdu3KFH5VKVVWVCRgoxRhbbNcOj3cPGXs9LafFuE0L\naenOdAAAAABQQTxMAQAAAEAGPEwBAAAAQAY8TAEAAABABqm67KqqqkJTU1PmlQ0ODppa8hfXQwjh\nnHPOiV6makxWv0yfpkE0tqHRawZVddXQ6DXf5Qlx8BonVaP6Ygv0yKuqqsp8zjT7Uh13VfOaPlVA\nQCWbLr31dHV1lWX9peA18y8Fav70wl1UuEFzc7OpjY+PR703BD03qPWroAqPCrCIbd725uTTp0+b\nmvqcan/k5e07ta2qmd8Lp1kKqqqqQn19feb3q7GQJgRB7WM1f6r3e/N87HFbKkpxz7CUFAoFM78k\nAymeiRoPatymCXZQtTShGHnmUI8aJ6VYTxpL+d4yBn+ZAgAAAIAMeJgCAAAAgAx4mAIAAACADHiY\nAgAAAIAMyvozz21tbaa2atUqU5uYmJDvV019KhAjtmnVk7eZUzU5qsbkNI2TsbyGwuf6r08/LXmc\n0xxL1aCZZtzkaWzO+8v2aaiAAbVMmlMX1tzcnAlX8I67CtFR8+LQ0JCpqXEcgg5sUMtUIR9eWISa\nw/KGMKjtXL16takNDAzI96sgmFjeOFzKoQVpxAY1xYb1KGmOT+x+L+dxiw3KKKezYf58WvKzevOd\nOvaxgVJeCI+6JqYJm4hdZl5qPKrzrpzX+Oc6/jIFAAAAABnwMAUAAAAAGfAwBQAAAAAZ8DAFAAAA\nABnwMAUAAAAAGZQ1ykOlnqiEkbq6uuhlxqbolCJtx0sl6u/vNzWVWng28xJ4li9fXuYteeZ1lyul\nqRRpTN4+VklF6nN6KUV504vOVsuWLQutra3zapOTk9HvV8l7+/fvN7Wuri75fpWmqpL7FO+Y50nu\n85aZTDwMIYR77rnH1DZu3Cjfn+b6sRSUM+kzz7mt3js9PW1q3hy/2BLpvOt7pZP7MJ9K40tjdHTU\n1LyxuNjS77wxGpvK6Y3lxXYuLgXcFQEAAABABjxMAQAAAEAGPEwBAAAAQAY8TAEAAABABrm76UZG\nRmS9sbHR1JYtW5ZrXaqpTjW9qqY6r6GuFM2kKmxCNQrm3R9pqDAC1Qgcu49DiN/PseteCMn9nGYf\nq21fyo2YaT67Oh5nS9CECuTw9l2efTI3N2dCJLzzQJ2HJ06cMDUVKqE+Twgh7N2719Rig3G8MJOm\npqao9yveuaU+06WXXmpqQ0NDmded1kMPPWRq7e3tptbc3GxqXiCG+vwqsEGFlKxcuVIuM+/1zGto\nT1Lnh3pvmmuxen/s9d373Hmusd571TFS217OsAIVBKP2nfpM3vFQdTUvxR43b/1pJbfBm+9UuI56\nrQqwSBPepObw2HPbW38sb3+qurpXjw0gWggqQEntJ7U/8t6LqH2fN7gk6ey4WwIAAACABcbDFAAA\nAABkwMMUAAAAAGTAwxQAAAAAZJCqQ7JYLJpGLq8BuRTBDrFNaKpJUDW/haAbhmN5zX/Hjx83tdbW\n1uj3l0Js4EPeRj913FUjrmqqDiGE2traXOsv5z7NqlxhJF5j8cDAgKmpY9Td3b3g27QYqfnC+wX5\nhW7YVY3jIejzVYVFqHADL0RALXN8fNzU1FgYGxuTy8zD2061frWfvGCH2BCFNHbs2GFqscElXjO7\nUl9fb2oqbMJrZs/72ZPbn+Y6rj67qpUiLKKc0gTWlEu5ggQWQyhRchvSBAnE3gelCchS19lS3P+m\noe53vWtauah7u3IFfKWZh7JuU+XPDAAAAABYgniYAgAAAIAMeJgCAAAAgAx4mAIAAACADHiYAgAA\nAIAMUqX5KV5CiKqrlCb1Oi85SiXJNDQ0mJpKd/FSjlSih0rzULXR0VG5zNgUtEonvih9fX2m1tHR\nEf3+2CQUb9wcPnx43r+91CqlWCya5CyVvBSCHiNqXSoVx0s0Uqlban+oJEN1boSgU4XU+tMkBLa3\nt5ualypXLmr7BwcHTU2lb6ZJcxoaGjK1Y8eORa0nhBC6urrm/TvNOVwoFMxxVsmKIYSwdu1aU3v8\n8cdNTX127xxMbnsIeiypcfPYY4/JZV511VWmpuZFtUx1fEPQiXYjIyOmlua456XmxfXr15vagw8+\naGpbt26Vy1RzixqfTzzxRPQyn3zyyWddh2dubs683huf6rqrkiFVsq13zqj9qa49aq5Ks51qnlbb\n5CXOquuEOufyJtOm0d/fb2pq+9X1RO2PEHRCYPL6HEIIe/fuNTXvnsFbV6xisWiu6d6xV/ODmoeO\nHDliat55o+ZlNa+qBE91boegx4m6/qgx6m2nmtfVa/MejzTU+tU1QN0LqXsW77VqmY888kjMJoYQ\nQti0adO8f3v3kEn8ZQoAAAAAMuBhCgAAAAAy4GEKAAAAADLgYQoAAAAAMkgVQKEaVL0Gttgme9Uo\nd+jQIblM1fi5ZcuWqGV6zaR1dXWmFtuM6jWmJZuAQ9Db7jURV1Jra2tZ1qOazFU9TZP57OysaT70\ngkfU+tVrVfO3N5Y2b95saiqMRDUBnzp1Si5TNaI2NTWZmhrzqmk/BL39scEhpTI8PGxq6pxRzaUt\nLS1ymaqBWgWfqHV7gRzJ8eiNL2V2dtYcE28OUHPLueee+6zbE4Jufg4hhJMnT5qampPVHKDGdgjx\n40YdC+/cVg3Za9asMTUVClEqnZ2dpqbO43Xr1pmaCmYIQe+7ZPOzV/Mkt1MFMHgKhYKZR7zGb/XZ\n1Vylggi862Zs8JNatwoBCMEP9omh1hNCurCfclH3YY2NjaaWJrBGUedh7LkRgh/eFEvNoV6giZrr\nvfuOJC8ETYUoqPGgxnjea6ya1725Xl3jvdCvclHHSW2/Grdpgp7UuajmMe+cTd5fxZ7b/GUKAAAA\nADLgYQoAAAAAMuBhCgAAAAAy4GEKAAAAADJI1Z1ZVVUlAxuU2Ea/NMEMeZpJY7fHo5rQvLCG2BCH\nNE11eamGStWcnLeRVjXuq+bzUqiurg5tbW1Rr1WfUx2PSy65xNTUmA1BN9fG1lRjbwj5mla9Ma8a\n/L2G4XJRY1Ftv2qiTbOP1Fjcvn171OtCsMcuzZyk5k8vREE1NavjpkJGvKZkdYzVfK6al73GcS9c\nIUmdM17Ix+joaNR68lwP0lLHY2hoyNTUHOLNqWosq/AlNUZWrVoll5k8xmmazguFghn33lhSn0mt\nS40bb3+o46n2Z5oQA/X+2KAL7/qstrNc1ziP2idqzMbuD486xmnuY/KGIKS5xsd+1m3btpmaCjZ7\nev0x1Fyd9x5UrVuFUYWgQxzyhn/kpa7x6vqTN6hDBeGo8zN2Hordb/xlCgAAAAAy4GEKAAAAADLg\nYQoAAAAAMuBhCgAAAAAySNXBWygUzC9o5w1RUE11XgOaWle5fo1cbadat6fSzX+q+Vw1gA8ODpqa\n99ZYhi0AACAASURBVIv1a9euNbWTJ09GbY96bwj5mw/zHHu1brU8L4RFNe6rX0zP24gayztuqgm4\n0gEUat+r8amCDLzm7+RcFUIIAwMDpqaahb1jnGd8FgoFM568+VPNF+qzq3AC1Xwcgg7GUctU85q3\nP9LMgUleiII6j8oZNqGo46626fDhw6bW1dUll6mOsQp8WL16tal54yZ5HuedT9MGrMTwzte827rQ\nvDmx0nOlova92k4VmuIdt5aWFlNT56Yai2pOLbfY8aTOOe8+IjaopBT3e2nOj8V2LnnUfurv7zc1\nNe5CCKGnp8fUVNiaCjXyrj9Z8ZcpAAAAAMiAhykAAAAAyICHKQAAAADIgIcpAAAAAMiAhykAAAAA\nyKCyEUlBJ2+MjIzI16pUo1Ik98WqdEJfGrEJRN3d3dHLVCk269aty/zepUKl4YVQ2QQjld6zGBKV\nYqnkPVVTyUvj4+PR61EJPiqRbqmc2+rzHD16VL62kuNBHTdVW6xit19do9rb2+UyVRJjc3OzqTU1\nNZna8PCwXGYywXMpz7PIR81hbW1tuZapkkKX+hhT104vpVTdby6V5LylQqXOqlRkj0qeVfcSC21p\n3DEAAAAAwCLDwxQAAAAAZMDDFAAAAABkwMMUAAAAAGSQO4DCa76LbUpsaGgwNdVwm2aZyC7vPq70\nMUqu3wuLyBNcslTCCZ6LqqvtlKWa9j3laET1VFdXmwZwb3wODQ1FLVN9np6eHvnapRT4sFSp+U8F\nTXjUePDCJpYCNVdW+hqBhbXUAxjUvQDX+MpR+149J6R5fzmOJyMGAAAAADLgYQoAAAAAMuBhCgAA\nAAAy4GEKAAAAADJIFUBRLBbD9PT0vJrX1Kx+hVhRzYsDAwPytcuXLzc19YvcWFy8JnslTzDE7Oys\nadb2mp3Vr2zH8j4PTatLkzqeXlN1nmbrYrEYZmdn59XGxsYyLy8E/cvwJ06ckK9taWkxtZqamlzr\nR+mpMTc6Oipfm6ZRu1JmZmaiX1vJwBjEUfOnd93Nc333JOfUtOtS121vXlb3uytXroxaDxYXbx5S\nzxkxuPsDAAAAgAx4mAIAAACADHiYAgAAAIAMeJgCAAAAgAxSBVAUCgXTEJq1WeuZtLW1yfrk5OSC\nrwulV4qmU289qsl+oXmhK+pcWOq/Dn82UA3IXshInuOpAlJKwWv+VuEE3ljG4qHCnLywG68ZfzEp\n1/UA5VHp4KVSjCcv+CQZwIalQV0TF3rc8pcpAAAAAMiAhykAAAAAyICHKQAAAADIgIcpAAAAAMiA\nhykAAAAAyCBVml+l1dbWmpqXXIVsVBpUdbUeJrH7Ps0xWgrpd17SD547Kp1QlUdzc7Osq3FLmt/C\nGhkZMTV13QohPgl3fHw81zYtNkv53FrqVEqpd81dCtfiUvHOzZUrV5Z5S84+aozmnTPUWF7oFEhm\nNQAAAADIgIcpAAAAAMiAhykAAAAAyICHKQAAAADIIHcARX9/v6yrxub6+npT27t3r6l1dXVFL3PT\npk3PtollNz09bWoHDx40tS1btiz4ulUDdAghHDlyxNTUdl588cULvk0qgGJycjLqtaoZ8ZkkAzRU\noEYIuhl/amrK1NT6a2pq5DLVa73wjkqamZkxNdWMWc5G8aGhIVNramoytYVuGg1B74/YcIC0kvvU\nCzNR54yqqcbazs5Ouczh4eGYTaw4tU/U51Tna15qzIUQwujoqKmp7VTnu5pn01DXPW8OSo7ltAFN\nyTnM2/bY81DNv968ovbdYgxBUMdD7edSzCHe8RwbGzM1te8aGhoWfJti90cICzN/J5ed5vyKnUe8\n67ba/sUYSKWOibrO1dXVLfi6vXs2NYeq/VmKMao+uzdGk2Mkdg7lL1MAAAAAkAEPUwAAAACQAQ9T\nAAAAAJABD1MAAAAAkEHq7vhkQ2l7e7t8nWr0U01xvb29mdftrSdt0+1CUw1455xzTvT782x/bW2t\nrG/cuNHUVPOhalL3mp1V2EVHR0fU67xfEk8e41L88nWa16omYu/4lDOwIQ/VjFnpoAw1FtX5rpqN\nvf3ujdsk1QTrBZfkaaCenZ01QRvetqsxtmrVKlPbv3+/qalzMIQQTp8+bWqq2Td2v5WKGotPPPGE\nqa1du1a+3zt2MbxQC3XtUiE6+/btMzUvEKStrc3U1HyT5rNnbZ72eCEK6jxQ1z01vit9fc4r9t6m\nVCE2ijpn1XaqoAq17SGE0NzcHLVMpVTBIcVi0VwD0sxXauypAAlvjKYNxKoUdX56x3mhedc0NZ6U\nvr4+U/PmdHVNVNR49MZoct/FjuWlcfcHAAAAAIsMD1MAAAAAkAEPUwAAAACQAQ9TAAAAAJBBqq7z\nsbGxcPfdd8+recEKqrlWBRGohl+vqUw1BU5MTJiaarTu6uqSy1TU+1UDXH19vXx/7C9Nl6IR12ug\nbmxsNLWTJ0+aWpr9pBo/1TFO04yap8F/bm7ONIWn+TVt1TCsjnuabVTvVw2aeRt2Y9cTgh6LqrE2\n76/Vp9l3aiw99dRTptbU1BRV89avmlvVmO3u7pbLVOdRrKqqKrPvveOujp1qIFZBLl6YiJqT1Wvz\nNiqrEBy1j735UzXJr1+/3tTyBE14VKhECHrcqjGigiHU9cSj9t2uXbtMbWBgQL4/T4BPKZr78851\nsdfIci5TjYW8c6WS5v5AXbtiw3q8OU1dE06dOmVq6n5n9erVcpl5Q5pmZ2fD6OjovJq372NDGNQ2\npVmmmofUsUsT8pQ36EJtkwrayEttpzcvxwayqAAlb3+osZccHyHoOXjNmjVymVnvxfjLFAAAAABk\nwMMUAAAAAGTAwxQAAAAAZMDDFAAAAABkwMMUAAAAAGSQKs2voaEhXHXVVVGvVWkmra2taVZnqDQU\nVVNpZWmodJs0aT0qkUnJm+CmEk68ZDPFS66KpY6x+uylSJFRCoVCrlQldTzSJPAopUjuU/KmSZUi\njSrvMsfHx01NJQKplDqPSrBUiUCbN2+OXmasqqoqM7eoNFKPGjcqES9NCpgan2q/e8l7ikrMUmPB\nS/ZS26+OUV5qf6bZd+rYqWuPl7Cq1t/c3By17lIkGRYKBTNXp5mrSjHXlWKuLMUySyHvdqrrrrpn\nSJOwp5KW1VjMe930VFdXm/vINNufZh7Ks8y88m5T3vfnWU/aBNEkNe69Zap67D3oQh83/jIFAAAA\nABnwMAUAAAAAGfAwBQAAAAAZ8DAFAAAAABkU0jTcFgqFUyGEp0q3OYCxoVgsdsa8kPGJCmB8YjFj\nfGKxY4xiMYsan6kepgAAAAAA/4uv+QEAAABABjxMAQAAAEAGPEwBAAAAQAY8TAEAAABABjxMAQAA\nAEAGPEwBAAAAQAbVaV7c3t5e3LBhw7za3NycXnC1XbSKYZ+dnTU1b5krVqyI2cxw5syZqO1JQ21T\nVZV+Fi3F+mN5Ufdq+9Vrly1bFr1M9fljo/a9Y5xc/4EDB0JfX18hZpltbW3Fnp6eqPUr6vOMj4+b\nmjcO1Wvb2tpMTe2jyclJucz6+npZjzE1NSXrhYLdnTMzM6ZWV1cn3++N+zxi5wZVU2M2BH3OqX3S\n399val1dXVHbefjw4dDf3x81Pjs6OoobN26MeelZQc2TIcRfO9Q4Ptsl59WDBw9Gz5/t7e3FdevW\nzat583nsMVLzvHfc1byqjnGasZBnjKS5lnpzULmo+Tt2m9Lsu9jjuXz58uhl3nPPPX2xvzNVrjlU\nXWdC0Nsfez30xlMpxmjssSvFtdwTe96Wazu9fZesP/XUU1HX+FR3+Bs2bAi33377vJo6iUMIYeXK\nlc+6kSGEMDw8bGoTExNymWvXro3ZzDAwMGBqra2t8rWxA1ndKHs3uurmrL29PWo9eXkXqpGREVNT\nx665udnUvAcf9fm9G/gk7xi3tLTM+3dvb2/U8kIIoaenJ3zrW9+aV/MmRXVyqs+ze/duU1u/fr1c\n5v33329qr371q01N7ffHH39cLvOiiy4yNbXtahzv27dPLlM9JB06dMjUduzYId9fW1sr6zG88009\nTI6NjZmami/UXBOCHUsh/O/DedI//uM/mtof/dEfyWUmz4Xrr79evk7ZuHGjHE/lUq4HktgH3r6+\nPvn+jo4OU1PzSk1NTfT6Y5XzprgUxyN5ndq1a1f0e9etWxd+8IMfzKt5+1L9J9H09LSpqfNaXR9D\nCGHNmjWmpuYaNRa8m3d1PFUt9j9uQtDzkjcHKaW4MTx+/LipqWu5+kzeeaQebkdHR01tcHDQ1Lz/\njFLrKhQK0T/CW4o5VO0Tdb8Ugh47TU1NUetJ859HiroP8+6/1X5W97Def5iW4gEv9qFbnV8NDQ25\n1q8+j3c8kvemV199ddR6+ZofAAAAAGTAwxQAAAAAZJDqa35VVVXRf9KMpb5+p75CEIL+GoH6U7T3\n/jzS9K6ozxS77Xl5fzL2vuYYI7YPKgT/KwNZX5dGTU1NWOjvU994442m5u2P7du3Ry1TfXbvK3Wx\n1DZt3rw5+v3qnPG+ApBmPMS+V41b9dVY9dU9j/o6jdonf/VXfxW9zCTv60WePF9BU1/z8L6Cq6ht\nVccjz/H1qM/tzdPqM6lzxvuaRp6vqHjHR21TbD+PN0bSHLtYyf2U5itl1dXV8iuWsdRXoNRn966l\n6v1qXihF/3Hs1wE9atyknRvy6Oy0LUexXwdPo7GxMaq2lKjjnOY6EyvvuFXHM819VJ7+6zS8MRZ7\nPqT5Sl+a9Sd5xyP5jBM7h/KXKQAAAADIgIcpAAAAAMiAhykAAAAAyICHKQAAAADIgIcpAAAAAMhg\n4WNxUkqTNlSK9LtSUJ9pqWy7Uoof9lwqSpFsVi7euaWOZ7mSfjwqUUnt+3L+Yvtioz57mv2x2May\ntz0q5U79yLeXxlSKtLfY/azOrTwJjkvJc+2651mMn6mcPzYNwDp770wAAAAAIAcepgAAAAAgAx6m\nAAAAACADHqYAAAAAIIOKB1CcLVSz9dkc7IDKUWNxamrK1Gpra8uxOcA8KshABaR4ARaLLWgDz30q\nNMW7vnPdB557+MsUAAAAAGTAwxQAAAAAZMDDFAAAAABkwMMUAAAAAGRAAEWZ0HRaGWn2+9ncuF5T\nU2NqZ/P+KJfp6WlZn5mZMbWGhoZSb86ipRr8UTkEKs2nQlNQWWrO4DihVBhZAAAAAJABD1MAAAAA\nkAEPUwAAAACQAQ9TAAAAAJBB7gAKr4FaNaiuWLHC1KampkztzJkzcpmzs7Om1tTUZGqqEbYUzbGT\nk5PRr1XbXs6GcrVP1Tb19fWZ2vLly+Uyu7q6TO3IkSOmdvDgQVPbsWOHXGZtba2sx0oeZy9EQY1b\nFcJw4sQJU/Oa4dVYbGxsNDW13z2xDbPeeRi7TFVbtmyZfH8pginUPjl9+rSpqfmipaVFLlONJbWf\n7rrrLlO75ppr5DIXWnW1noJVXc1har9556uaA7z1x6wnDTWWVMhGCHr71ZjzxmG5xqe6nqlrgjen\nqWWq/aTm1J6eHrnM5DHOuy+8YxQ7X6i5Up3D3jLVnFwu3phXc4gaC978WQpqP6vtHx0dNTV1jQpB\nn4eDg4OmpvaHuhaGEEJ9fb2s5+GN8dh7vlLMbZUWG9hT6UAOte/V8fQ+jzrvJiYmTG1sbMzU2tra\n5DKz7hP+MgUAAAAAGfAwBQAAAAAZ8DAFAAAAABnwMAUAAAAAGfAwBQAAAAAZ5E7zU2kaaai0Hi+F\nxUudqRQvpUmlZuVNqcsrNn1pzZo1ppYmCVElpKxatcrUYlPE0pibmwsjIyPzasl/P00lFdXV1Zma\nStI6deqUXKZKLbzhhhtMrbu729SGh4flMr3EmSR1Hj344IPytWrfnzx50tQuueQS+f5SpFCq1EQ1\nPt/5znea2ubNm+Uy//qv/9rUPv7xj5vaZz/7WVO79dZb5TKvuuqqef9OmwSVPJe888BLNI15nZfm\nlye5z0s4ik2NyvveNNtUSXlTY1WaqpdWGbP+vNvjjZk8y/XSz7xxWyne+Kp0cp+ijofaJpWml+Y8\nUseo0vc7edP8FG/+VXOWum8oF2871TFVr817/56G2neqNj4+bmpp7jlUWqhKWV3oNNjFdzUCAAAA\ngCWAhykAAAAAyICHKQAAAADIgIcpAAAAAMggVQrAyZMnwyc/+cl5tR//+Mfyte973/tM7Vvf+pap\n/fCHPzS1O++8Uy7ziiuuMLWvfvWrpvaTn/zE1L7//e/LZX7gAx8wtec973mmdt9995naF77wBbnM\nK6+80tS2bt1qar29vfL9eYyNjcn62972NlO74IILorZJBSaEEMK2bdtM7cCBA6b2sY99zNS8purz\nzjtv3r9VQ7anqqoqNDU1zasl/52WF8Kw0Nrb26NfG9sgeeGFF0Yv89xzz13w9SteU3BPT0/U+9X5\n7lHbqeYlVYuVtvE8ttl7YmLC1Jqbm00tTfPzvffea2pr1641tc7OTlMbGBiQy1QNxK2trVHbk6bx\nvb+/39S8cJY8wRTe8VT1o0ePmpoK8PH23cqVK02to6Pj2TbxGSWDXGZmZqLfOz4+Hu655555tS9/\n+cvyta961atMbXR01NS+/vWvm9rhw4flMlWwz7/+67+amgrr8eaF17zmNaZ22WWXmZoKD/rnf/5n\nuczt27ebmpq/duzYId+fJxhBzQsh6P2kwpNe8YpXmJoXYqCuH6qR/9/+7d9MTe3PEEI4//zzZT3W\n8PBw+Pa3vz2v9vnPf16+9tWvfrWpqWvCv/zLv5iaut8LIYTjx4+bmrpfVXPQLbfcIpf5xje+0dRu\nvPFGUzt06JCpfehDH5LLVPd2F198sampe9UQ8oXBTE9Py/qHP/xhU3viiSdM7eabbzY1NbeEEMK1\n114b9dqPfvSjpuaN+0svvXTev2PvQfnLFAAAAABkwMMUAAAAAGTAwxQAAAAAZMDDFAAAAABkkCqA\noqWlJbz85S+fV/MaDVXT1l/8xV+Ymmq895r+v/KVr5jayMiIqb3hDW8wNa+hUDW9qgAK1UzqNZie\nc845pqYatWdnZ+X78/yauvdL0aoZ84477jA1dTxOnjwpl6kCKFRNHQ/VHKvkaSYHFpPx8fGwe/fu\neTUvhEaFTfzP//yPqalm+sHBQbnMnTt3xmxmuP/++01NzWkhhFBfX29qal5TQQj//d//LZd59dVX\nm5qaE70maW9ezePv/u7vTE01Sv/iF78wtYsuukguU21nMkDCs2rVKlk/ffr0s67DMzY2ZgIopqam\n5GtVk/mjjz5qanv27DE1Nb5CCGH9+vWmpgIDVPCHas4PIf76ocanOt9CCKGrq8vUvOtuudx1112m\npsJQ1L5Ls+0q/EMFMHjhMMeOHYtel1JTU2PmIi9ASJ0jKkBDhb6oIK0QdHCWCnZQ4/Gtb32rXGbs\nvKzm2t/93d+Vr1X3cer9ee4107r++utNTQWEqQCjNNup3v+bv/mbpuYFUCQDmBobG6PWy50qAAAA\nAGTAwxQAAAAAZMDDFAAAAABkwMMUAAAAAGRQUA2ent7e3mKygdp7v/qVb/Va1cjqNZtVV6fKyyg5\nFSoRgm5yVFRDYDmp7VS/Hq2aBEP432bQJNX8rpa5du1auczkPr3iiivC7t27o34yvre3t5hsGla/\nWB6CbvBXYSr9/f2m5jXRqkZWFVKimljV+RKCf34lqbHonUfqeDz88MOmtmXLFvl+1eCZl9r+oaEh\nU/u1X/s1U/vUpz4ll7l9+3ZT+8Y3vmFqKpzlv/7rv+Qyk2ECL3nJS8J9990XPT5//vOfz6t5c4g6\n7uq1ExMTpub9WrxqyF6xYoWpqXnBa+SPbQxWQQje2FZN7qrmjU9vn+ahtn9gYMDU3vWud5naq171\nKrlMNZZVk/rnPvc5U/PG51VXXTXv3y94wQvCnj17osdn8vru7cvYfayavL3jrgJF1DVfHYu8jfRp\nxszY2JipqfOjrq5Ovr8UoUqx+1md22oOCEFf39V61LXLu56pz14oFO4pFos6iSdBjVFP7DhRn0nd\nl4agP5d3nCtJjWf1mdQxDsE/fgtNHSM113thQ+reVH3OZDBPCP79d7Le29sbdQ/KX6YAAAAAIAMe\npgAAAAAgAx6mAAAAACADHqYAAAAAIAMepgAAAAAgg1TxeMViMUxNTZmaUltbG7VMldKRJtmsXKkj\nipfapz6Tl0ZSSeoYxR43j0p6S5P+lieVqVgsmmSetrY2+VqVYHTeeefJZSalGXOxaXxpUjUVlZLk\nJRI1Njaa2uWXXx69rrzbqqjtb29vN7U77rgjeplqO3/913896nWxy8ybMOqNd7VNal3j4+Om5qVL\nqdQqtf5SzFVqPSMjI/K1sSlc5Zz71fq7urpM7aabbjI1L3VQecc73mFqr3zlK03tiiuukO9Pzmtp\nkuPU9d1LuYtNMHPS2+RrY49n3uQ+RW3nzMxM9GvVuVnO8Rk7D+U9tyudqKyu8WnSIRV1PCudchfL\nuwdV522ae+1yUeeyul9Mc41W93YqaXmh8ZcpAAAAAMiAhykAAAAAyICHKQAAAADIgIcpAAAAAMgg\ndQBFsvmvvr4++v2q2U3VvKbXSjfLJXmfXTV6q8+Upjk4rzzr95r/FtvxmJ2dNU3tx48fl69VYROV\nPkYLTTViplGKoAl1boQQ3yyc9xiV4jOlEds8r0IY1LarZl2vKVmFBqj1lIvX5N3S0mJqKkylFNue\ndyypYIg08+S2bduiaqVQLBZN6ELe+U/tI++4VTrE4f+1d68xdtz1/cd/Z+31etd78a7Xl/X6tnGu\nDg0XGzXQFCiXVBVFpRKqioRAAgQPWvqkUqVSkBC9PUdIiFYtbZ/0QUtbpLbiJtqmhIQSRykkTSDE\ndhzbsb27vqz3fjt9gKL/f+f7+aa/32/OzDknfr+e5as5M3NmfvObmay/n1PkzVWq3onN/Yo69t45\n7sT9D8HeA8ruZzff41OCMtp974sV+57Qabp3FAEAAABAG/EyBQAAAAAZeJkCAAAAgAy8TAEAAABA\nhqQAip6enrBr164tNa9JUzWTquZx1RTnNWmrZWMb0r1QC6VsQ6La/5TGzyqU2VY3NP+F8LMxNzY2\ntqU2MjIS/fnFxUVTU0373rEsNm+/sk9FKcdTjfnYz3sNp6pe9jqMpY5HCCHMzs6a2tDQkKmpRu9u\naaxVAT7e8VBiwyu84BE1V8eOJW+eV/NqbPCJt9zKyoqpqWuzeC96RexxShF7zXRzM3uj0Qg7d+40\ntVix9+Iqzo+nTGCNmvu9erfMQXUe+yo0Go3SwUqdpswYretZohXavf2qde/MDwAAAABtxMsUAAAA\nAGTgZQoAAAAAMvAyBQAAAAAZkgIoQij369NqWdVol9I4H9uo5y3n/Rp7Ga/1Rrtusry8LOsDAwOm\nVmy+DiGEc+fOmdrx48flOtVYUttXwQre+Kjil8w7sUm+GBzyWtRsNsPq6uqWmgpWCMEPVyhSoSfe\n+VWNzrEN6d46VTN4StiPokI5UgJSyii7792s0WiYY58y18TOKynrLBu2U8Vcx/29s3jPcLHzQ0o4\nWJk51FPX/bjdY7Td269a5z1VAQAAAEAX4GUKAAAAADLwMgUAAAAAGXiZAgAAAIAMvEwBAAAAQIbk\nNL9i8kjZZJ6lpSVT6+vri9p2K5RJYvG+e2zClvd9XuupJ3XyUtHUuVMpYjdu3DA1dX5DCKG/v9/U\nVEJg7P6U5e3n7OxsVO2ee+6Rn1fHqZulpDmVuTYbjYaZb1KOpdrP5557ztS8MXfXXXdFrVNJSbcq\n6+bNm6Z2/vx5U7vjjjvk52OTELtFN6fHqfGVklwaq87jETvmq0ibhFX2OKvz6Y2nbjmn6jupa7G3\nt7eO3bkt8JcpAAAAAMjAyxQAAAAAZOBlCgAAAAAy8DIFAAAAABlKd5J7zZiqUW91ddXugGjA9pqi\nYxvo1D55Df5lGgq9JsUdO3ZEbb/OplkV9KH2U0k5Rup7qvPubbvVxyQl2OHq1aumduLECVPzjsfi\n4qKpxQZQqM+GUK6Zfn5+XtYnJiaiap4qwjLOnTtnapOTk1Gf9cZS7DW3srJiainBJbEajYaZr1IC\nHC5dumRqCwsLprZv3z75+RdffNHUxsfHTU3t0/r6ulzn8PCwrMfwjqUKIFLnzQsqqsKPf/xjU1Nj\nZM+ePabmhYyoe5e6x6lwGG98lg3fKJ6TlPlYjRtV845HmXukN5bquse2OxAkNuijihAvFXTk3SOr\n2H4Kbx4r8/nYcDHvubaKUAt1Pah9967FKsazeg5UUkIxYvdzeXnZ1Lznhtwxyl+mAAAAACADL1MA\nAAAAkIGXKQAAAADIwMsUAAAAAGQoHUCR0jxXNpghtlm73c2gqqFdNWkODQ3VsTshhPhm7bINourY\nqzGSElwSa3Nz0wRteNsZGBgwNa9xP5ZaZ6zBwUFZLxN4MDo6Gr2sGp91/jr61NRUbdsqKtu0n6J4\nfXkN0eo6GBkZMbUDBw5Eb1uFnPT395ua1yjdat48rc7Hvffea2re+KwiIEXNDSq8IyVsJ/Y4q/uE\nN1+UPXdl7p3quKtz5J2f2HuPmtPrvOerZnZ13MuEs1SliiCs2PCLENofQOEFLsQqs/9VBE2kUOek\nzutGzQV1bV8FgbX6PsFfpgAAAAAgAy9TAAAAAJCBlykAAAAAyMDLFAAAAABk4GUKAAAAADIkRZs0\nm02TVHft2jW5rEqyWVhYMLUrV66Ympd+NDExEbUdlaZ348YNuU6VlKTSpFRijZecpJLR6krI8szN\nzZmaSvdSx3737t1ynSoZ56WXXjK15557ztQOHz4s11lMF1PpWJ6enh6ZTtbNVNpNFYlMKalbt7My\nx3ljY8Nch17iV5l0MG+uUWmTsQls3jpVsppKvFJJVl6SoaK2XzaZK4VK7lPU8YhNoQ1Bz7/qvnn5\n8mX5+f3790dvq6jZbJr5Vm07hPikz5mZGVPzxtLevXtNTY15dTxv3bol16lSbGOvA3UfD0HPaKl4\n3QAAIABJREFUAd6ydVH3yfn5eVNT16F3f1fXsVrn888/b2re+CgzPkPQib3es51KcFNj78KFC6bm\n3fsOHjxoamrcqjE6PT0t16nGo0puVbznI1UvHrcQ9DGqippLrl+/bmpqDvSOh9p/tc6nnnrK1Pbs\n2SPXWdxW7DMof5kCAAAAgAy8TAEAAABABl6mAAAAACADL1MAAAAAkCE5gKLYaOk1AaumLdVEpsIi\nVChFCLrZTIVFqOVUk18I8U3QqnFzeXlZLqsaN1WDrNf4WQW1/2o/VYNmShCBajBVjYdeI38xEETt\nI9CNNjY2TLO0augOQTc6q9CBAwcOmJoKlgnBhruEoOcFNQd4+6nm9NiwHS/cQK1Tzd91hvo8/fTT\npjY1NWVqL7/8sqndeeedcp1q/8+ePWtqqlFanfcQ7DFNCb/Y2Ngw59k77+repRrcVXO/t08qDGpw\ncNDU1D1bBSyF4DeZx+yTN75igx3qpK55dT7U/VQd4xB0EMDNmzdN7eLFi6Y2OTkp1+kFlsVqNBrm\nmdN7jooNVVLPsN65V8+bsc8oY2Njsh4b5hIbFuSpM2xCUWEw6pioa8kLpVPUsidOnDA173gUj2ls\n0BFPqgAAAACQgZcpAAAAAMjAyxQAAAAAZOBlCgAAAAAyJAVQ9PT0mGZFr3kx1uHDh6NqZalfUk+h\nmv+8UAtFNS7WSZ0n1fCrvqcXFqGoZe+++25Ti23ajG3+C+FnjclXr17dUvN+mV41HKvzOTMzY2rn\nz5+X6xwdHTW1n/u5nzM11TR65swZuc6JiYmo/VR+9KMfybpq8FeBMcePH4/aTiuogBZ17tX5TLm2\nVWPxT3/6U1NT5zIEe31440vp7e0N+/bt21JLaawtftbjrVONW3XsxsfHTa3s/KWutxdeeEEuqwIb\nVHhGneE06jpUc4Nq0Pea7tV1qEI51Hl7wxveINdZHI8pARTbt283++Q196tjr8bS3r17Tc0LfVL3\nDlVTjexHjx6V64ylmt7VdkLQ83fKfaoKaiyp86GOZ8p1pAI93vOe95iaNwelPEt4ny8e/5QQBkWN\n8ZRwG/XMpI6pN55iqWPnXUux4Rt1KhMskTJG1TrVs653PorHOXbb/GUKAAAAADLwMgUAAAAAGXiZ\nAgAAAIAMvEwBAAAAQIb2dk0G3ejn/Zq4aqatqwlZNf95zb11NkbHit1/1SztNeqppj7VELm8vBz1\n2bK2b98uG57LUL8s//a3v10uq867akxWjaBVhD3ce++9st6JzamxvyyvgghSqLnlnnvuif588Til\nND+r5mnvuMc2QF+8eNHUvF92P3jwoKmpZl21ba9xPKVRu8g77mq+Kdu4XpZq8Fdz2OTkpKmlXFsq\nrEfNQV4ITXFb3r3Uk7r8/0Vdw17Tubp3qHtUq/fR443tbrm/K3Nzc6bmHU815ldWVkxNnaOyYQt1\naucYKysl+KTdc6i6blRNhVEtLS3JdaqQldj5tuVzXUvXBgAAAAC3CV6mAAAAACADL1MAAAAAkIGX\nKQAAAADIwMsUAAAAAGRoe5pfSqJGp6XodNr+pFL7Pzo6amoqjc+jUnxSEmc6jUpA88asSpGpKyVP\nbcc77u1O7lNU0pDazyoSiebn501NpQt2IpVm5KX5qeu9nePT289OpMadmgdU8p6XXKrS4lTSXWzi\notLuBK+UBN5Ou0+kJHW2W+xzlPpOKWOkm67ZWN3+HPda4yWVxlLzSB3pjIwiAAAAAMjAyxQAAAAA\nZOBlCgAAAAAy8DIFAAAAABk6q+MTbaca9VKa8VUzZ50NnrHNtLGN9+p4LC0tyWVfi825naZsYIL6\nfF1hE+vr6+HatWtbaiqwJYT4fVLhBqurq+k7h5ZQzdOxYRGpy3YDmvs7ixeGEsubr4BWKRsW0a45\nh5kOAAAAADLwMgUAAAAAGXiZAgAAAIAMvEwBAAAAQIakAIpmsxnW19e31LxmsTK/vK5+NT0E3Zzb\nTb9SfrsqjplXo369OtbGxkaYm5vbUhseHs5eXwg6sKC/v7/U59FZUuaqMudz+/btYe/evVHLxgYR\nqOW8z6pri/HZ+dT49EJGytwPm82mWa/XzF1mnvbu76peZjuoh5pDvHmlWwJJvDGqrsUyz7qohxqP\nKffJGN0xsgEAAACgw/AyBQAAAAAZeJkCAAAAgAy8TAEAAABAhqROq0ajUUtDqNekuLa2Vvm20Xpq\nzMQ22KfYtm2b+YX3OhvsV1ZWTG3Hjh21bR+dr4pxH7sNNa/WsT8oRzXDe8FPZTQajVrmq5TmfnSn\nbg+26ZagDMRRc0ur32UYMQAAAACQgZcpAAAAAMjAyxQAAAAAZOBlCgAAAAAy8DIFAAAAABmqj+Zr\nob6+vnbvwmueSlqqItmmijSquiwuLsq6SkYjza+11tfXTa23t1cuG5so1e3JU0X9/f2yro4dCWqt\ntbCwYGreXLdz586odapz1M3nrY5EYNRHjcVuvr+jvdT92LtHd1LqYufsCQAAAAB0EV6mAAAAACAD\nL1MAAAAAkIGXKQAAAADIULoTdG1tTdZVA6JqIlOBB15zrVpnJzbiqu+kanU24q6srJia2qfYpugU\najtVNf3Hjgc1blWQgQqV8AIPBgYGTK0Tww3UMaprP1dXV2VdhcvEnqOy1Dn2xlHxOJU9bt7nVV19\n95RjVOd1WIZqKk45R2V4jfNq3KpwGTWne4Eg6nwoKQ3Zuculfl4d+9jvk3LeuuX+XlcjvHc+VLiM\nGot1Hc+UcVPVtmK3X/bz3UJ9z3Z/n9h9avd+xuAvUwAAAACQgZcpAAAAAMjAyxQAAAAAZOBlCgAA\nAAAyJCcgFBuByzaEp/xSdic2SytqP9vdoKrOk9qnhYUFU/NCRkZGRkxNNQqmhDjENjEra2tr4dKl\nS1HLqu2rhvJz586Z2rFjx+Q6r127ZmpHjhwxtXb/arc6n6qmAjVCKHcdqqCJEEL4z//8T1MbHx83\nNRWkoo5xCCGMjY2Zmtr3F154wdS8c1zG+vp6uHnz5pba6Oiou2xR2Xnl+vXrpqbm36Ghoeh1ViF2\nDvG+exXXl1rn7OysqT3yyCOm5o3PkydPmpr6nk8++aSpqbEdQgiTk5Nb/rvd90x13OoMJ6iCukep\n61XdT8ryjpEKm1D7qeZ5b53eXB2zzpTnulTFa8Tb/9iwiZRrpFsCE2LHqPccVsX+q+2r7SwvL5ua\nN6erwDS1ThUg5D1r5l63/GUKAAAAADLwMgUAAAAAGXiZAgAAAIAMvEwBAAAAQIakAIpms2ma/6oI\nkCjbUNju5j91TFSTZhWN0inHbnFx0dT6+/tNbdeuXdHbv3z5sqmppur9+/fLz5dpXO3t7Q0HDx6M\nWlY1H6r9fP3rX29q3jhWgRyx204Zs2osqaZJ9X1C0E2nZYNklJTv9NBDD2V//sKFC7KuwiomJiZM\n7Z577onajpLyHbdt22bCHcoErnjb9867uo7VuCkbWpASOqCoZdW8oJruQ/C/f5HaT9UkHYI+zi+/\n/HLUOt/4xjdG7U8Iejyo737nnXfKzxfnhpTx2Ww2zedT5oXYbaXuU5nPl+GNWXU+2h30oY6Jmv/U\nPX/37t1ynWosLi0tmZq656t5NgQdGJCq1eEW7X5erIL6TuparvO7q/lahU2oOXh4eFiuU+1/MeQp\nhBCuXr1qal7IVO5zOX+ZAgAAAIAMvEwBAAAAQAZepgAAAAAgAy9TAAAAAJCBlykAAAAAyJCU5tdo\nNGT6Uxll00S6JYmlirS0slSyjkoAUgl/HpVod+XKFVPzElPKnM/FxcVw+vTpLbXjx4/LZVWyWWwy\nTGxqXwg6eU8lKqWsU12DN27cMDUvAWd+ft7UBgcHo7cfe45UUo+XXjcwMBD1eTVmDx06FL39ssqk\ndjUajeh5IDbFTCXXeeen1dtOodbpzQGx3yk2ta8qR44cMbWpqSlT88aMqqv55uTJk9H7VDymKeet\n0Wi4CYmxn2+1dt7fU7bdifd3lbyn5tmUc67uM4qX2teKBOPiddMtz4B16pZjosZJX1+fqaV8H/W8\nqp4RWn3N8pcpAAAAAMjAyxQAAAAAZOBlCgAAAAAy8DIFAAAAABkaKQ3VjUZjOoTwYnW7AxhHm83m\n3pgFGZ9oA8YnOhnjE52OMYpOFjU+k16mAAAAAAA/wz/zAwAAAIAMvEwBAAAAQAZepgAAAAAgAy9T\nAAAAAJCBlykAAAAAyMDLFAAAAABk2J6y8Pj4ePPYsWMV7UoeFe2+ublpatu2bSu1zo2NDVPbvl0f\nvrW1NVPr7e2NWmcIIfT05L/jelH3ap3r6+umpr6TOp4pynyfc+fOhZmZmUbMsuPj480jR460bNsh\n6HN0/fp1b/tR64wdHykWFhZMbdeuXXLZxcVFU+vv7ze1RiPqsCfxxnzs9ak+n3JtK2p8q2MUQgiD\ng4Nb/jt1fBbnT+/aUuM2dl7yqPOpainXjNqnsuMm9hx7c10V41ZtS9XUsVPXewj6mo+9n3nfsbj9\nsuPzdlbn+CpLjZHYOSTl+1Tx+SeffHIm9nemxsbGmocOHdpS8+6dar9WVlai9kk9G4UQQl9fn6nF\nHmdvXo2db9U+eZ9V33Pnzp2mVtdcGUIIq6urUZ9X38n7nuq+sLy8HLVP6lyqbcXOoUkvU8eOHQtP\nPPFE1LKxF3dZ6sCp2u7du+Xn1Y1b3fzm5+dNzXt4vnTpkqkdPHjQ1G7evCk/753kGN4kUHwIDCGE\n6elpU9u7185pS0tLcp2xN3617dgb1alTp+RyypEjR8Kjjz66paZeElKoc/R3f/d3ctmPf/zjUeu8\nfPmyqR04cCBtxwoee+wxU3vLW94ilz19+rSp3X///aamJt+yvDE/MjKS/fnYz3rUi9NTTz0ll33r\nW9+65b9TxuexY8fCD37wgy0179oaGBgwNTUvqRd77wap5hX1IKKW89aZ8j+ZirwXSTXXqjnE+3zs\n9lOoBwFVU/PNzMyMXOe+fftMTZ1jNT69B8ji/0BJHZ+x9/fbQcpLcF3POx41j6ixqB6yU543Yv8H\nrEddM319fdE/wnvo0KHwz//8z1tq6joKQd+/zpw5Y2rqmMzOzsp13nnnnVHbiZ0bQtBzm5pv1fOa\n9z9M1feM3feyvGfQ8+fPR31eHSdvP0dHR03t2Wefjdqnqakpuc7i+YidQ/lnfgAAAACQgZcpAAAA\nAMiQ9O8hms2m/Cd0sdSfwtWf0r0/r6s/fao/Uas/CZbZ7xD0n2Jj+ypCCOHGjRumVrZPRvH+5K72\nVf1TIvXn6ZQ+LFUrc+y9bXv7U+af9V25csXUzp49a2re+PzKV75iau9///tNrew/6VPUP+lTYy4E\nfY7VPxP0/rw9NDSUuHf/j/dP8l566aWozx8+fDh72x51HRT/OV+rFOcwtW2Pmi+8f+JSlzL/pM77\nZ1DDw8OlPl+FHTt2RNWU/fv317KddlP/5FPd873eCfU91fiqq2fJuz+r+1kV9/IUsWOkTAtBCOX/\nCW3Zsbxjx45Q7ItOMTk5aWqq39hrC1HnWd0Py/bxKqoFw/unzsW+shD0c4t3PsrMrd4YUc896niW\nvZbuu+++Up/PxV+mAAAAACADL1MAAAAAkIGXKQAAAADIwMsUAAAAAGTgZQoAAAAAMrT+1w1fhUoI\nUekyZRNn6uIlnqg0E1XzkupSEuxixaaztPvHB9tJpW6p2oMPPljH7pTmJRKdPHnS1NqdGFZFSh+A\n+qgEM1Vrd/JdWVX80GlZVaTHvRZ18/Om4j2beff+dkpJru1Gt8dTMgAAAAC0GC9TAAAAAJCBlykA\nAAAAyMDLFAAAAABkqDWA4nbRaDRMbWVlxdRU2EMI3d0Qic63tLRkao8//ripeaEQU1NTLd8nAOgG\nKiBK3cvVc0AIt0+gE9pnY2PD1NQzqBcG0+0hMe3AVQ0AAAAAGXiZAgAAAIAMvEwBAAAAQAZepgAA\nAAAgQ+kAirW1NVlXTZo7duwou7muoBpPaehrDxW2EEII/f39Ne9J5xgZGTG1t73tbW3YE6h50uM1\ntAOoj7oOt23b1oY9QQh+kNf6+rqp3S7PoGo8DgwMtGFPbh/8ZQoAAAAAMvAyBQAAAAAZeJkCAAAA\ngAy8TAEAAABAhuQAiuKvd3sNferXlmN/+dtb5+rqatQ6VUOi+kXoEMo1dXvr3LVrl6mpIATveKQ0\npcdS61QhDIuLi6bmNS4uLy+b2s6dO03t1q1bpjY0NCTXqcZNrPX19TA9Pb2l9thjj8llJyYmTO34\n8eOmdvbsWVP7/ve/L9epvtM73/lOU9u/f7+pqeMeQgjDw8OyXqSCYJ555hm57JUrV6K284Y3vEF+\nvorwjjNnzpiaOia/8zu/Y2rqGIcQwmc+8xlTe/vb325qjzzyiKl94xvfkOs8derUlv9WTc4pyoZK\nqPPuhd2oOaCdoRZeeJHa/3bvuzrP27fb22fKXKfcvHnT1NR1oOavEMrfO4r3Tm9eUvO8ou7Z6r4R\ngm6aV3ONOu6xzxYeddy8/VT3fbV97xiV3VdFXUtqzF66dMnUVCBRCCGMj4+b2vPPP29qasyfOHFC\nrrOvr0/WUxTHqNp+CHoeUWNHnU9vblJjVD2v1jU3ede7uu7UPtUZyKGey9U1ps6Rd59Vz6YXL140\nNXU8Dh8+LNeZGybDX6YAAAAAIAMvUwAAAACQgZcpAAAAAMjAyxQAAAAAZOBlCgAAAAAyJKf5FdND\nUlLyVPKIqqnUjxDSUj6KyibnqeVUal8IOrlPJYRUkdqXYmZmxtRUgs/c3Jz8fGwSzEsvvWRqd911\nl1y2eI5TUnF6enrMOXn3u98tl1UpMLFJXGNjY3Kd733ve01NJQqppKCyCXlq3700vscff9zUHnjg\ngZbvU4o77rjD1P77v//b1P72b//W1FQCmkelAX772982tatXr8rPF8+9mpNeTez8WSbxa2FhQdbV\nHKQSx9T8612HZVKrvGOnkpeUOpOo1PlQ+6nOp5eIp+YgNTeodXr3yLJJccXPDw4OtnR9IfjpsOp7\nxiZreffS2PGZknSm9ik24a8qap/UvefgwYOmljLPqwS02G2H0JpnnuJx9Z7D1DlV50TtU2xapbed\nunjbVqmJZZNny1LXiNpPtZw3ZyhqzlLPoKn37v8Lf5kCAAAAgAy8TAEAAABABl6mAAAAACADL1MA\nAAAAkCGpA2t1dTVcvHhxS+0zn/mMXPZd73qXqamG+D/6oz8yNdWEG0II//Iv/2Jq//Ef/2Fqqpn9\n93//9+U6f/mXf9nUPvCBD5iaCpX40pe+JNepmuWOHj1qar/4i78oP9/qxrgQQviv//ovU/vsZz9r\nal/84hdN7cc//rFc5/ve9z5Te/nll03t0UcfNbXPf/7zcp2/9mu/tuW/r127JpdT1tfXw+zs7Jba\nv/3bv8llP/zhD5ua+p579+41teHhYbnOp59+2tTe8pa3mNr58+dN7cUXX5Tr9MZI0fPPP29qXiO/\nWqcKI0lp+ow1Pz8v6+fOnTO117/+9aa2vLxsavv374/evpqXVMDKpUuX5Of/53/+5//8rGd6ejr8\n+Z//+ZbaD3/4Q7nsb/7mb5qaCg7593//d1NT82QIetyePn3a1J599llT+5u/+Ru5zj/8wz80tXvv\nvdfU1LXxe7/3e3Kdn/zkJ01NNRW/4x3vkJ+PDS1QvPCO3/qt3zK1N77xjaZ2//33m9qePXvkOtXn\nVZjKH//xH5uaN+aLzfhqPvYsLS2Z0JdnnnlGLnv8+HFTU83k3/3ud02teA29QoUD/MEf/IGp3bhx\nw9S8ef7hhx82tTvvvNPU1Pz3j//4j3Kd9913n6nt3r07arkQyo1Pb07/xje+YWoqnODEiRNRy4UQ\nwtTUVNT2v/71r0fvpwp0SjE7O2vmIhUgFIK+ZtUc+q1vfcvUHnvsMbnOffv2mdo//MM/mJq6f/z1\nX/+1XKcKRTp16pSp/fSnPzW1z33uc3Kdatyr8ai2E0K5UA11jw4hhE996lOmpsbjm9/8ZlPz5jsV\nZKaeGb/85S+b2sjIiFxn8T55+fJluVwRf5kCAAAAgAy8TAEAAABABl6mAAAAACADL1MAAAAAkCEp\n6WBjY8M0f/7qr/6qXFb90vb09LSpvfe97zW1CxcuyHWq5r9jx46ZmmpkVUECIehmN0X9ovd3vvMd\nueyf/umfmtqZM2dMrYpfzvZ+5VqFK3z605+O2ievgVpRx2llZcXUfuVXfkV+/ic/+cmW//aaGZUd\nO3aYX2hXQRMerxmzSIWJpDhy5EhULcXP//zPl/r8+Pi4qXlhESoMIJb32de97nVRn1e/TK/GVwi6\nIV41iiuxY94LI1H27t0bPvGJT0Qtu7i4aGoPPfSQqf3u7/6uqZWdV1SDvgqbSaHO77/+67/KZTc3\nN03t1q1bplamkd9TDHB4xV/91V9lr9MLtVBUsMNf/uVfRn++eOz+6Z/+Kfqzc3Nzphm/GDj1ChVi\n84UvfMHUioFAIYTwla98Ra7zt3/7t2N2MzzyyCOm5t0nduzYEbVOFbrS398vl1XPMeqaqYI31331\nq181tfe///2mpgJvfuEXfiF6+88995ypqQAK736kwsFSbG5umrnxne98p1xWzQ9qXlfPlV7wlbo+\nVU0dJ3WPDUEHsylqLHvPte9+97tNTT2vxj7/plDPgCHouVWFnFy/fj16nYq6V6hQt7e+9a3y8xsb\nG1v+25sHivjLFAAAAABk4GUKAAAAADLwMgUAAAAAGXiZAgAAAIAMjWazGb3wyZMnm48++uiWWrFZ\n6xWqiUw1y6nlvMbitbU1U1NNfWo5rylbhVXEbtujjolqkB0dHZWfTzknZfZJfXf1y93esVMhI+rX\n6dWviT/44INyncVfpX7ooYfCk08+GdVRf+rUqeYTTzyxpfa9731PLqv2XZ3j73//+6Z2//33y3Ue\nOnTI1NSvbKuQkKWlJbnO2CCEs2fPmpp3HX3ta18zNdWg+dGPflR+XgU7lKX2XzWSPvDAAy3fdhmn\nTp0KTzzxRPb49K51db2qc7S6umpqKsDB21Zsc227qflThZHUSZ2jq1evmtrY2Jj8vLqO1NxQDOUJ\nIYS77rpLrrPYqF3V+FR1VVP3GDVmQ9AN9ureo7ZTNnRFHXdv/lSBIqpBvop50qPuXWqfVLDNwMBA\nJfsUq9FonG42m1HpT2qMzs3NyWXVOFHnRI1RLzRGzcFDQ0Ompu7n6rMhxIcrqPAR7/pUwS/q3Hvz\nSBXUeVLnY2ZmxtS8oCd17JXTp0+b2pve9Ca5bHEuiZ1D+csUAAAAAGTgZQoAAAAAMvAyBQAAAAAZ\neJkCAAAAgAy8TAEAAABABh0v8iqKySdeio5K2VOJOWo5L6FEJdao5CovhacMlbii0lW8+vz8vKl5\nCSWxCYMp1DFR30kl0nmJjcqBAwdM7dd//ddNzTvHxWOXktI0Pz8fHnnkkS01Lynn2LFjpjY9PW1q\nH/rQh6K3H0ulVpVNVJqamjI1LzXrU5/6VKltVUHt/2vN5uamSXnyxqeX/FSkxpJ3vVYxr5Sh0qVC\n0AlP7U7uU9ScOjExUWqd6rzffffdUcuV1Ww2TWqil0gXO5ZiE9VSlE3uU9Tx9FIxBwcHW779smIT\n4dqd3FdWs9k09zVvblBzY6wynw2hmpRUdd14c6iam7z06Lp4z7tFk5OTplY2Tfuee+4xtVbPI511\ndwUAAACALsHLFAAAAABk4GUKAAAAADLwMgUAAAAAGZK6WDc3N02DqtcYtmvXLlNTTasqrMFr/Oy0\nBmpvP1XT7djYmKnV+X3UPqlzp5bzwiKU4vioU19fn2k09Bo0FXU+fvjDH5qa17ioQi2Ghoait99q\nXhPt3//930d9/gMf+EArdyeE4IcjLCwsmJpqllYhISrYJoQQDh8+nLh31Wo0GqbRvYpm+ioCeKrQ\n7c3wdakibCJ2WynjU90PVc2773Xa/d2bV9QcpubaKq5D716s6urc1RXYVZVms2nOS8o8os6pd54V\ndZ47bdyGoJ/tqgjFqEIxpCmEtDGqlq0jNKbzRgEAAAAAdAFepgAAAAAgAy9TAAAAAJCBlykAAAAA\nyJDU2dpoNExTY0rzn2qkVY1ysb/mHYJuNvOa3BXVfBjb8Os19KljEhv2EEK5pnRvneo7qeOktt0t\nDaq9vb1h//792Z9Xv6SuAiSmpqbk52dnZ01NNVO2uxG0imCJWCpoIgR9nNVYnJiYaPk+1aXRaCTN\nbZ3EC9tRqmjITgkyQL6UsKEidS9V58g7b7H3o7rOuxfgo6RcH2WkPBt0873co0J8Up6j1HNQyhhV\nYuemlPCQ2O17z9+qnvJc3E7tfj7Kxd0IAAAAADLwMgUAAAAAGXiZAgAAAIAMvEwBAAAAQIbkn1Yv\nNjCurKzI5VQzvwph6Ovri1rOq8cGSHjNf1U0ZKrmQdXMmtKQGMtrUO2W5sN2evnll03t2LFj0Z/f\nvXt3C/emOjdu3DC1uvZ9eHi4lu10quK1reavEHQIT2yDf4rYz7c77KHd278dqICUlOZ+dY9T9x1v\nneocxwYueAEQ6vNlAp68bbU7IKXsd+oWaox6zzaxQWLq2HnjqUxYRJnnula4XcZIu3CHAgAAAIAM\nvEwBAAAAQAZepgAAAAAgAy9TAAAAAJCBlykAAAAAyJCU5tdoNEz6nUrwebXPF01PT5ual7A3NDQU\nva2YbVdFbev69eumNjAwID8fm0LTLVSKTScmyxw6dMjUUs5FFcmQZVy9elXW5+fnTW1hYcHURkZG\n5OcHBwfL7ViHqXN8FterUvs8aiyqNFWVkNqJvMQslY61urpqain3HsQpnpOURLrY66iKa6uK5LyU\nBNxOvJ/BUmNU3fuquMdVMUa9hEB1X1BpsN4zKOmp6ThiAAAAAJCBlykAAAAAyMDLFAAAAABk4GUK\nAAAAADKUTjrwGvRVc3FsE7HXQL28vBz1edUMqj4bQgj9/f2yHsNrOo3dzzqDJlSTpdofhuc8AAAP\nsklEQVT/lOZ1FbigGiIXFxejth2C3xAZY319PczMzGypeaEQo6OjprZz587sbXci9R1DCGF8fNzU\nbueG03Y2j5cNYVDj22ucV3U1L6lrWDUvh5AWoFGUcty9Ruu6qDksdq5MCaZR40HdT8rMkym84x4b\nLJFyjtV3b+e8lHLevOujLrHHroqwHTWv1BnGlLL/a2trpqbu+964V9819jlOzd8hlAvS8b67+k4q\nlKLO60vNY+r+ob5T2f2cm5sztVYHwN2+T1AAAAAAUAIvUwAAAACQgZcpAAAAAMjAyxQAAAAAZEjq\ntGo2m6bR0WugVg2IqtGu7C+sq+2oBrZdu3bJdXr7n7s/3jrn5+dNzWtgrqIhPjYAQ+2715AX28yq\n1jk0NCTXWca2bdvCyMjIllqZBvk6pTR6x/K++1/8xV+YmmrG/OAHP5i97W5y9uxZU/OCaQ4cONDS\nbaec3zKNyiHEN4WrfariOkr57nWG9Sh1BT6o+2Fd2/a2Hys2JMQ777HbbnfgwezsrKmpc1TnmI29\nlso+W6h7uarVeT5SxqxaVtW84xR7TtW1UGfYgxqjKgBjYmKijt0JIeh7SBXjJPaZvtXng79MAQAA\nAEAGXqYAAAAAIAMvUwAAAACQgZcpAAAAAMjAyxQAAAAAZEhO81tZWdlSW1xcjP68Su5QqSPXrl2T\nnz927JipjY6OmppKYlHbCUEneuzZs8fUVELI2tqaXKf6nsXj5u1nVVQC0uXLl01NJa6oYxyCTiNU\n4+HJJ5+M2k4IIZw4cWLLf6+vr8vllEajUSp1TG2rikSm5eVlU9u5c2fLt+Ola33sYx9r+ba6hTom\nU1NTtWx7c3MzLCwsbKndunVLLjs8PGxqc3NzpqauYS+l6OjRo1HbUXPVlStX5DpVuqGaF9RxV9dB\nCCEsLS2Zmro29+3bJz9fBXVPUvupvqeXmKXuExcuXDC1p556ytTUvTAEm1qrzuWrKd4n1HcMQSdL\nqm0Vx3sIftrW7t27TU2laqr75s2bN+U6Vcqeukeo8+bd39V3L5MK3AoqqU3V1HOAl6wb+xyj5gbv\nflY2kXR9fT1cv359S02NsRD0eFKpytPT06bmnXt13Y2NjZmaOvZXr16V61T7qc6JGqPe9dnuNEFF\n3b9i56fx8XFZV89n6nyePn3a1Lx5uXjsY/eRv0wBAAAAQAZepgAAAAAgAy9TAAAAAJCBlykAAAAA\nyJAcQFFsYPQCAlTD2MzMjKmpxs1iE+0rVEOkaqpTTY6q8TIEP1yhSDWtes1/av9Vo3a7qcZJ1byX\n0rioGk/VWNi/f7/8/I0bN7b8t3felIWFhfD4449vqT3wwANyWdVQPjk5aWqqadQLXVFNp+q8q6Z/\n1Xgegh6fanyphtNnnnlGrlM1vKrPHz58WH6+m9UZ+lLU09Njzp031ymqmV6NL695Wl3H6nioa1iF\nV6RQ21FBFSHo0IGUeaAKaq5U10zZxu9Dhw5F1WJ5x1jZ2NgwDfpeQIo6HqrBXN3zvX0aHBw0NTVu\nVOCAmntD0GNJUePLC/BRIQZqTq+TCthSzflqvlHPVZ5z586ZmrpH3nHHHfLzKdtSms2mmd+8sAsV\n4qDOsxojXpCVmoPVGFXXvDcPeAEgMdvxxrcKTfDuC3VR319dt2p+SAkCU9enmjPUHBaCvZZjt81f\npgAAAAAgAy9TAAAAAJCBlykAAAAAyMDLFAAAAABkSAqg6OnpMQ1vqpk9BN3op0IHVM37lWwVdrG8\nvCz3s8hrplfrjP01dK9xUAVTqO/kNbhWQTVOqqZVdZy85l7VpKma/9S2vYbd4q9Se82lysDAQDh5\n8uSWmrfvqqlbNW2qc+k1kt59992mpravQj7KNJmHEMyvwocQwute9zq57MWLF1u+/SqosaSa1L1f\nKFeNrGpeUk3RXrhMbEN7rJQ5IHZZr3naCwtqF+/7qP1MCXGogtpX1RCuApVSqPlCHQ81p5a1bdu2\nMDIysqVW/O9Xo/ZJhfqUpeYAVUuhmsy9MVe8R3WCgwcPRi1XNsjlvvvui6pVZfv27WZMpoRaqOcO\n7xlWiQ1xUHNwFdeCJzZYrU7qmKjnfzWHesddrVPNWQ8++KCpxQZsxY4v/jIFAAAAABl4mQIAAACA\nDLxMAQAAAEAGXqYAAAAAIENSAEWj0TBNmWV/VVkFSHihAbG/OB8bIJFCNRsvLi5GL1tn2ISivr/6\nNXTVeJ/SjK+CNlRjshcyUgwTSGnobjQapiHRa8ZXVGDB0aNHoz//3e9+19T27NljalU07KpzqfYn\nhBDGx8dbvv2yZmZmTO1HP/qRqb3wwgum5gVtqKbTr371q6amxufDDz8ctZ9lQx3UXJGybEpDecqv\nyNchpXG83WLPk7oneHO/F8JT1O7wjbqosayOe7uPh7ondeI+qblJPQd4Y1vNiwsLC6am7uUp990U\njUYjKZSqSJ0ndZy8uUk9r6pjr54lylLzyK1bt+SyavtV7FMKtf/qeKowLS8IRwVtqDk45bsXx0Ps\ns/vtMUsDAAAAQIvxMgUAAAAAGXiZAgAAAIAMvEwBAAAAQAZepgAAAAAgQ9vjnQYHB03NS89ISa5q\nNZV4UyZVpm4qnUbVyiYRqhQflbjiKabtpKSdtdtDDz3Utm2rtJp27k8qlTD4S7/0S1G1FL/xG79h\nairNyUu+K+5nuxPyuikR73YwNDRkain3LS/l9HbQaWO53Ql9KdS+qrGk0tNiUyVD0Pf3TjtvqVLm\ncHV910U9C6Wcu3ZTicOKGrcp50g9S6TMq8VtxT6Dds9sAQAAAAAdhJcpAAAAAMjAyxQAAAAAZOBl\nCgAAAAAyJHVPNxoN0+juNdeqpu7Y5drd1H07Uw2mquaJDbroFgsLC6YW20iJ7sB8gyp18/yH15ay\ngQWvxYAUFbDVTcFXrzX9/f2lPj8wMNCiPUnDX6YAAAAAIAMvUwAAAACQgZcpAAAAAMjAyxQAAAAA\nZEjqvN7Y2Ag3b97cUltbW5PLlvmlaG+dCo2CnU81eKpfYg+hXPPhxYsXw6c//ekttXe84x1y2Ycf\nfjhqnSps4umnn5bLFsNZQgjhrrvuitoO0Cpe+I8KQmD+7Hybm5um5gU/pYQFFTWbzbC6uhq1bJkg\nAm989vTY/7eraugs6v6uaiGUP59ra2vhypUrW2pe4EDsM6iaA73rS+0/c2jnU3OoqoWQH0jFTAUA\nAAAAGXiZAgAAAIAMvEwBAAAAQAZepgAAAAAgQ1KnVU9PT9i5c+eWWvG/W8FrDFONfjT/dT7VtJnb\n5PdqJicnw5/8yZ+0fL1Fe/bskXUvVAOok9fkrYJ9ygQJoB51BTM0Go1axoO374RNdCf1vKbCblqh\nt7c37N+/v5J1//+8/feCNdDZ1HuC956Ri9kLAAAAADLwMgUAAAAAGXiZAgAAAIAMvEwBAAAAQAZe\npgAAAAAgQ+sj1VrASxTa2NioeU9uP+vr66bmJSbGJvaoBJze3t60HesgExMT7d4FwOWlopHcVz11\nj6oq2axbkdrXPupeXDYR+bU4vr3UPtKjq6dS9srOGeq8tfp+yKwGAAAAABl4mQIAAACADLxMAQAA\nAEAGXqYAAAAAIENyAEWxEcxryFONuNu3x23OazZbW1uLXrad1PdUwQ5V8M6HaqjcuXOnqc3Pz5ta\n2QZT1VDordNr/Iyxvr4epqent9RmZ2flsnv27DE1Nb7Onz9vakeOHJHrVOd93759ctl2unTpkqmp\n6/Xw4cMt3/by8rKsf/Ob3zS1yclJUzt58mTL9+nMmTOmNjQ0JJctnmNCcW4Pav5W13sVzfhq/kyZ\n58tsy7tvqe+urgW1n94+qmPXiff32Gu+irHgHbvFxUVTU+eor6+v5fukxoj33dVYThU7RtU+xF4f\n3n52S4hPJ45RtU+qVsUYVfvk7WfunNN5MxUAAAAAdAFepgAAAAAgAy9TAAAAAJCBlykAAAAAyJAU\nQLG5uWkayL1QCdVYphq7VPOg1/zX29sbtWy7f6VafaelpSVT8xrtyjTdes2Yu3btMrViWEMI+rx5\n52N8fDxqWRU6sLq6Ktc5NjYm6zG2b98e9u7du6WmvncIIQwMDJiaCmY4fvy4qXmNi50YNqGo62h4\neLiWbc/Nzcn6e97zHlOLDay5ceOGrKtrQY3ZO+64I2o7SkoDb7PZNOPeu9ZVXY07db2mhLvEHuM6\nqSAYVevv75efr2v+V3OYmue9pnVv/4tWVlZMTYUHtUJx3KU03Ksxq+4H3phvRThBHdT1lRKOVWZ8\nep9V4yF2P1Ooe0fKHFL22mw2m2ZeT3leil223c+QZam5Xs1X6jmoLO/YxQbMXL9+3dTUuAshhMHB\nwah9UnOot87cUCn+MgUAAAAAGXiZAgAAAIAMvEwBAAAAQAZepgAAAAAgQ1L3cU9Pj2lYK/tr5rG1\nENKaWYtSfhk+tpE2pUmxil+aTtmOCoFQARinT582tbe97W1yneqYqoCB5557ztTuvvtuuc5ig2zK\neVtZWQlnz57dUhsZGZHLxv5quwqw8Jo2VZOjGjeqwTG2kdJbp2p89/Zz9+7dpuY1Y5YxPz9val7T\nvaq/9NJLplYMGAlBf58QQpiZmTG1559/3tRU6Ik6lyGEcPDgQVmP0Wg0zHEu2+hc17xSJzUWqxif\nKWKb7FMCG5TZ2VlTU2PRG4etaPBv5WfLhgOUued7ynxH7/NqfNQZYqDmgVu3bpmauiekBGWosai2\nMzo6Gr2fKaqYQ1Ooc1923Feh3eNRUdu/cOGCqd28edPUTpw4Eb0d9Xn1LKHCxULID/fhL1MAAAAA\nkIGXKQAAAADIwMsUAAAAAGTgZQoAAAAAMvAyBQAAAAAZktL8Go2GSSlRqWivLFukUsxU6kjKOssm\n8ygqQUil0KjlQtD7WTblSUlJkVHLFpPzQtCpKWo5b50qdWvfvn2mplLyQrDHOSWBZseOHWFiYmJL\nLSWZRY1PLxFPUemIKkXRS7SLpVLyhoeHTW11dVV+voqxqKQkRylf/vKXTe3q1aum9md/9mfy8yql\n79lnnzW1733ve6b2kY98JGYXu17s/NnuJKjbxZ49e9q6/TLnuYoxUkUqWtn97JZrITbBNyVh78yZ\nM6Y2Pj5eap2p2nn8O+3ce/O32s9OTH69fPmyqanxlDIPnDt3LurzZZ/DzDZaujYAAAAAuE3wMgUA\nAAAAGXiZAgAAAIAMvEwBAAAAQIZGSoBDo9GYDiG8WN3uAMbRZrO5N2ZBxifagPGJTsb4RKdjjKKT\nRY3PpJcpAAAAAMDP8M/8AAAAACADL1MAAAAAkIGXKQAAAADIwMsUAAAAAGTgZQoAAAAAMvAyBQAA\nAAAZeJkCAAAAgAy8TAEAAABABl6mAAAAACDD/wIe6wOybHYerAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOwAAAN9CAYAAAAg2ObtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQXHd97/3fmZ7unqVnXzTSLFpsS1iWF9mDscHExmB4\nTJT9qbA/JBUiJ45TkADBZVJPiioqpkiZ4iY3vqAQqiDcIlCVG3iSMgFTELOUCSXZJt5lo9XSSJoZ\nzb71dp4/7Jv4Kv39zMxv+pw+M/N+VblC5qPT/Tvn/LY+fU7/gjAMHQAAAAAAAIBkqKt1AQAAAAAA\nAAD8Jy7YAQAAAAAAAAnCBTsAAAAAAAAgQbhgBwAAAAAAACQIF+wAAAAAAACABOGCHQAAAAAAAJAg\nXLADAAAAAAAAEoQLdgAAAAAAAECCcMEOAAAAAAAASJD61fzj7u7ucMeOHRWzQqFgv0n9qt5mRa9Z\nLpe9XjObzZpZGIZeWV2dfd0zCIKVFewSpVLJa7tisWhmat/jpvZPnVt1rNU5UnVQvZ9vvbbKefLk\nSTc2NuZVKVT7Q/KpOp9KpWIsyeZ25MiRsTAMe1a7nWp/vudW9Vmq71Hv19DQYGZqPFJlUXzHOPV+\n6jXVGKe2Wy9tTO2fGnN8j6ca/3zHYpX5tj/nnGttbQ17eipv2tzcbG6nzv25c+fMLJPJmNni4qKZ\nqXO4c+dOMxsfHzczdS6sY7IcVWdOnTplZl1dXWam5pmq/vr2I76ee+45M9u1a5fXdldffbWZqf17\n9tlnzaylpcXM2trazMyqn+Pj4252dtbrYLe3t4d9fX2rej/ndDlVvV5aWjIz1ceosbO1tdXM8vm8\nmakxV/UTKlPm5+fNTO2fb/vz/Zzua2pqysxUf63qmdquo6PDzGZnZ81M1Ql1bq152OnTp934+Hi8\nnd06EASB3wS0dr4dhuH/FecbrqqF7tixwx0+fLhidubMGXO77u5uM1Od7tmzZ81MNVo1MKqBWDVM\nNXA0NTWZmeo81QAwNzfntd3ExISZqX2PmyqnOtbqw6iaJKs6qI71+fPnzUwNAFadeP3rX29usxzV\n/pB809PTZqYmkaiuIAhO+my3Y8cO99Of/rRipiZ86tyqPuull14yM1WX9u7da2ZqvPX9EkVNWtVY\n7DsRHhsbM7N0Om1m6kNjFNQxUxdK1AeZzs5OM/O90KfGP/WhUY3F6iKDb/tz7uULU5/61KcqZjff\nfLO5nbqY98ADD5jZ4OCgmamLLOrC29/93d95ZQsLC2Z28OBBM1PUB/977rnHzN7znveY2Z49e8xM\n1V/VdqNwyy23mNnf//3fm9mNN95oZj/5yU/MTO2fes1bb73VzA4cOGBmzzzzTMW/W+1nJfr6+twX\nv/jFVb2fc87deeedZqbm+y+++KKZ5XI5M1Nj5x133GFm6nOs+syi+gn1Jbsacx9//HEzu3Dhgpmp\nz3m9vb1mptpmFB566CEzU+OHumCu5lq/+Zu/aWY//vGPzezEiRNmpo611Q+++c1vNrfBumJfVIgI\nj8QCAAAAAAAACcIFOwAAAAAAACBB4n1oHQAAAAAAAJte3L9juha+v/m8FtxhBwAAAAAAACQIF+wA\nAAAAAACABAlWc1vf8PBwWO1VKtVKar7LdqulndVrrhfqmCkbYd/Xu+HhYXf48GGv+36jaH9qdUu1\nepdaIa+vr8/Mtm/fbmZxrxLnS61erVa3UitGq1Uxo6BW2VZ1Qq22vF4EQXAkDMPh1W4XRftTq8Sp\nsVmtCKrq0kYYA3xXQ00SNYarx0LW0yMjFt/251w0bVDNJdV5OnfunJmNjIyY2f79+81MjRFxU8dF\nrdSsVn/etm2bmSVp/Ff9sup/knT+LEmbg6q5iMrUSumq3Q4MDJhZksYPVc/UHE0dMzV/i3vf1ecL\nNfdRq5OvB2tpfxtZEAThepqflstl73mMr/VzdAAAAAAAAIBNgAt2AAAAAAAAQIJwwQ4AAAAAAABI\nkOQ8sA8AAAAAAIBNYSP8Rm+UuMMOAAAAAAAASBAu2AEAAAAAAAAJUvNHYn2X8U3SEvBxU8dMLWcO\nXCqXy3llt9xySxTFWRe2bdtmZgsLC2ZWX1/z7vY/NDQ0eGWorlQq5bVdkupS3HznDMVi0cziPp6+\n+4Dq851Lbt++3StbL9Rx2bp1a4wliZ/ql337bFTmOxdpb2+PojiJocakjbDv2Wy21kVAwvBIrMas\nEQAAAAAAAEgQLtgBAAAAAAAACcIFOwAAAAAAACBBNu8P4QAAAAAAACB2QRDwG3bL4A47AAAAAAAA\nIEG4YAcAAAAAAAAkCI/EbjB1dVyDBaK0tLTktd3CwoKZNTc3+xYH2FR8x7j6eqY7QDXk83kzO3/+\nvJl1dHSYWS6XW1OZgM2iUCiY2dzcnJllMhkza2pqWlOZgLXikViNqzsAAAAAAABAgnDBDgAAAAAA\nAEgQnhEBAAAAAABArHgkVuMOOwAAAAAAACBBuGAHAAAAAAAAJAgX7AAAAAAAAIAEqdpv2IVhaGbl\nctnMUqlUtYoAoIKxsTEz6+7ujrEkG0M2m611EZAwhULBzNTYmMlkoigOAERG9VuDg4MxlgTYfNLp\ntJm1t7fHWBKgevgNO4077AAAAAAAAIAE4YIdAAAAAAAAkCDLPhIbBMFB59xB55wbGhqKvEAA/hPt\nD6gd2h9QW7RBoHZofwDiwCOx2rJ32IVheCgMw+EwDId7enriKBOAV9D+gNqh/QG1RRsEaof2BwC1\nxyOxAAAAAAAAQIJwwQ4AAAAAAABIkGV/w26lyuWymfk+l1woFLxeU22XzWbNrK7Ovn4ZhqFXWXz5\n7rs6D2op8LifHVfHs1Qqmdn8/LyZqXOrssXFRTM7c+aMme3YscPMUqmUma2FddxOnjxpbtPS0uL1\nXuPj42am2kpHR4eZqWPd0NBgZlG0P9XGVFuZmZkxM3Wsi8WimdXXV60rXpGlpSUzy+fzZqb6F1Un\n1HH56U9/amYXLlwwswMHDphZkqi6pOq1yhR1HlTfGlWf5UPVM3Vc1D7EPYYrvudhYWHBa7tMJmNm\no6OjZtbU1GRmjY2NZqbqYFSeffZZM1PH5vLLLzezH/7wh2Y2NzdnZurYvO51rzMzNU9RddT3eKsx\n6cc//rGZXXfddWZ29OhRM9u3b5+ZqWMWBTW3U3ODj370o2b2u7/7u2b21re+1cw+//nPm9nv/d7v\nmdmJEyfMrLW1teLfVd+zElbfrObmqu6q8z49PW1mk5OTZqYe3W1ubjazJFH9surP1f7FPc9UVP+p\nyvnCCy+Y2c6dO81MHZennnrKzNTcVc0prDqo5jabWRAE/IbdMrjDDgAAAAAAAEgQLtgBAAAAAAAA\nCZKc+2MBAAAAAACwKfBIrMYddgAAAAAAAECCcMEOAAAAAAAASBAeiQUAAAAAAECseCRWW/UFO2sZ\nY7W8sToJvtstLS2ZmVo2OZvNmlnc1L77Zmrfk9QY1NLyah/U0vGKOu9q6XhVlkKhYGZxH+ve3l4z\nU/uez+fNbHZ21sw6OjrM7Pjx42amll1XdSKVSpmZr3Q6bWanTp0ys6GhITMbHR01M2uZ91rwPbcP\nPvigmd1zzz1eZRkZGTGzF1980cwOHDhgZnNzc15lWY7V99bV2Terq/5aKRaLZqb6nkwmY2b19faQ\n7zuu+LZN9X7qeKo+S72m2ve4qXKquY3vdqpOqDF1YWHBzAYHB82sFq688sqqv2ZnZ6eZvfa1rzUz\nNbaoLG6qTezevdvM2trazGzv3r1m1tjYuLKCxUCNc01NTWZ23333mdn+/fu9yvKe97zHzN7ylreY\n2fbt283M6idV37oS1tw2l8t5vZ4a56ampsxsYGDAzHzHOd+xeq3HtJIo5otxz7GV5uZmr+3UZwjf\n11TbdXd3V/X9oqgr2ByoOQAAAAAAAECCcMEOAAAAAAAASJDkPCMCAAAAAACATSFJP9uVRNxhBwAA\nAAAAACQIF+wAAAAAAACABOGRWAAAAAAAAMSKR2K1VV2wm5ycdN/85jcrZl//+tfN7Q4ePGhmx48f\nN7MvfelLZnbkyBEzm52dNbMXXnjBzEZGRszsT//0T83sL//yL83s2muvNbNjx46Z2Yc+9CEzu+uu\nu8xMLRl95513mlkUDWVxcdHM7rvvPjNra2szs9tuu83MGhsbzezGG280s/n5eTP79Kc/bWbpdNrM\nWltbK/79zJkz5jbLyefz7vTp0xWzsbExc7unn37azPbv329mH/jAB8xM1WvVF5w4ccLM1Hm/9957\nzezuu+82s6GhITNTPvjBD5rZxz72MTP77ne/a2Z/8id/YmaZTGZlBauShx9+2My6urrMbHBw0Mwe\neeQRM7v11lvNbO/evWb24x//2MyefPJJM/v85z9vZr4mJibMuv2Tn/zE3O7AgQNmpvZBtaNHH33U\nzPbt22dmX/7yl83s6NGjZqb27zd+4zfM7JZbbvF6TWue4ZxzHR0dZqbGh+uvv97MVF/ua2pqysw+\n+clPmllDQ4OZve1tbzOzpqYmM1P7PjMzY2Zf+MIXzGxhYcHMhoeHzWw9ufrqq2tdhJrZunWr13bN\nzc1mVi6XzUzNXaOg2oui5ky+crmcV6ZYc4q1zPVnZmbc9773vYqZGqt/+Zd/2cyy2ayZ/cM//IOZ\n/dM//ZOZKV/96lfNrL7e/kj82c9+1sw+/OEPm1l/f//KCnYJNUa89a1vNTN1POPuz8IwNLPPfOYz\nZqY+C9x0001mViwWzey6664zs4GBATNTcxHVn1njv/qsBig8EgsAAAAAAAAkCBfsAAAAAAAAgATh\nN+wAAAAAAAAQmyAI+A27ZXCHHQAAAAAAAJAgXLADAAAAAAAAEoRHYgEAAAAAABArHonVArXs8qX2\n798ffv/736+YWUuIO+dcOp02s/Pnz3ttd/HiRTMbGhoyM7Xk/Pj4uJmp49Td3W1mysLCgldZent7\nzWxyctJruyioJbZHR0fNbOvWrWamzntTU5OZNTQ0mFk+nzcza2lu53Rdss7DnXfe6X72s5959Uo7\nd+4M/+zP/qxitmXLFnO7O++808zuvfdeM3vTm95kZt/+9rfN7MYbbzSzd77znWb2jW98w8yeeeYZ\nM7vvvvvMzNfg4KCZnT592sweeughM3v729++pjJV0+23325m3/ve98zs4YcfNjNVX+rr7e+GHn/8\ncTP7zne+Y2Yf+9jHzEzVifvvv/9IGIbD5j8wXHPNNaF1fsvlsrlde3u7mU1PT5vZ7OysmY2MjJjZ\n7t27zayvr8/rNQuFgpnt2LHDzNQEbGJiwszUvqvXVGNAR0eH12v6UnOGxx57zMz27dtnZr7zAtX+\n1LFW50iNORcuXDCzwcFBr/bnnHPDw8Ph4cOHV72dmjd0dnb6FMXb/Py8man6q5RKJTNLpVJerxkF\nVZ9U+0T1DA8Pu8OHD3t1eL7tD8DL1tL+NrL6+vqwpaWl1sVYscnJSe95jC8eiQUAAAAAAAAShEdi\nAQAAAAAAECseidW4ww4AAAAAAABIEC7YAQAAAAAAAAnCBTsAAAAAAAAgQfgNOwAAAAAAAMSK37DT\nVnXBLpVKufb29opZoVAwt1Mnoa+vz8yWlpbMrKmpyev9wjA0s66uLjOLQkNDg5n19/eb2cLCgpk1\nNjaaWblcNrO6uurfbFlfb1ev3t5eM8vn82am6pnvPvjWl2w2a2ZWvU6n0ysv2CW6urrcb/3Wb1XM\npqenze1OnTplZvfcc4+ZXbx40cx+/dd/3cxUvVZ+8Rd/0cxuvfVWr9dUxsbGzOzJJ580s+985ztm\ndv78+TWVKS5f/vKXzeyFF14wsz//8z83s3PnzpnZ+973PjP7yle+Ymaf+cxnzGz//v1mdu+995rZ\n/fffb2ZKJpNxAwMDFTPVt6qstbXVzFRfp8bN5uZmM0ulUmamxpwoJlJtbW1m1tHRYWYTExNe28VN\nHbNrrrnG6zXVHEWNt0oul/PKVL3etm2bV1nW4syZM2amxuqjR4+amWpnk5OTZqbOhTo2U1NTZqbm\nIta8fDkzMzNmpvZPzUF/+tOfmtl73/velRUsBrOzs16ZOi6dnZ1mpua8yuOPP25mqn729PRU/Luq\nR2tx9uxZM1NjkupHRkZGzGxoaMjMVL+lqHOrjpvvuKPan3q/EydOmNno6KiZ3X777WYW98WS8fFx\nM1OfZ/74j//YzD760Y+a2etf/3oz+9znPmdmv//7v29mqs5v3brVzAAfPBILAAAAAAAAJAiPxAIA\nAAAAACBWPBKrLXuHXRAEB4MgOBwEwWF1qy2A6qP9AbVD+wNqizYI1A7tDwBqb9kLdmEYHgrDcDgM\nw2HrNxEARIP2B9QO7Q+oLdogUDu0PwCoPR6JBQAAAAAAQGyCIOCR2GWw6AQAAAAAAACQIKu6wy4M\nQ1coFCpmqVTK3K6uzu+6oHrNfD5vZplMxsySdAVXlWVhYcHMisWimaXTaTPzPQ9RUOdWZVu2bKl6\nWdQx6+3trfr7+QrD0Kz36pgNDQ15vV97e7uZzc7OmllbW5vX+6nz0NHR4fWaSnd3t5mpJedvu+02\nMzt27JiZqXZbXx/vzc4DAwNe233rW98yM7V/ygMPPGBmn/rUp8xM1ZcohGHoFhcXK2YNDQ3mdqrf\ntcZT53SbVm3T9zzEPTaq47K0tGRmamxUr+nbL0XBt+6GYVjlkvirxXyiUCi48+fPV8xUvejv7zcz\nNQ6o3+xSY1JLS4uZKXHXUVVO333YvXu3mSVpDMzlcmam+vN//ud/NrNf+7Vf8yrL1772NTNTY+4n\nPvEJM7OO51r6+cXFRffcc89VzNTjsr71OpvNmpmagzY3N5uZ2n81rkZBtbGLFy+a2TXXXOP1fqVS\nyczUfCMKXV1dZqbqy/vf/34z8/2coObDf/iHf2hmaswBqi05V3AAAAAAAAAA8Bt2AAAAAAAAiFeS\nnoBMIu6wAwAAAAAAABKEC3YAAAAAAABAgvBILAAAAAAAAGLFI7Ead9gBAAAAAAAACbLqO+zCMKz4\n98XFRXObpqam1b7NstRy3xuBWla+sbHRzKzzkzSqnOoqu+92G0EQBC6TyVTMrL8vRy1Lro51Lpcz\ns3Q67VWWJKmrs7/LmJubM7OpqSkzq6+P94bmYrFoZqos5XLZ6zXVGKDqi7Je6lKhUDAztQ9R7F/c\n9SwKanzv7Ow0s42w70qpVDIz1WepbD1Jp9Nuy5YtFbP29nav15yfn/fa7ty5c2am2rWa2yVJPp83\nM3XM1Jxi69atayrTaqn2ovZPzad+53d+x8yWlpZWVrBLvOMd7/DK4pbJZNz27dsrZqlUyus11ZxC\nzUHV+6n62dzcvLKC1Zga544fP25mqs5ffvnlaypTXNQ4fuedd3ptpxw4cMArA+K0MWZxAAAAAAAA\nwAaxsb+OBgAAAAAAQOJs9Kfk1oo77AAAAAAAAIAE4YIdAAAAAAAAkCA8EgsAAAAAAIBY8Uisxh12\nAAAAAAAAQIKs6g67IAjM5c7VMui+knS1VS0vXi6Xzcx3qXPffY+iLL7UMVOZ2vck1YlasJZs9z23\n2WzWzNLptJmp5dMLhYJXpt7Pt7746ujo8NruqquuMrNisWhmvsvRK+o1FxcXzayhocHMcrmcV7YR\nBEEgj01SRNFW1LhSVxfv937r4Rw4F815iKKf2Ch856Cq/ra0tJhZT0+PmS0tLZnZ/Py8mTU1NZlZ\n3NTxVJk6ZnFT8yI13/CdT62XvslXXV2da2xsrOprqj5N9ZPNzc1mpvpeX2r+pt5P1TNfQ0NDZjY1\nNVX190sS9ZkF2MiY/QEAAAAAACA2QRBs+htylsMjsQAAAAAAAECCcMEOAAAAAAAASBAu2AEAAAAA\nAAAJwm/YAQAAAAAAIFb8hp3GHXYAAAAAAABAglTtDju15LVatrtcLptZFEtz19XZ1yjV1V2V+S4B\nH4VSqWRmcZfT93iisnK57PL5fMVsaWnJ3K69vd3MVHu4cOGCmfX19ZmZVUbn/JdkXy/1ZW5uzsxy\nuVyMJdEaGhpqXYR1yWdMUnVXtRXVX6tMjam+45/aLm7qmGUyGTNT5y6K/mW99FkbhZr7qDmo6gtV\nXVNzXt9xbiOYmZkxs7a2NjOLu72oOoHKwjA06/3i4qK5ne/cR41zU1NTZtbU1GRm6XTaqyxJqi+q\nrXR2dsZYEgBxSU4PBAAAAAAAgE2BLzm15HxtDgAAAAAAAIALdgAAAAAAAECScMEOAAAAAAAASBB+\nww4AAAAAAACx4jfsNO6wAwAAAAAAABKkanfY+S55XVdnXzPM5/Nmppbm3uhXaa1l1Z3b+Pu+mdXV\n1bnGxsaKmfX35ai6dOLECTMrl8tmtm3bNq+yJEmhUDCz0dFRM1PHrKGhwcza2tpWVC7UVrX710wm\nU9XXc865VCpV9ddMEt+5BjY233pRKpXMTI0DauxU7dp3rI7b9PS0mYVhaGYjIyNm1tTUZGZR9IUb\ngZprqc9PUQiCwBxf1PxGUft3+PBhM9uzZ4+ZbYQxUPVLk5OTZvbCCy+Y2bXXXmtm66VfAjYrZr4A\nAAAAAACIFTccaTwSCwAAAAAAACTIshfsgiA4GATB4SAIDqtHwQBUH+0PqB3aH1BbtEGgdmh/AFB7\ny16wC8PwUBiGw2EYDvf09MRRJgCvoP0BtUP7A2qLNgjUDu0PQNSCIFhX/9UCj8QCAAAAAAAACcIF\nOwAAAAAAACBBqrZKrFrmXd0+WCwWzay+3q94hULBzNLptJmpfVBLj0exhLjv+83Pz5uZ2ve4LS0t\nmZlvOX2XuFfnfXFx0cwymYyZxb2svKov6ricO3fOzAYHB82so6PDzE6fPm1m3d3dZqb6CbXEfXNz\ns5lFYdu2bWam9r2pqSmK4nh56qmnzEyd92w2a2aqPag6qNrYmTNnzEw9ntPa2mpmSeLbbn2pvk6J\n+xEAdVxmZmbMrKGhwcxU3Y2b2j91jqIYV3zHPzU/q8VcY2pqysza2trMTB3T48ePm5kaA7ds2WJm\nvnNl3+18qXHVdw7KKoCrF8U44KtcLpt9gup7lfPnz5uZmjONjY2Z2fj4uJmp+Zvq09RnlijmoKqN\ndXV1mdnk5KSZJan9PfbYY2bW399vZupYq/ri247U8Wxvb/d6TcBH1S7YAQAAAAAAACuRpAvKSZSc\nr24AAAAAAAAAcMEOAAAAAAAASBIeiQUAAAAAAECseCRW4w47AAAAAAAAIEG4YAcAAAAAAAB4CIJg\nMAiC7wdB8EwQBE8HQfDBCv/mtiAIpoIgeOKV//7f5V531Y/EWkvL+y45r5bR9pVOp722U+VUS2xH\nQS1BrZYXT9IS8Eo2m611Ef6DOu+NjY0xlsSf73kfGBiockmc27p1q5mpciap7qo+5Mknn6z6a8Zt\nz549ZqbKWS6Xzcz3/DU0NJhZT0+PmcXdJzunxzmL6l/irvPr5ZEDdVzUea9FnfCRpL5O1QnVNpNW\nl9ra2ry2m5qaMjM1PmYyGTObmZkxs46OjpUV7BK+c2xfqi0dO3bMzH7+85+b2R133LGmMlXTSy+9\nZGbqHKnzrsZH3znv7OysV9bX1+f1fkpdXZ25H751UB3rlpYWM1N908LCgpn5jhFJGltGRkbMTM3f\n1DGL2/bt281MtbG4P5Pl83kzU/28qrvY8IrOuQ+HYfhYEAQtzrkjQRA8HIbhM5f8ux+GYXhgpS/K\nb9gBAAAAAAAgVkn7EtBXGIYjzrmRV/73TBAEzzrn+p1zl16wW5XkfM0LAAAAAAAAJE93EASHX/Xf\nwUr/KAiCHc65/c65f6sQvz4Ign8PguBbQRBctdwbcocdAAAAAAAAYBsLw3BY/YMgCHLOuX9wzn0o\nDMPpS+LHnHNDYRjOBkHwdufcN5xzV6jX44IdAAAAAAAAYrVRHol1zrkgCNLu5Yt1/zMMw/91af7q\nC3hhGD4UBMGDQRB0h2E4Zr0mj8QCAAAAAAAAHoKXrzz+rXPu2TAMP2P8m75X/p0LguBG9/L1uHH1\nutxhBwAAAAAAAPh5g3Pufc65J4MgeOKVv93nnBtyzrkwDD/nnPu/nXO/HwRB0Tm34Jx7Z6iWgner\nvGBXLpfd/Px8xUwtb5zL5cxsbm7OzEZHR2VZLIODg2amlhBXyzefO3fOzLq7u82sqanJzNS5UcuS\nq+3U8Yx7OWxlamrKzNS+FwoFM9u2bZuZqSXZVT177LHHzEyd9/b29op/X1paMrdZTqFQcGfPnq2Y\n9fX1mdsVi0Uzm52dNbPJyUkzs/bPOeeam5vNrL7e7nJU3bX6Heec6+zsNDN13pVSqWRml19+uZmp\nfjBJ1HG5ePGimU1PX/ozDP9pYGDAzNR5Hx+3v1T6/ve/b2b79+83M9/zrpTLZbO9qHbd0NBgZqo/\nO3XqlJmpRwf6+/vNzHf8m5iYMLOWlhYzU2O/amMqU+OD2gfVT8RNtSN1rNV8Qp0HVQetMcU55555\nxl7UTI05qp4lTVtbW9VfU50nX3V1yXkgZteuXV5ZkqjxKklUH6qyKIRhaPbNx48fN7fr6uoyM9Vn\nnzhxwszUfPE1r3mNman5qWpjIyMjZqbmw6pfVp/l1Nw87vMeBfW5RFGfBVRfrsZANad47rnnzEzV\nJWsMXMtnwI0sCIIN80hsGIY/cs7JnQnD8L875/77al43OTMAAAAAAAAAAFywAwAAAAAAAJKEC3YA\nAAAAAABAgrDoBAAAAAAAAGK1UX7DLircYQcAAAAAAAAkCBfsAAAAAAAAgARZ1SOxQRC4TCZTMevr\n6/MqgFqeesuWLWZmLS3unF6aW7H2zTnnBgcHzSyK2zibmpq8tlPLTCeJWupcZWop8FQq5VUWa/lt\n55y74447zEzVs0KhUPHvqo4tp1wum0vZT09Pm9upJecXFxfNbGBgwMyefPJJM9u5c6eZZbNZM1N1\nd2Zmxsx8z7uvxsZGryxJRkZGzKy+3h4W1HlQ2ylWnXbOuauvvtrMVP08efKkV1mUIAhcQ0NDxUzV\nXdVPlMtlM7v22mvNLAxDM1PUWGXtm3PObd261ev9FNVu1THr6empelnipvrBoaGhGEviXFtbm5m9\n4Q1vMDN5nJcRAAAgAElEQVTV16l6vRb5fN699NJLFTM1tqoxXs0pzp07Z2aqDY6NjZnZNddcY2aq\nDS4sLHhlnZ2dZqY8//zzZrZnzx6v10wSa47mnHPpdNrrNdU8rLW11es1fVllUZ+dllMsFt3o6GjF\n7LLLLvN+XUtvb6+ZqTmo7/lT1GdAX2o8VnMt1feq/jxJVJ88OztrZuqageo/FXU8f+EXfsHrNS1q\n7N/seCRW4w47AAAAAAAAIEG4YAcAAAAAAAAkCBfsAAAAAAAAgATx+9EhAAAAAAAAwBO/Yadxhx0A\nAAAAAACQIFywAwAAAAAAABJkVY/EBkFgLpetlkhPpVLyNS1LS0tmFoahV6aWVI7idkz1miqbm5sz\nM3U8VRbFUue+VH1R569cLpuZ2j91rPP5vJmVSiUz811C3Fc2m3VXXHFFxWxxcdHrNdXS6plMxsyu\nv/56M3viiSfMrL7e7nKamprMrK+vz8yi8Oijj5rZvn37zKy9vT2K4lSdOg+tra1m9sILL5jZyMiI\nmW3dutXMZmdnzezYsWNmNjQ0ZGZtbW1mthZWP1JXZ3/3pfoz1S+pPlL1g6rdqjFV9Z9R7F+xWDQz\nVT9VfVF9iNqHuKnzNz09bWaNjY1e76fqhBr/1LlV5yiquUZ9fb3r7OysmF28eNGrPOpcqHFH9Xe7\ndu0yMzVvUG1ezUWsY7IWUfWhSeH7meXkyZNmpsYkRbXByclJM+vt7TWz5ubmin9X+7acIAjM+qv6\n5VwuZ2aq/alz1N/fb2Zq3EnSOKCo9qf6kPWyf2psUXPQ8fFxM1PnXc0NJiYmzGxmZsbMVHu35lpq\nvzc7HonV1kfLBgAAAAAAADYJLtgBAAAAAAAACbLsI7FBEBx0zh10zv92bwB+aH9A7dD+gNp6dRsc\nHByscWmAzeXV7W9gYKDGpQGwEQVBwCOxy1j2DrswDA+FYTgchuFwT09PHGUC8AraH1A7r25/3d3d\ntS4OsOnQBoHaeXX76+rqqnVxAGBT4pFYAAAAAAAAIEG4YAcAAAAAAAAkyLK/YbdS6XS6Wi/1HzKZ\njJmtl6WrfVlLsm8U2WzWzNSy12qJbZWpZcJVXVJl8anzUT2jr5Z5VxobG83szJkzZqaWnN+3b5+Z\nqeXT1TmKQqlUMrPh4WEzU/vQ3t6+pjLFRZ2/F1980cx6e3vNzLduq3bU39/v9X5btmzxKosSBIGr\nr1/9kBnFcfGl+l1fvvvncyydcy6Xy3ltlyRqbqPO+8LCgpmpcUy9nzoPTU1NZpZKpcwsKnV1dWaZ\nVFkV1SbK5bKZbdu2zcxOnTplZmpOoX72Ior+oFAomNnZs2fNzPe4JInqt9T5e+mll8yss7PTzNSY\nOzIyYmZHjx41s5tuusnMrHqm5j3Lqa+vl/voQ/Vb4+PjZqaO54ULF8wsn8+bWRTzBkWdi5MnT5qZ\n6ut27NixliLFZmlpycymp6fN7PDhw2amfuP0hhtuMDM15z137pyZqc8s1vio+v/Njt+w0zb2VS8A\nAAAAAABgneGCHQAAAAAAAJAgVXskFgAAAAAAAFgJHonVuMMOAAAAAAAASBAu2AEAAAAAAAAJwgU7\nAAAAAAAAIEES/Rt2arlvbFzqOXa1jLavhoYGM9vMS3D39/dX/TV7e3ur/pq+rGXXl8u2bt0aRXFi\nper8vn37zGxiYsLMOjo6vMpyxRVXeG0HrFeqf1FaWlqqXBLnmpqazMy3nBvFhQsXvLbbvXt3lUsS\njXQ6bWbXX399jCWJX2Njo5nt2LHDK/O1fft2r8zHemrT2WzWzGZmZsxs586dURSn6tS52Lt3b4wl\niZ/6LKeygYGBqpflta99bdVf08J1DRu/YadRcwAAAAAAAIAE4YIdAAAAAAAAkCCJfiQWAAAAAAAA\nGw+PxGrcYQcAAAAAAAAkCBfsAAAAAAAAgAThkVgAAAAAAADEJggCHoldxqou2IVh6AqFQsVMLQ8f\nhTAMzYyTjmpJUl0qFovuwoULFbPOzk5zu/p6rsujOjo6OmpdhERaXFw0s4aGBq/XZIxDHFKpVK2L\nkFh9fX21LgKwaXV1ddW6CACQCDwSCwAAAAAAACQIF+wAAAAAAACABOFZOQAAAAAAAMSKn3rRuMMO\nAAAAAAAASBAu2AEAAAAAAAAJwiOxAAAAAAAAiBWPxGqrumAXBIFLp9MVszAM5XZxKpfLZlZXx02F\nWDlVl4rFopllMpkoiuNSqVTFv4+NjZnb9PX1Vb0cpVLJzKwyAqulxpXZ2Vkza2lpiaI4pmw2W/XX\nZPKCWlP9vBLVGDA9Pe0efvjhitnevXvN7fr7+6tellOnTpnZ0NBQ1d8PuFTcn7sWFxfd888/XzHr\n7Ow0t+vp6al6WZ566ikzGxwcNLO2traqlwUbl2pj6vMhn4NQbVy9AgAAAAAAABKEC3YAAAAAAABA\ngvAbdgAAAAAAAIgVPwOjcYcdAAAAAAAAkCBcsAMAAAAAAAAShEdiAQAAAAAAECseidWqdsEu7gOt\n3o+Tjmqpq7NvQs1kMjGWxLn6+nrX1dUV63taFhYWzCyXy8VYEmxkqi9vbGyMsSQaYw42olQqVesi\n/B9aW1vdHXfcUetiOOecC8PQzCYnJ82svb09iuJgE4p73GloaHB79uyJ9T0tqm+am5szs7a2tiiK\ngw1KtTH1+RCoNmobAAAAAAAAkCA8EgsAAAAAAIDYBEHAkyrLWPYOuyAIDgZBcDgIgsOjo6NxlAnA\nK2h/QO3Q/oDaog0CtUP7A4DaW/aCXRiGh8IwHA7DcLinpyeOMgF4Be0PqB3aH1BbtEGgdmh/AFB7\n/IYdAAAAAAAAkCD8hh0AAAAAAABixW/YaRvygl2pVDIztRQ4kq9cLpsZS2zHJ5fL1boIqIGlpSUz\nU4NtJpOpelnq6zfk8AV4CcPQzJgIV19fX5+ZZbPZGEsCbD6vec1rzEz1hVjfLl68aGatra1mFsV8\nkXEVceIKBwAAAAAAAJAg3KIAAAAAAACAWHHHosYddgAAAAAAAECCcMEOAAAAAAAASBAu2AEAAAAA\nAAAJwm/YAQAAAAAAIFb8hp0WywU7tcS2OkHlctnr/VKplNd2G4E6ZnV18d5Qqc77Rj+3vvu3HOuY\nFotFcxt1zFT7U+dvcXHRzLLZrFdZ1gt1blUWxbLySqFQMDNVX9T5U/sQ97ldL30dkxBcqlQqmZlv\nO4qinq2nej06Ompm6ph2dHSY2ezsrJlNT0+b2ZYtW8ws7nEgCqpeTExMmFlnZ2cUxTGpce7ZZ581\ns/b2djPr7+83syjGnbGxMTNrbm42M6vuqmOyEj5zW3Vc1DxFvZeapyStb6q2fD5vZplMJsaS+Dt3\n7pyZqf4zl8uZWRTnfXx83MxaW1tX/Xqq7wQUHokFAAAAAAAAEmT9f9UHAAAAAACAdWWj3xm7Vtxh\nBwAAAAAAACQIF+wAAAAAAACABOGRWAAAAAAAAMQmCAIeiV0Gd9gBAAAAAAAACbKqO+zCMDSX4FZX\nRtWS3mqJ41Kp5PWaainwKJZdj5taln1pacnM1BLwcfNdWn5xcdHMVF1S+67q7uzsrJmp5dOteraW\nJb2LxaIbGxurmKn9U3V+ZmbGzFpaWsysoaHBzM6ePWtmbW1tXu+XJOocqvqplqOPQjqdNrPz58+b\n2cDAgJn97d/+rZndfvvtZrZjxw4zU+3vkUceMbPdu3ebWVTH2jr3aszx/dZQ9eXq3Kr2rsqyXr7d\nzOfzZqbGlcbGRjOLYt9VnVDUeVf7p+pEfb091VP1RfVn1lzQOedaW1vNbC3UHLSnp6fq76f6kfUy\nXkVBtZeOjo4YS6Kpej84OGhm7e3tZjY+Pm5mU1NTZtbV1WVmal7U3d1tZorPZ7XllEolNz09XTFT\nx0xR/aTq0xR1HlTftF7GQFXO9fL5t6+vz2u7H/7wh2a2c+dOM9u1a5fX+42MjJiZatO+n3EBS3Ja\nLwAAAAAAAAB+ww4AAAAAAADxWi93uNYKd9gBAAAAAAAACcIFOwAAAAAAACBBeCQWAAAAAAAAseKR\nWI077AAAAAAAAIAEWdUddkEQeC+z7SNJS1AniVqqPpVKxVgSTV0tz2azZnb27Fkza2xsNDO1XLti\nLVO/XFn27NljZta+r+UbhPr6etfT0+O9fSVtbW1VfT3nnOvv7zczteR8FMIwNDPfc6HamKrXSTIw\nMGBm3/ve98wsl8uZWV9fn5mpY63O0eTkpJmpsUiVcy2s/Yii31V93WaWyWTMTNWJuL+99Z2//Pzn\nPzczVa+3bdtW9fdTx3NwcNDr/daiUCiYY7Iad+bn582sqanJzBYXF81MnQv1fmqMiHv+5ntcfMfV\nKMZjZW5uzsza29vN7PTp02Y2MjJiZmo+5TvXOnfunJlNTU2Z2RVXXFHx72upY6VSyRyTW1pazO1U\nO1J9jNpO1U+1j6pOqNf07c9VnVfzYbUPqq3E/bm5WCyamfqs6uuqq64yM3X+CoWCmak6qOagR48e\nNbPdu3dX/Dt3kcEXV8QAAAAAAACABOE37AAAAAAAABAr7j7UuMMOAAAAAAAASBAu2AEAAAAAAAAJ\nwiOxAAAAAAAAiBWPxGrcYQcAAAAAAAAkyKrvsCuVShX/rpagVsta+9oIV2KjWOJ+IxyXjo4OM8tm\ns2bmu5y5WnrcWprbuY1xrKOQpOOiyqKWo1d1SWVqefj1Qh2XixcvmlljY6PX+z3yyCNmtmvXLjPr\n7u72er+1KJfLFf/u2/dYr7eW1/QVRVmiGOOUJPU9vtra2sysqamp6u/X29trZrlczsxqcazT6bTb\nsmVLxUyN45lMxszUdmr/lSjOUxR8y7le5qfNzc1e27W0tJjZ6Oiome3Zs8fr/dS4OjMzY2aXX365\nmUUxfmQyGTc0NFQxU+OH73lQ7VZR7TaKz6OKqvPqc7M6nqrPilsU9eyJJ54ws56eHjNrbW01M3U8\nFxYWzOyGG24wM985L+AjOa0eAAAAAAAAG14QBBviC9co8UgsAAAAAAAAkCDLXrALguBgEASHgyA4\nrG4FB1B9tD+gdmh/QG3RBoHaof0BQO0te8EuDMNDYRgOh2E4rJ4dB1B9tD+gdmh/QG3RBoHaof0B\nQO3xG3YAAAAAAACIFb9hp/EbdgAAAAAAAECCBKtZ4joIglHn3MlX/t9u59xYFIXyQFkqoyyV1bIs\n28Mw9HqugPa3IpSlMsryn7za4CXtz7na78erUZbKKMt/VetyMAZGi7JURlleRvuLFmWpjLK8zLv9\nbWQtLS3h/v37a12MFfvhD394JAzD4Tjfc1WPxL66kgVBcDjuwlooS2WUpbIklWU1aH/LoyyVUZa1\nu3SSlaT9oCyVUZbklsMHY+DyKEtllGXtaH/LoyyVURYsh0diNR6JBQAAAAAAABKEC3YAAAAAAABA\ngqzlgt2hqpVi7ShLZZSlsiSVxVeS9oGyVEZZKktSWdYiSftBWSqjLP9VUsqxVknaD8pSGWWpLEll\n8ZWkfaAslVGWypJUFmBFVrXoBAAAAAAAALAWLS0t4Q033FDrYqzYI488EvuiEzwSCwAAAAAAACQI\nF+wAAAAAAACABKmvdQEAAAAAAACwuQRBUOsiJBp32AEAAAAAAAAJsqo77Lq7u8MdO3ZEVJR4qEU2\nNvrVXfa9sjj3/cSJE25sbMzrDVX7i3v/isWimdXXb+wbd9WxVlld3fr/fiSKehZ33T1y5MhYGIY9\nq92upaUl7Orqqpg1NTWZ26lsdnbWzHK53MoLF7HFxUUza2hoMDPffsL3uCwsLJhZNps1s3K5bGa+\n1P6Njo6aWU+PXTXVdt3d3WZWKpXMTJVzamrKzNra2sxM1Zenn37aq/0551xXV1e4ffv2ipnvPqr+\nR9XfQqFgZul02itT9VCVM5VKmZnqQ33fzzdT+x43VV9Upo6nynzr4NLSktdrWnXi5MmTa5qD+rQ/\nNfdRmWp/6v1825gqi+88Rb2m2gfVpufn5722y2QyZhbFXMv3mPnON6KYpyg+fd1aPgNic1vVJ+sd\nO3a4w4cPR1WWWPg2aF9JuVDknB74VUfuK0kXL5JygWl42H9RGdX+4q7XFy9eNLPOzs6qv1+SqHak\n6llzc3MUxYlVPp83M98+RB0z3w+iShAEJ3226+rqch//+McrZq997WvN7a677joz+8EPfmBmb3zj\nG81M7bvvhwDl2WefNbMrr7zSzHwvTP3oRz8ys1tuucXM/v3f/93Mdu7caWaq//Sl9u/BBx80s7vv\nvtvMDh06ZGbvf//7zWx6etrMVDm/9a1vmdmdd95pZqq+7N2716v9Oefc9u3b3SOPPFIxU/uoLmaq\n/mdiYsLMzpw5Y2Z9fX1m1t/fb2YzMzNmpi4QdnR0mJm6eKEujKsLG6q9qHJu27bNzKKYD6u+UB1r\nVZfUhX81l7S+7HFOH89jx46Z2ZYtW8zM+mLj9a9/vbnNcrZv3+4effTRitnk5KS5XWNjo5mpL7TG\nx8fNTJ0/1f58v9TxvUCo5n3qmLW3t5vZE088YWatra1mpvoete++fL/UOHr0qJnt3r3bzJ5//nkz\n27Nnj5mNjY2ZmeqX1Hx469atFf++ls+AG1kQBBv+xqG1Wv+3fAAAAAAAAAAbCBfsAAAAAAAAgATh\ngh0AAAAAAACQIBv71+EBAAAAAACQOPyGncYddgAAAAAAAECCVO0OO7UiqKJWkVHUqkpq1SG1Mo3v\nPvhS76dW6FKrHFkrQzmn9z0KvqvrqO1890GtjhjFeY/7mwLflWDVeVBtU62Uqlb2amtrM7M4V+td\ni/n5eTNT+xDF6p2+1LlVdTeK1aTXy3lvb293v/qrv7rq7dRKqfv27TMztYKjOmaqP1Njhxpz1Cqb\nav8UtZ1a0U2t4KhWkFPbRdFfq/1717veZWZqBe4DBw6YmTq3iiqnWtFObafqy1rU1dW5lpaWipn1\n9+Wo1RHVCo9qxUXf+qRWe42Cmi8qaiVK1f/EPS9S46pahVNlUVDzt71791b1vdZyDoIgMOcAvb29\n3q9rUa+pMlUHVZuOm289u+aaa8xMnd+425/v5zU1jkexXVTjFVBN6+OTEgAAAAAAADYMHonVeCQW\nAAAAAAAASBAu2AEAAAAAAAAJwgU7AAAAAAAAIEH4DTsAAAAAAADEit+w07jDDgAAAAAAAEiQmt9h\n57vss+9260VdnX0tNZfLVf011TLoUfA9f3GXc6PLZDJeWXNzcxTFWRfa29vNTH1DlKS6u9H7z/Wi\nVCp5ZZtZsVg0M9XGGhsbzWxxcXFNZVottQ+KareFQsG3OPDA3QCVcVxQaxu9DqrPcpvZRj/v2Nxq\nfsEOAAAAAAAAmwsXXDUu0wMAAAAAAAAJwgU7AAAAAAAAIEF4JBYAAAAAAACxCYKAR2KXwR12AAAA\nAAAAQIJwwQ4AAAAAAABIEB6JXYeKxaKZhWHo9Zr19VQFYCXK5bKZqbapZLNZ3+IAm4pqf3V19neQ\nS0tLURQHAIDEU58PeRwRSDau0gAAAAAAACBWXDTWeCQWAAAAAAAASBAu2AEAAAAAAAAJwiOxAAAA\nAAAAiBWPxGrcYQcAAAAAAAAkCBfsAAAAAAAAgASJ5ZHYcrlsZnV1XDNcrVQqVesiIGGKxaKZqfrC\nLcirp44nbXNzqq+3h1I1xuXz+SiKs6GFYWhmhUIhxpIgSZhnAoCN+T6wfvEbdgAAAAAAAIgVF5Q1\nvnYEAAAAAAAAEoQLdgAAAAAAAECCLPtIbBAEB51zB51zbmhoKPICAfhPtD+gdl7d/gYGBmpcGmDz\nYQwEaof2ByAOPBKrLXuHXRiGh8IwHA7DcLinpyeOMgF4Be0PqJ1Xt7+urq5aFwfYdBgDgdqh/QFA\n7fFILAAAAAAAAJAgVVsl9tSpU2aWTqfNTN218Mwzz5jZ0aNHzWxpacnM3vSmN3mVZXZ21sx8v3Wa\nn583s5GRETM7d+6cmZVKJTO7/vrrzSyXy5lZFAqFgpkdOXKk6tkXv/hFM/vBD35gZrfddpuZPfjg\ng2Z24MCBin/P5/PmNithnd+ZmRlzm4aGBjNTbXNxcdHM1PuputTS0mJm5XLZzNSt0lHcRq3qpzqH\nqVTKzNR5iJvqI1Ufcvr0aTPr6+szs7a2NjN79NFHzUzVF/V4TlT9WV1d5e+4GhsbvV6vWCyaWWtr\nq5mpdqucPXvWzNQxC8PQzHz7tObmZjNT421vb6+Zqbp74cIFM6uvr9pUaEXU8VTzCdXXTUxMmJmq\nZ77zFzU/6+zs9HrNlbDGCdWnqfNrtWnn9Bg4NzdnZqp9qnbtO875joGqHqp9V+OjGgNVm4+b2gdV\nl1Q/ks1mzay/v9/MnnrqKTMbHx83s+uuu87MohoDrTqj6oui5kVTU1NmtrCwYGaqXm/bts1rOzU/\nVXVeUe+nPh+q/ly9Znt7+8oKFgNVX1R28uRJM1Of4dVPmjz//PNe2U033WRm1rFW52czC4KAR2KX\nwR12AAAAAAAAQIJwwQ4AAAAAAABIEC7YAQAAAAAAAAkS7w+3AAAAAAAAYNPjN+w07rADAAAAAAAA\nEoQLdgAAAAAAAECCrOqR2DAMzeWWh4aGzO3UbY5qafWrrrrKzLZv325mnZ2dZlYqlcxMLc3d1NRk\nZr7LNGcyGTO77LLLzKyjo8PM1LLWat/jpo7ZzTffbGZXX321md1zzz1e77dz506v7dTS6lZdUud8\nJerqKl9jz+Vy5jbpdNrMVJ2w3ss551pbW82svt7vSXt1rFVZoqD6LJWpPiRJVDnL5bKZNTc3m1k2\nm/Uqi+qzVHtpaWkxs6hurbfq6MjIyKq3cU735WfOnDEz1d4nJibMTB1rZXp62swaGhq8XnNhYcHM\nVB+ytLRkZsePHzczNS+Im6rXk5OTZqbqy+nTp81s69atKyvYJT7/+c+b2V133WVm58+f93q/lbDG\nAnVMVX+n2qcaO9WcMIqyxP24kNoH3zE+SXz3QfUjqk4og4ODZtbX12dmah7m+7lkOVY9bGxsrPp7\nqXFOZerc+n4GjGJup9q0mmv5nls1t4t7jq3mDSpra2ureln27NljZr29vWamxmMLj33aNsqxCYJg\n0Dn3ZefcFudc6Jw7FIbhf7vk3wTOuf/mnHu7c27eOfdbYRg+pl53/Y+6AAAAAAAAQG0UnXMfDsPw\nsSAIWpxzR4IgeDgMw2de9W/udM5d8cp/r3PO/Y9X/q+JR2IBAAAAAAAAD2EYjvzvu+XCMJxxzj3r\nnOu/5J/9inPuy+HLfuKcaw+CQD4KwQU7AAAAAAAAwNYdBMHhV/13sNI/CoJgh3Nuv3Pu3y6J+p1z\nr/4dk5fcf72o93/gkVgAAAAAAADEap39ht1YGIbD6h8EQZBzzv2Dc+5DYRjaPwS9QtxhBwAAAAAA\nAHgKgiDtXr5Y9z/DMPxfFf7JGefcq1cbGnjlbyYu2AEAAAAAAAAeXlkB9m+dc8+GYfgZ45/9f865\n/yd42U3OuakwDEfU667qkdh8Pu/OnKl8AfCRRx4xt7v99tvNbHravkvw2LFjZvbd737XzJaWlszs\nb/7mb8xsfHzczD74wQ+a2Ve+8hUzU8tvp9NpM/vwhz9sZg888ICZPfHEE2Z23XXXmVkUS8Cr21v/\n+q//2szuuusuM1P1RS0FrpZkHxoaMjN1PNUx+6u/+quKfz9x4oS5zXLm5ubcv/3bpY/Bv0yV81d+\n5VfMTLXbF154wcyOHj1qZjfffLOZ/fZv/7aZ/eu//quZzczMmJnav2w26/V+mUzG6zX7++2fIOjr\n6zOzKFy8eNHMfvazn5lZoVAws6uuusrMxsbGzGxgYMDM6urs743+5V/+xczU/h08WPHnJNZkZmbG\nrDOXXXaZud3+/fvN7KGHHjKza6+91syeeeYZM1PjyhVXXGFmc3NzZvaFL3zBzD7xiU+Y2ejoqJl1\ndXWZ2d69e81M7bsa+5ubm81sfn7ezHx1dHSY2bvf/W4z+/rXv25mDz/8sJndcccdZqbOgzWnc865\n17zmNWamfOQjH/Habjmjo6Pu0KFDFbOvfe1r5nZ/9Ed/ZGZPP/20mX3zm980s0cffdTMOjs7zUyN\nO2rO+9WvftXMPvShD5nZTTfdZGbPPfecmX32s581sz179pjZrbfeamZqDqrmaL4WFxfN7AMf+ICZ\nqTnhbbfdZma9vb1mpvb93LlzZvbpT3/azNra2sxs165dFf9+4cIFc5vlzMzMmHPG+++/39zuD/7g\nD8xMzaf+4i/+wsx+8pOfmNns7KyZqfFD1Zd7773XzNQYqNrfz3/+czN78MEHzezGG280s+7ubjN7\n85vfbGZRUOfhc5/7nJmdOnXKzNRnCDWHueWWW8xMjY+qnM8++6yZWe1dtfXNbp09Equ8wTn3Pufc\nk0EQ/O8P5/c554accy4Mw8855x5yzr3dOfeic27eOWdX7FfwG3YAAAAAAACAhzAMf+Sck1cfw5fv\n+LG/yaiAR2IBAAAAAACABOEOOwAAAAAAAMQmCIKN9EhsJLjDDgAAAAAAAEgQLtgBAAAAAAAACcIF\nOwAAAAAAACBBgpcXqliZ4eHh8PDhwxEWZ+NRxzfu57Wnp6fNrKWlpervF8X+TU1NmZla4j4p52F4\neNgdPnzY6w13794dWku9P/DAA+Z27373u83ssssuM7OPfOQjZvboo4+amTqejz32mJmpJeAPHTpk\nZu9973vN7K1vfauZXbx40cy+8pWvmFldnf09x65du8zsbW97m5mlUikz81Uqlczss5/9rJmpPv63\nf9teeXxpacnMfumXfsnMTp06ZWZf+MIXzGxiYsLM3vjGN5rZO97xjiNhGA6b/8DA+Ld6o6OjZtbT\n0xNjSXRZohD3/ilJOg9BEHi1P+d0GywUCuZ26XTazFQ/qfrlmZkZM1NjYC6XM7NisWhm9fXV/8lp\n331X1HGJYp4ZNzVPUdR5V+fBl3X+1jIHvfbaa8Nvf/vbFbNz586Z2zU3N5uZmpureebTTz9tZt3d\n3ccTdkYAACAASURBVGZ29913m5nah9OnT5vZddddZ2YdHR1mdv78eTM7fvy4mTU1NZlZNps1sz17\n9phZFPL5vJm9+OKLZqbOw/bt281M9Z9q3+fm5szs8ccfN7PnnnvOzF73utdV/Ps73/lO9/TTT/Nj\nbZfo6OgI3/SmN9W6GCv2j//4j97zGF/cYQcAAAAAAAAkCBfsAAAAAAAAgASp/j32AAAAAAAAgBD3\nz4StN9xhBwAAAAAAACQIF+wAAAAAAACABOGCHQAAAAAAAJAgVfsNuwsXLphZb2+vmY2MjJiZWupc\nLQU+ODhoZsri4qKZNTQ0eJUlivdTy2Gr5cxbW1tXVrAqUcdFLaOdy+XMrL5+8/7sYmtrq3vLW95S\nMXvDG95gbqfaUSqVMrNvfOMbXtupZeXVuVXlvPnmm73KojQ1NZnZXXfdZWZnzpwxs+bmZjPzLacv\n9X533323mS0tLZlZoVAws5aWlpUV7BJDQ0Nm9rGPfczM1LFWfc873vGOlRXsEsVi0Y2OjlbM1LGe\nmJgws8suu8zMLl68aGaTk5Ne2+3atcvMVN+q6oQvtQ/q/OXzeTM7duyYme3Zs8fMVN/jy6orzjnX\n2NhoZtPT02Z27733mtmb3/xmM3v7299uZvfdd5+Z3X///WZ26NAhM3vPe95jZlFJp9NVf01V19Q4\n5/tbPHHPb+rq/L6zLxaLZqb2vVwuV70sUVD9j8p890GNH2q+oeb7Ucw30um06+vrq5hZf3dOHzNV\nXwYGBszs/e9/v5kpqiyXX365V+Zry5YtXtnCwoKZqbFa9WeZTMbMfKnX3Lt3r5ldeeWVZnbq1Ckz\n6+rqWlnBVkF9Vn3Xu95lZtb8VI39mx2/YaclZ4QEAAAAAAAAwAU7AAAAAAAAIEmWvf8+CIKDzrmD\nzulHlwBUH+0PqJ1Xtz/1eA6AaDAGArVD+wMQtSAIeCR2GcveYReG4aEwDIfDMBzu6emJo0wAXkH7\nA2rn1e0vit9HAaAxBgK1Q/sDgNrjkVgAAAAAAAAgQTbvkpsAAAAAAACoCR6J1VZ1wa5cLruZmZmK\n2enTp83t1G3UKlNL3C8uLpqZopb0zmazXtv5Uu9XKBTMLIrlxaPYP8Va8jqq7TaCUqnkJiYmKmZN\nTU3mdmoZ8VKpZGZtbW1mpuqur1QqVfXXVBoaGsysWCyaWV9fn5ml0+k1lSkuqk4kadl53/YexcCf\nz+fNcU79vl1ra6uZTU9Pm5ka/8rlsplt377dzFR7V1kU1Bh3/vx5M7vyyivNrLe318wuXry4soLF\nYGFhwcxyuZyZfelLXzKz0dFRr7J88pOfNLOPf/zjZjY7O2tmc3NzXmVZTqlUclNTUxUz1eZVG1Tj\njnpNNWeqq1sfD6+o/VNzbDXOqbnIejkuitq/KMYd9VMMUczDlFKp5CYnJytmqr6oOZOijrWao/m2\n6STJ5/Nmtl7mb77UOVLzG19qnvm2t72t6u8H+Fj/oycAAAAAAACwgXDBDgAAAAAAAEgQfsMOAAAA\nAAAAsVovj6vXCnfYAQAAAAAAAAnCBTsAAAAAAAAgQXgkFgAAAAAAALHikVitahfsbrjhBjMLw9DM\nyuWy1/s1NDR4veZ6qRDpdNpru6WlJTPLZDK+xfGilnkvlUpmpsqp6pI6Zuq8q9f0FUU9C4LA3Ee1\nxH02mzUzte8qU/UslUqZWX39+viOQO3D7Oysmak62NHRsaYyVZM6t6rubvTzrtTX17uurq6KmWp/\nqk6ofrCxsdHM+vr6zKxQKJiZKmeSbN261czUuKLaZl1dvA8U+Pa7av983y+fz5vZ+Pi41/vFfTyd\n02NgFGNuLfYxKdQcW/Gd00fBd26n6pIa56Lgex6iUFdX55qbm80sThthTqH4fg5aL59xN8I+AHHa\nvLMRAAAAAAAAIIG4YAcAAAAAAAAkyMa+pxgAAAAAAACJw6PQGnfYAQAAAAAAAAnCBTsAAAAAAAAg\nQXgkFgAAAAAAALEJgoBHYpexqgt2dXV1rqWlpaoFmJiYMLOpqSkzu+KKK7zeb3Z21sxyuZyZ+S5V\n77vUuVryWmVqqXPVGNRr+lJlaWxsNDN1rDdzg66rqzOPm+/5U/VTZWrJ+VKpZGbrZSl3VZbe3t4Y\nS5Is2Wy21kWoGTX+pdNpc7vFxUUza21tNbP5+Xmv11T9ripnoVAwM6VYLHqVRVFjwPT0tJmpY6aO\ndRTUOVL7l0qlzGxpaWlNZVrv6urqXFNTU1VfU9VfNQ6o86TOrxoD1Wuq7Xzr00YX95x3owuCwOzT\nm5ubvV5T1V3VNtUc1Pfzk+/ntSjGQEXV67jL4itJ831gPeCRWAAAAAAAACBBknO5HQAAAAAAAJsC\nd11q3GEHAAAAAAAAJAgX7AAAAAAAAIAE4YIdAAAAAAAAkCD8hh0AAAAAAABixW/YaTW/YNfZ2Wlm\nW7ZsMbOFhQUzU0tzt7S0mJla7juVSpmZEsXS8WoZ9KWlJTPzXXbdl1pCXB0XGq3Nqoe+9UwtAe9b\n5323U3z3L4q6VCgUvN5PtYe40cZWr1wuu+np6YqZqp+5XM7M1Dg2OTlpZqrdtra2er1fNps1MzXm\nqHFFjUe+1P5t3brVzC5evGhmpVJpTWWqRLWxKPrIzULVRYuaE6pM8a0zvuc+SfVJnYMo5rxRYAz0\nYx0337mkan+ZTMbM1DxMzbV827sS99xOtTHVLyVpDgpgdXgkFgAAAAAAAEgQLrcDAAAAAAAgVtz1\nrHGHHQAAAAAAAJAgXLADAAAAAAAAEoQLdgAAAAAAAECC8Bt2AAAAAAAAiBW/YafV/IKdWmJbLU/d\n2Njo9X6+S87HvVS92vfx8XEz27JlSxTFQQVqGft0Oh1jSfypcsZd55W4O3J1bguFgpmpY6b6OpUh\nGVKplOvo6KiYLS4uer3mwsKCmR07dszMent7zayzs9PMstnsygp2CVU/l5aWvF7T9/2mp6fN7MiR\nI2a2Y8cOM/OdT2x0vmNAlP11tftK9Xr5fN7M1Ni5ET54qDlokuYGSIZMJlP115ydnTUz1cbq62v+\n0XbNVPsrl8ter6na7Ubos4CNjE+JAAAAAAAAQIKs/68hAAAAAAAAsG4EQcBdnstY9g67IAgOBkFw\nOAiCw6Ojo3GUCcAraH9A7by6/amfIgAQDcZAoHZofwBQe8tesAvD8FAYhsNhGA739PTEUSYAr6D9\nAbXz6vbX1dVV6+IAmw5jIFA7tD8AqD0eiQUAAAAAAECseCRWY9EJAAAAAAD+f/buNcay9LwL/Vp1\nv3RV9aWqu6dv7rl4xnYYe+LpxJkowgYJdIIsTiAxOvnAQQehQeYYBOhIKB84XCRAAsGHQ8iBASUR\nAoIISEcG8QEBAlvGAfc4jnGIY3vsuU9fqnu6prvutfc6H2Ygg7Ofp7reqr33qqrfTxop6b/X2u9a\n673tVWvtF6BFDuwJu/v374fZiRMnwmx0dPSgivA/ZEtej4zE9yhLl7we9BL3586dC7NsKfB+nOtS\nOzs7YTY+Ph5mg762peXsl+j6ll7b7NiP8187Ss9nViey+klv29vbYZZdo36c6263W62vr/fMSvus\nmzdvhtnp06fDLDsv3/rWt8IsGzsyWT84NzdXtM9M1vdk5+XZZ58Ns3v37u2rTAfp13/918Mse/V6\nfn4+zKanp8MsO59bW1thtrGxEWYLCwth1s85UTbHiWR9Rba/0nlDts/SeUqW9WNul+0zqzPZsY+N\nteelns3NzTDLrlF2XkrnU9kYUVqX+jXfj8qajUmTk5Nhlm03MTERZtmYlO0zG6tL+8msnKWy65dl\n2Xfx7DoMWjSXqqr8OmTnuh/zvkFfd4j4BgkAAAAALdKeP3cBAAAAcCwc57e6HoYn7AAAAACgRdyw\nAwAAAIAW8UosAAAAAAPlldicJ+wAAAAAoEX29IRd0zThEsdzc3PpdoNUurRzthR4tgT1/Px80edl\nsmW7b9y4EWanTp0q2uegZUurZ/qxbHdWP8fG4iaysbERZlNTU/sqU6RN1/CgdTqdMBv0cWd/6bl7\n926YZfXl/Pnz+yrTcZT1yd1uN8wmJyf7UZzQ5uZmmGV93blz58Jseno6zLK2kn3e2tpamGV1d3V1\nNcz6ITu+rJzZdSg9n/3wzDPPhFlW57N+cGdnp6gsMzMzYbawsBBm0Vywqvp7PqNzUDrPzM5plmWf\nd5TH6aoqr6NtMugxItOPeW2/RGWdmJgo2l/pd4HS7bK53aC/q5bKvo9m86I2yb4jtelJq9IxoE3H\nwNHglVgAAAAABspNztzh+bMOAAAAABwDbtgBAAAAQIu4YQcAAAAALeI37AAAAAAYmLqu/YbdLjxh\nBwAAAAAtcmBP2GVLSWfZ2FhchGy71dXVMMuWSJ+dnQ2zbFnyTqcTZqVLO2fZgwcPwuz8+fNhljks\nS5ZnlpeXw2xxcbFon6V39bP6+frrr/f8962traLPqqp3r9/Ozk7PbHt7O9wuq9dZebKl47M2trCw\nEGbZud7Y2AizrJ8YHx8Ps6ycWZvOlnI/c+ZMmG1uboZZm2TH/vbbb4fZ/Px8mGX1LHPv3r0we+ut\nt4rKcvbs2aKyZOq6Duvh3bt3w+0uXboUZt/5znfCLDufWTvKjj1rD1md/83f/M0we+6558IsG8ey\nz8vq4MzMTJjdv38/zErrZz9k49iVK1fC7Bvf+EaYPfnkk2GW9eVZ+3vppZeKPu973/temO1Ht9sN\njyVrg9m8b21tLcxu3LgRZtl8KruG2TwlGz9Kjy8bj7NjyMbjbN6Q9U1TU1NhNmh37twJs+zYs/lG\ndq4nJyfDLJovVlVVfetb3wqzrC5FZdnvHDSaa2b1M+t7s3HgjTfeCLOsT8vG3Gx8jObXVZX3k1m9\nzuYpWfsrnX9n22X1c9Cycmbjf/ZdIJubZ9tln/cbv/EbYZZ59NFHe/579l0NMl6JBQAAAGCgvBKb\n80osAAAAALSIG3YAAAAA0CJu2AEAAABAi/gNOwAAAAAGym/Y5TxhBwAAAAAtsqcn7LrdbrgUc7Zc\ndLZEerbUcrZ09WuvvRZm2bLlTzzxRNHnZccwPT0dZtmy3dk+s6Wfv/e974VZduxPPvlkmB0Wp06d\nGnYR/oeZmZk9Z9ny9rvpdDrh8uOdTmfPZdltu5deeinMsrr72GOPhdn58+fDbHx8PMxu374dZvPz\n82E2NzcXZll7v3//fphlx35Y/kK0srISZlkfEtW/qqqqkydPhtnk5GSYdbvdMMvKubm5GWb7aWeR\nTqcT1ousb8368g996ENhlh3Dzs5OmN26dSvMsvE261uzNl1a57M6kR371NRUmF24cCHMlpeXH65g\nA7C0tBRmWT94+fLlMFtbWwuz7Bo9+uijRVkmO779qOs67LfPnDkTbped02z8WFxcDLOsXWfnO8uy\ncp49ezbMsnZdKitLNm8YHR098LL0Q/ad5cSJE2GW9U2lfWHWb5X2FVE72e8cNBoDs+862RifzU8z\nq6urYRZ9T62qvO6WtulS2TieZdkcNDvXbZLVl+zYs7aZ7TOT9VnZuJJtF333OCz9I+3jlVgAAAAA\nBuqwPPAwLF6JBQAAAIAWccMOAAAAAFrEK7EAAAAADJRXYnOesAMAAACAFnHDDgAAAABaZE+vxI6M\njFTT09N7/pDSZbu3trbC7MknnwyzfixxX3oMmWx551OnThVlmdIlr/shW5J9dnY2zPqxJPbm5maY\nTU5OHvjnlRobG6tOnz695+2yc5bViY9//ONhlrXNkZH47wCl2YULF8KsH49RZ+19amoqzMbHxw+8\nLP2QtbHs2LvdbpiVXoesjT399NNF22V1qVQ2/i0vL4fbdTqdMMvq0v3798NsZ2cnzLI6mI3fGxsb\nYZadz7W1tTDLZH1I1ic/ePCgqCz9mBeUyurEvXv3wizrr7N+Pmu3r732Wphl9frcuXNh1q9+sK7r\nsN1nbaL03GT1PttnVteya1jab2X7zPrlLMv2mR1fm+ZMmexcZ+2z9FxnsjpYOm/P9lmqdA5aes6e\neuqpMHviiSfCrLSvz8bjfnwHzMo5NzcXZidOnAizfsx9+iGbg2bzlH7M9+fn58Ms689KxoDDcn1o\nn/bMYAEAAAA48uq69ht2u3CrFwAAAABaZNcbdnVdP1/X9fW6rq9nr0cAB+/97e/27dvDLg4cK+9v\nf3fu3Bl2ceDYMQbC8Gh/AMO36w27pmleaJrmWtM01xYXFwdRJuA9729/S0tLwy4OHCvvb39nzpwZ\ndnHg2DEGwvBof8Ag/PfXYg/Df8PglVgAAAAAaBE37AAAAACgRfa0Smxd19XExETPrHTp8Uy25HXp\ncvTZcu3ZEs39kB1fVs7MYVkyenx8PMw2NzfD7O233w6z7e3tMLt06VKY3bp1K8wy2T779cjsQdfR\nrJzZZ2XLrm9sbITZ+vp6mM3MzITZoGV1qdvthllWr9sku+5Z+9va2gqzycnJMIvGjaqqqrt374bZ\n1NRUmGV1sB/tr67rsE1kY07WJ2fnM/vN2BMnToTZqVOnij4vG3Oyc106VmXOnTsXZln/ko2pbZLV\nz+wYXn/99TA7e/ZsmGV1cGdnJ8weeeSRMMvq/DD6wdJrXzpnyvq7o7DaXXYND8s4l8mue3Z89+7d\nK9rnyZMnwyzr07J2lo2PbVLaHrK+KZufln4/HPT3p9LzchT6l0x2HbLfEs7a0cWLF8NsdXU1zB48\neBBm2TwFDtrhmN0CAAAAcGQc9RvR+3U4HscCAAAAgGPCDTsAAAAAaBGvxAIAAAAwUF6JzXnCDgAA\nAABaxA07AAAAAGiRVr8Smy21fP/+/TB75JFHwixbCrxNBr28+KCNj48XbXf+/Pmi7bKl3C9fvnzg\n+zzqut1umE1NTQ2wJOWyx68PyzGUmpiYKMp2dnbCbG1trags586dC7NOpxNmR72PzM7Lm2++GWaH\npe5mdSnLjoLSY8/mNmfOnAmz5eXlMJufnw+zubm5MFtZWQmz7e3tMIO2y8aW06dPH/jnnThxIsyO\n8zwzm6Nlc4Pse57X7g63U6dOhdn6+nrRPqenp8Msmw9zsLTN3NH+xgMAAAAAh4wbdgAAAADQIm7Y\nAQAAAECLtPo37AAAAAA4Wuq69ht2u/CEHQAAAAC0iBt2AAAAANAiB/ZKbPYoY+my5LOzs2E2Nzd3\n4J9H+/Xj2h6m+hKVtdvthttkS9yXGhlxr/84GhuLh4z5+fmifU5MTJQWZ6DGxsaq06dP98yy9nfv\n3r2iz8vOy8WLF8NsZ2en6PNov2ysWl5eLtpnVndXVlaK9nlUZOPcYZo3cHgd59fEsrmrOejxlF33\n7J5B6T7Vs8E5zn3dw1ATAQAAAKBF3LADAAAAgBZxww4AAAAAWuTAfsMOAAAAAB6G37DLecIOAAAA\nAFrEDTsAAAAAaJE9vRLbNE21tbXVM9vZ2Qm3m56e3lup3pM9Hnn37t0wGx8fD7MTJ04UlYXjqdvt\nFm2XLUdfqtPpVCsrKz2zpmnC7U6dOnXgZcnOi2XQOShZPcvGh348Wt80TdXpdHpmq6urB/556+vr\nYXbz5s0wO3nyZJhNTk7uq0wcL1k7evDgQZjNzs72ozitsr29XbTdxMTEAZeEoywbA7N5Xz/moJlo\nbKyq8rJkc8lszM2+jy4sLBSVBb5fNgZk9yHozSuxOd+sAQAAAKBF3LADAAAAgBaxSiwAAAAAA+WV\n2Jwn7AAAAACgRdywAwAAAIAWccMOAAAAAFpkT79hV9d1uCT9oJcwPn36dJhtbGwMsCQcZaXL0ffD\n6OhodfLkyWEXo6qqqtrZ2QmzrC/wGwXsxchI/DelbrcbZv2oZ51Op1pZWTnw/ZZomibMZmdnwyxr\nt/D9pqenwyxrm51Opx/FaZU2zQ04urJ21iaDbg/Rd9Gqqqqtra0BloSjLJtrHZa2eRjUde374S7U\nNgAAAABoETfsAAAAAKBFdn0ltq7r56uqer6qqurKlSt9LxDwW7Q/GJ73t79Lly4NuTRw/BgDYXi0\nP2AQvBKb2/UJu6ZpXmia5lrTNNeWlpYGUSbgPdofDM/729+ZM2eGXRw4doyBMDzaH8DweSUWAAAA\nAFrEDTsAAAAAaJFdf8PuMJqamgqzbIlm2q/T6YTZ2FhcnUuve+l2R/1d/ImJiWEXgWNuZOT4/r1p\nfn4+zLK2ubOz04/iMCD3798Ps2zeMz4+XvR5a2trRdsdB8e5/znOut1umGXzvqM+Jxy0rE9bWFgY\nYEkYpKz99aNPztrt6OjogX/ecaaPzJlxAAAAAECLuGEHAAAAAC1yJF+JBQAAAKC9vBKb84QdAAAA\nALSIG3YAAAAA0CJeiQUAAABgoLwSmzuwG3Z37twJs52dnTCbmZkJs29961thdvbs2aLPe/TRR8Ps\nsNja2gqzV199NcyeeOKJfhQndP/+/TB74403wiw7vo997GP7KtNeNU0TZhsbG3veLluS/GF0Op09\n/XtVVdXExESYbW5uhllW1snJyaLtxsYO/98Itre3wyxb5r0fS86XunfvXpjNzc2F2aCXsc/O9fj4\n+ABL8q7oGmZtLOtDsiybvCwtLYXZyspKmB0F2bnOzlnW1/VD1o4ePHgQZtnxZf1nNm6WyuZS2RiQ\ntdv9isaX7PhL+61sXM368+w6HYUvJVm9yPq0QffZWVlWV1fDLLtGs7Oz+yrTXpWe636N1dFnlvY/\npX121sayY8/618MiqxNZ3zs9Pd2P4oSy7wLZGJhdv0G3v+x8lszfsm0g055vkAAAAACAG3YAAAAA\n0CaH//00AAAAAA6Nuq6PxM9F9JMn7AAAAACgRdywAwAAAIAW8UosAAAAAAPlldjcnm/YRcvcnzlz\nJtwmuwjZ8tTXrl17+IK9T1TG3cpyWJZbzpbK/uAHP1i0z34c+9TUVJhdvXo1zLKlx1dWVsJscnIy\nzO7fvx9mi4uLRdstLCyEWVQHR0b681BraUeXbTc+Ph5mWX3p1zG2RbbM+9jY4fgbSNbGsv5za2sr\nzLLrnrXNzOjoaJhl5cy2K9XpdKp79+71zLJjz9rKuXPnwuy73/1umGV91jvvvBNms7OzYVZ6jQYt\na2MvvfRSmF26dCnMsrpUanNzM8yyec/GxkaYffvb3w6zpaWlMDt9+nSYZf186fkcxsQ7O46sP8jm\nU6Xt+qgrndNn12jQsv4uO77V1dUwy459fn6+6PMyg25nTdOEc4DS8SNrRxMTE0XbZW36KMj6s6wO\nDlrWf2btIbO8vBxm2TiezbUyWRvLsugauSlFqaP9zRoAAAAADhk37AAAAACgRQ7H+1sAAAAAHBle\nF855wg4AAAAACtV1/fN1Xd+q6/obQf6puq5X6rr+2nv//d+77dMTdgAAAABQ7herqvrZqqr+YfK/\n+WLTNJ9+2B26YQcAAADAQB2lV2KbpvlCXddXD3Kfe7pht7q6Wv2X//JfemYf/OAHw+1Onz4dZvfv\n3w+zzc3NMMuWaM6W+15fXw+zd955J8zOnj0bZplsn9kS1DMzM2G2vb0dZtPT02GWnZd+yK7fiRMn\nwuzWrVthVnodsiXnszpY2oFky66X6na71cbGRs9sdna2aJ/j4+NhltXP0uPL9pktAd+Pjry0LFkb\n63a7YdaPOlF6jbL28Morr4TZ3NxcUZaVc3l5Ocyytnn+/Pkwy/qXUiMjI+G1z+pnVpd2dnbCbGFh\nIczGxuKhOxtvs+2yspSampoKs+zaZuPf6upqmF25ciXMsjrYD1FfXVV528zq9aVLl8Ism2tksmv0\nYz/2Y2F29+7dMOvXuW6aptra2uqZZX3abvuM9GNMKp2Htenzsvrbj3EuU3p82dwnqmNVldeJbNzJ\n5ga3b98Os2y+/8gjj4RZVs5SnU6nevDgQc+stE5k4052DKWfl/VNWV3Kxs5Mdt1LZccwMTFx4J+X\nyY4vK2fW/jKLi4tFZcnaUVSnqyofVy9cuBBmR+nmEz0t1nV9/X3//wtN07ywx338aF3XX6+q6o2q\nqv6vpml+Pfsfe8IOAAAAAGLLTdNc28f2X62q6krTNA/quv59VVX9f1VVxU++VW7YAQAAADBgx+mp\nxKZp3nnf//2v67r+ubquF5umCV85skosAAAAAPRJXdfn6/fuUNZ1/cPVu/fj7mTbeMIOAAAAAArV\ndf1LVVV9qnr3t+5er6rqL1RVNV5VVdU0zd+tquqnqqr6bF3XO1VVrVdV9b81u/wgqxt2AAAAAFCo\naZqf3iX/2aqqfnYv+3TDDgAAAICBqev6WP2GXYk93bCbnZ2tnnvuuT1/SPaU36lTp/a8v91ky29n\n2fT09IGXJVvmPVt6PDM1NVW0XT8aQ7aM9tzcXNE+NzY2SosTyupgdj4HvUR6pq7r4jqT7TNSuox9\nZmQk/tnMQXfWB30u+7XPQX/e2tpamI2Pj4fZ6dOniz7v1q1bYba9vR1mjz32WNHnlRoZGQn78/X1\n9aJ9ZnV+ZmYmzHZ5cj6Utb/sumdlyezs7IRZVnezcmbHntWXfsiuX+k1yupSNkfZ3NwMs6yc8/Pz\nD1ew79PpdIq224+6rsMxuXT8GPSYNOhx7qh/CerH8WXzvmzOm9WlzLlz58Isa2f9mKNlxsbGwu9s\npcdeOg6UGvQcrR/H0I99lsrKUlrObOzM2ntpWUq/Aw66LnG8tafVAwAAAABeiQUAAABgsI760+D7\ntesTdnVdP1/X9fW6rq/fvn17EGUC3qP9wfC8v/3duZOuuA70gTEQhkf7Axi+XW/YNU3zQtM015qm\nuba0tDSIMgHv0f5geN7f/s6cOTPs4sCxYwyE4dH+AIbPb9gBAAAAQIv4DTsAAAAABspv2OX2dMPu\nxRdfXK7r+pX3/t/FqqqWD75IRZSlN2XpbZhl+UDphl/96leXp6entb+csvSmLL+lqA1+7WtfW15Y\nWHjlff807ON4P2XpTVl+u2GXo3gMfPHFF5dHR0eNgTll6U1Z3qX99Zey9KYs7ypufxxve7ph370C\nAwAAIABJREFU1zTN//gBg7qurzdNc+3gi7R3ytKbsvTWprLshfa3O2XpTVn27/3tr6radRzK0puy\ntLccJYyBu1OW3pRl/7S/3SlLb8oC++OVWAAAAAAGyiuxOYtOAAAAAECL7OeG3QsHVor9U5belKW3\nNpWlVJuOQVl6U5be2lSW/WjTcShLb8ry27WlHPvVpuNQlt6Upbc2laVUm45BWXpTlt7aVBZ4KHXT\nNMMuAwAAAADHxIULF5o//sf/+LCL8dD+4l/8iy8O+ncQvRILAAAAAC3ihh0AAAAAtIgbdgAAAADQ\nImPDLgAAAAAAx0dd11Vd18MuRqvt6YbdmTNnmg984AM9s263G3/IWPwx2aIXnU4nzLLPm5iYCLPM\nzs5OmGXHUCo7hpGR+OHHQZezVHZts2PPthsdHS3aLjufpQuvZMcQlfPll1+ulpeXi3ql06dPNxcv\nXizZNJSdl7W1tTDL2li23enTp8Msuw4bGxthNjMzE2alNjc3wywbVLa3t8Nseno6zLLr0A+l/W6W\nZW0z65eyc33nzp0wO3v2bJhlx/f1r399uWmapfB/EFhcXGyuXr26180oUDrGZdfdZHBwsrHxV3/1\nV4vaX1W9Owe9fPlyzyy79qV1JjuOrI5m42NWD0vrbz/qdul5ycaBNsnG6tJjKL1GpfVsfHx8z5+3\nnzlom8bAbC6SnevSudagx5bSzyv9XjloR+H4smOIsldeeaW6c+eOyQh7tqe7Ox/4wAeq//gf/2PP\nLBv8FhYWwiyr8CsrK2G2vr4eZpcuXQqzzN27d8Ps1KlTYVbaWWc3NrKbENmX2DNnzhSVpR+yicb9\n+/fDLKtL8/PzYZZ15Nn5zG4YZLI6ePLkyZ7/fu1a+aIyFy9erD7/+c/3zLLJSzaIZefl+vXrYXbl\nypUw+7Vf+7Uw+8xnPhNm2XX/zne+E2Yf/ehHwyw79qzdfvvb3w6z7Mbba6+9FmbPPPNMmE1NTYVZ\nqez4shugq6urYZb1yVk/H7WHqnr3C0TkF3/xF8PsT/2pPxVmWV9w/vz5V8IwcfXq1bRNtEWbblqV\n3uBdXl4Os8XFxTDL+vLJyckwy8pZqk03LgZdJ7K5zezsbFH7q6qqunz5cvVv/+2/7Zll1zD7Q9HW\n1laYZf1kNg+7cOFCmGV9fVZ/s5szWV3LstI/zmRjRDYOZAb9ZfvGjRthls0zs/OS9THZTdwHDx6E\n2dtvvx1m2R+torLsZw466DEwO9fZd4iszs/NzRWVpR8PSmTzlGw+nNWzrO/N5q6DvulYeiM663tm\nZ2cfrmDfp3R8zI4h+n74yU9+8uELBu/TnsexAAAAADgWvAWRa8/zsQAAAACAG3YAAAAA0CZu2AEA\nAABAi/gNOwAAAAAGym/Y5fZ0w25kZKR4hZ0S2cqspat+ZSs1Zfvsh2yFzkx2XkqPvR+ylZOyYyiV\nrfSTyVZc6sd2pSYnJ6urV68O7PM+/elPh1l2rp9++umiz8vOZ7bCaqnsGB577LGifWZ9SLZCV2nd\nzWT7zNpmttJ0ttprJlsBMDvXf/kv/+Wiz+uXg15NNFslLssy2QprWZ3oRx3MlK7qmZ2XrA/JVnTr\nx0QxO77sGLKyZNcou+6ldalUv8bGsbGxdJXgEtmKktk5zeZv2T6zvrd0tclSpavLZrJ6n53PQVta\nWgqz0tXlS504caIoO+qyOlg6FynVj7aZ1bPSPrT0e2U/ZG2ltC8oXQk2U9qmszoR3SsZ9GrYHB1q\nDgAAAAC0iFdiAQAAABgor8TmPGEHAAAAAC3ihh0AAAAAtIhXYgEAAAAYKK/E5jxhBwAAAAAt0uon\n7EqXP56YmDjgkrRLdl6O+rFn3J0/WE3TDLsIQ5O1sayezczM9KM4B250dDTMsutuSfqDlZ3P0nN9\nFNptdgzdbjfM1tfXw2xsLJ7uZFk/lF7brO/pdDqlxTnWzKf27iicl2wMBIA28e0LAAAAAFqk1U/Y\nAQAAAHC01HXtLbldeMIOAAAAAFrEDTsAAAAAaBGvxAIAAAAwUF6JzXnCDgAAAABaxBN2R0zTNGHm\n7jXsX9bGNjc3w2xqaqofxYFjZWQk/jvjzMxMmGXtNsuAh9ftdsMsm4OanwJAb56wAwAAAIAW8YQd\nAAAAAAPlKeucJ+wAAAAAoEXcsAMAAACAFvFKLAAAAAAD5ZXYnCfsAAAAAKBFPGF3xLhDfTyVXvem\naQ64JMfb5ORkmDnXR9fW1laYbW9vh9ns7Gw/inNsdbvdYReBFsr6XnOmgzUy4jkA/mdZv6y+AOzO\nDTsAAAAABsofz3L+tAEAAAAALeKGHQAAAAC0yK437Oq6fr6u6+t1XV+/ffv2IMoEvEf7g+HR/mC4\ntEEYHu0PYPh2vWHXNM0LTdNca5rm2tLS0iDKBLxH+4Ph0f5guLRBGB7tD+i3uq4P1X/D4JVYAAAA\nAGiRA1sldmtrK8yapgmziYmJMNvc3AyznZ2dMOt0OmE2NzcXZtld00HfUd3Y2CjaLjv22dnZ0uIc\nuNLrt7y8HGbj4+Nhdvbs2TB74403wuzVV18Ns2eeeSbMpqamwmw/onqYtbGsbU5OTobZzZs3w6zb\n7YZZ1sZOnDgRZtl1z4yMlP3dITsvpZ+XZaOjo2GWXb9+yM71O++8E2ZZn3zy5Mkwy9pDdh2+/OUv\nh9mnPvWpMBu0sbF4KM2ybFzJrlHW12V9a1aWTGnbzGTtYXt7O8yyY8/aUWnWD9n5zOZE2bwga2PZ\n52XXIRsbL168GGZZHeyXrM6U9svZOJf1hdnnZWNum2R1Juuzs/qbnetBy65tduwPHjwIs2x+k/Vb\nb7/9dphl5zqba83MzIRZP2R9aOn3p0GPO4dFVnczpXPlQcuue1bPsvOS9Uvr6+thtrq6GmanT58O\ns8Nyrjk8DuyGHQAAAAA8jGG9anpYuAUMAAAAAC3ihh0AAAAAtIgbdgAAAADQIn7DDgAAAICB8ht2\nOU/YAQAAAECLHNgTdtmSyaUmJyfDLLsTmy2tflhMTU2F2c7OTtF2bZIteZ0tu37hwoUwK707ny3N\nfe7cuTAbGxvsA6rdbre6f/9+zyz696qqqvHx8TCbnp4OszfeeCPMbt++HWavvvpqmP34j/94mJ0/\nfz7MVlZWwiy7fpmsf/nGN74RZtl1v3XrVph9/OMfD7PZ2dkw64ebN2+GWdb+/syf+TNh9thjj4XZ\nX/krfyXM/tbf+lth9sILL4TZz/3cz4XZc889F2b7EfUxWZ3I+utMtl3Wpkv7pU6nE2ZZf93tdos+\nL1O6z9JjOCz68Rfo5eXlMDt58mTRPofxl/Ks3vejPFk/mbXPwyJrL9l8PzsvbZLViewYZmZmwqy0\nj8nqy2GZ7zdNE2b9aH/ZecnGj2zO2ybZ8WX1LNuuH9/TS2XXKMvW1tbCrHQevbm5GWYbGxthltX5\nLIMSXokFAAAAYKC8Eps7/H9yBgAAAIAjxA07AAAAAGgRr8QCAAAAMFBeic15wg4AAAAAWsQNOwAA\nAABokT29Envr1q3qb//tv90z+w//4T+E2/3Mz/xMmH3+858Ps3//7/99mH3pS18Ks0984hNh9k//\n6T8Nsy984Qth9m/+zb8Js7/0l/5SmD3++ONh9rWvfS3Mfv7nfz7MfuRHfiTMnnzyyTC7du1amPXD\n6upqmP3JP/knw+wHfuAHwiw7hvPnz4fZU089FWYvv/xymP2Nv/E3wuzkyZNh9uEPf7jnvy8vL4fb\n7GZkZKSam5vrmUX/vh8f//jHD3yfpc6cOVO0XenS6r/jd/yOou0+9KEPFW3XjyXgs8fLL168WLTP\nrP/MZMeXjQ9ZNgwjI3v/G9f6+nqYzc/Ph9n09PSeP6uqqupXf/VXw+zSpUthtrS0FGZ3794Ns263\nG2anTp0Ks0zJea6qqrpz506YnT59+sA/LzM6OlqUvfnmm2F24cKFMMuu0cLCQpgtLi6GWambN28e\n+D6rqqrW1taqF198sWf2j/7RPwq3+8mf/Mkwe/DgQZj9s3/2z8Ls9ddfD7Pbt2+H2S//8i+H2crK\nSphlfe8f+kN/KMx+6Id+KMxeffXVMPvH//gfh9nTTz8dZtnY8swzz4RZP16Hyvre7Dq88cYbYfYH\n/sAfCLOdnZ0wy+YUGxsbYfbP//k/D7Ps+n3kIx/p+e9ZH7mblZWV6l/+y3/ZM/sH/+AfhNt95jOf\nCbNsbvBP/sk/CbPs+9ONGzfCLPvumI0Df/Nv/s0w+yN/5I+E2ac//ekwe+2118Lsr/7Vvxpm2Xek\nj33sY2GWfXccHx8Ps1JbW1th9tf+2l8Ls5deeinMPve5z4VZ1pf/7t/9u4u2++t//a+HWdben332\n2Z7/vp/vgBxvfsMOAAAAgIGp69pv2O3CK7EAAAAA0CJu2AEAAABAi3glFgAAAICB8kpszhN2AAAA\nANAibtgBAAAAQIvs6ZXYkydPVr//9//+nlm2vHi2jPGf//N/PszOnDkTZh//+MfD7Jd+6ZfC7P79\n+2H2h//wHw6zbAnx27dvh9njjz8eZtkS91n2wQ9+MMy63W6YdTqdMBsdHQ2zUrOzs2GWLfP+xS9+\nMcyyOnHr1q0we+qpp4qyrE688cYbYRbJlo0H2mttba26fv16z+zatWvhdvPz82H2la98Jcx+6Id+\nKMzefvvtMPvBH/zBMMv82q/9WphlY87MzEyYZWPO9vZ2mP2n//SfwuyTn/xkmGXj2Pj4eJhl5eyH\nn/3Znw2zz33uc2H29a9/Pcw++tGPhll2fDdv3gyzzLlz58LsnXfeKdrnblZXV6sXX3yxZ7a5uRlu\nt7W1FWbf/OY3w+yrX/1qmGXt5cqVK2HWNE2Yvfnmm2H22muvhVnpvCJrg1nfdPbs2TDL5n1t8uUv\nfznMLly4EGbZNSo99pWVlTD70pe+FGanT58Os7feeqvnv2fXfDeTk5PhWPAzP/Mz4XZZX7GxsRFm\ni4uLYfbyyy+H2cmTJ8PsYx/7WJhlbeyzn/1smJWOudnY+Uf/6B8Ns+x7ULbPfnzPK/V7f+/vDbO5\nubkwO3XqVJiVHl+2z5/+6Z8Os52dnTBbWlrq+e8nTpx4+ILB+/gNOwAAAAAGym/Y5TzuAwAAAAAt\n4oYdAAAAALSIV2IBAAAAGCivxOY8YQcAAAAALeKGHQAAAAC0SJ0tMf/9rl271ly/fr1nlu0ne8wx\n225rayvMsuWbx8YO/5u+3W43zLJl0DPZct9tkh3fgwcPwixbCnxycjLM3n777aLPu3TpUphF1+8T\nn/hEdf369aLnfq9du9Z85Stf6ZnduHEj3G5+fj7MXn311TC7c+dOmL311lthtri4GGbPPPNMmJ08\neTLMSvuQTNbGsv4lqxP/7b/9tzB74oknwixbVr4fsmO/d+9emP3ET/xEmP2dv/N3wuzpp58Os3/x\nL/5FmH3mM58Js3/37/5dmH30ox8Ns6WlpRebprkW/g8C165da/7zf/7PPbPsfGb1M9tufX09zLI6\neO7cuTCbmJgIs6zfHRmJ/7aXtZVMp9MJs+ycraysFGVZ+8uuQz9kx3737t0w+7N/9s+G2U/+5E+G\nWdZuP/vZz4bZ3//7fz/Msvb33HPPhdnMzExR+6uqfA6aXcPS67uzsxNmWR0dHx8Ps2x+mtWL0naW\nKT0vq6urYZb1FdPT00Xb9UPptc36yax/zeagWVmyuU+WRefz2rVr+5qDRu0vU1qvs/OSfT/MzktW\nBw+LrN1m5yWrg216HTGrL9kYn/W72ffD7Jy98847YZZ9p46y/bS/o+zKlSvNn/tzf27YxXhon/vc\n54rnMaU8YQcAAAAALeKGHQAAAAC0iBt2AAAAANAiu/7YW13Xz1dV9XxVVdWVK1f6XiDgt2h/MDza\nHwyXNgjDo/0B/VbXdat+R7GNdn3CrmmaF5qmudY0zbWlpaVBlAl4j/YHw6P9wXBpgzA82h/A8Hkl\nFgAAAABaZNdXYt+vaZpqc3MzzCJTU1N7K9V7siWas0cns7Iclkcus6Xjs/OSZYdFVl9K61Lm1KlT\nRVkmW6q+VNM04TL3p0+fDrebmJgIsw9/+MPp50VK21G2z35slxkZif9ekS3zfuLEiTD74R/+4aKy\n9OP4MtmxnzlzJsy++MUvFn1ednw/9VM/VbRd6ef1Q9bes7KMjcVD8NraWphNT0+HWdRHVFVezkGP\nHVlZ7t+/H2adTqdon20a+7Nynj17Nsz+xJ/4E2H2xBNPFJXlT//pPx1mf/AP/sEw+8QnPhFm2Ziz\nH9kctNvthttl7SWT9ZNZfSqta/2YN2Sy49ve3i7aLuvT2tQGs3Jm+tFPlpZl0LI5aDbOlZ6zrJ5N\nTk6GWZvqWansO2DW15V+b26TrB/MvpOVzvuy8WpxcbFon+zdYamfw+IJOwAAAABoETfsAAAAAKBF\n3LADAAAAgBY5HD+cAAAAAMCR4Tfscp6wAwAAAIAWccMOAAAAAFpkT6/EZkt6z8zMFBUgewQyy7Jl\nrY/CY5XZ+YyuQVXl5yVbIn3Q+lHObEnvo1AnOp1Odf/+/Z7ZjRs3wu0+/OEPh9lhqS+Dli3zXqp0\nyflSWT8xPj5etM9Bt9u2GR0d3fM2nU4nzLJjP3XqVJhtbGyE2fT0dFFZ2mRycjLMTp48GWZbW1th\nNuhj70d7+MQnPhFmpWPcU089VZQNQ9M01fb2ds+sH+NVdi2y+jQ2Fk+tD8tcJBs/SseWw3Lsmey6\nZ3XwKBx7VcVzgH4c33Geg2ZjYHauD9N8qkTpPQPaz/XLHd/eEAAAAABayA07AAAAAGgRq8QCAAAA\nMFBeic15wg4AAAAAWsQNOwAAAABoETfsAAAAAKBF9vQbdiMjI9Xs7GzPLFvmPVviPloivKry5alH\nR0eLtss+L1tCPNsu049lybNjL11yftD6UZaj/v772NhYdfr06Z7ZwsJC0T7X1tbCbHp6Osyy67e9\nvR1mWV9Qev2y9t6PfZZmpX1Wqexc37lzJ8zm5ubCbHx8PMz6cQxt0jRNOM5l5zqT1YnMxMREmGVj\ncWl7yPaZjY1ZOTPZdpubm2GW9WfR3KWqyq9DqdI+pE1j+DDUdV1NTU2FWYnSOeGg60ym9Bgy2fif\nZUd9HGjTdR+0uq6L+/SjrB/tr03z4X44LOVkMOq6dt13cbxnfwAAAADQMm7YAQAAAECLlL3HAwAA\nAACFvBKb84QdAAAAALSIG3YAAAAA0CJu2AEAAABAi+z5N+yi5atL3z3OtsuWw86WhM6y0iW2s+06\nnU7RPktZDpvvt7GxEWYzMzNhNjU1FWYvv/xymD3++ONhlrWHrJxzc3NhltXrLMvaSqnSPqRNTp8+\nPewiHDpN01RbW1s9s7W1tXC72dnZos/b3t4Os6wORmN0VVXV6OhoUVmyz5uYmCgqS6mxsXjakrX3\n0mMv1Y9jP+7qug6vf2lfX9qfl35e6RytH/PaUuagfL9s3lfa92b7HPQYmGnTnPCwtL/DUk4GR53I\ntaeXAQAAAADcsAMAAACANtnzK7EAAAAAsB9eic15wg4AAAAAWsQNOwAAAABoEa/EAgAAADBQXonN\n7fmGXbR8dT+WuF9fXw+zycnJMBv0Etv9WCY8O5/b29thlh17lmkoh9vs7GyYZXVpbCzuAu7duxdm\nWR2cnp4Os6mpqTDLlPYvpbLju3PnTlH21FNPhVl2HY6zTqcTZoPuz+q6Dvv60uuXHd83v/nNMMva\n0Qc/+MGiz8tk57rb7Rbts9TKykqYvfrqq2H22GOPhVnWfx5nWb97HOYMWXvJjr9f/U9blLb5fsyV\naYd+XNusnmXt4ajXs+y8ZH3W+Ph4P4oDDIBXYgEAAACgRdywAwAAAIAW2fU9nrqun6+q6vmqqqor\nV670vUDAb9H+YHje3/4uX7485NLA8WMMhOHR/oB+q+u6VT/70Ea7PmHXNM0LTdNca5rm2tLS0iDK\nBLxH+4Ph0f5guLRBGB7tD2D4vBILAAAAAC1iaUIAAAAABsorsbkDu2GXLTOdLbG9tbUVZmNjcfGy\npatLl7XOjqFpmjDrxxLiWcWdmJgIs6ycbWoM6+vrYZYdX6b0OmTnLKufWTkHfa6zY8jcunUrzD7y\nkY+EWXau19bWwmxqaurhCraHfc7OzhbtM/PgwYMwe+SRR4qyTOn1K/Xyyy+H2cWLF4v22Y9+aXNz\nM8yy696P81nXdTh+ZGNH5s033wyz1dXVMDt79myYvfLKK2G2uLgYZtkx7OzshNn8/HyYlcqu3+Tk\nZJhldSnbbtB+8zd/M8yyen3mzJkwy+ZL2bwnmy/duXMnzLJy9qNP/u+iulE65mb1Psuy892Pedhh\nmdu1qSyZrN5nxzAyMtgXk7a3t8Msm4cNupylsrGlH/vMzkuWZfWlH98BM1lfkB171mcNut1m360y\n2ViWKT2+jY2NMMvmvIel/XF4qFEAAAAA0CJu2AEAAABAi/gNOwAAAAAG6rD8nMKweMIOAAAAAFrE\nDTsAAAAAaBGvxAIAAAAwUF6JzR3YDbvSZa2zZZFLl7HvdrtFZTkslWVzczPMsiXg5+bm+lGcIpOT\nk0Xb9WOp7Oy6Z/U6q2f9WOa92+1W6+vrey7LzMxMmJ09e3bf5drL55U6ceJEmGX9RKlTp04VbZe1\nv9Ll6Pvh0UcfHXYRHsrs7Oywi/A/ifqfnZ2dcJusL1hYWAiz8+fPP3zB3mdtbS3Mpqenw6zT6RR9\nXj9kfXJWJz70oQ+FWdb++tGHZLJ+d3FxMcy2trbCLJtLlV7bbM6Q9cn9rEsHPU/Lrn1pnSmdp2Tj\neJvmpxsbG2GWXfv5+fl+FGegSr+XlMrOZ/Z5/Zgr98PY2ME/N9KPY+/HnL4fsjrRpj4k61vbVM6p\nqakwG/S8gePtcPToAAAAAHBMeCUWAAAAgIGp67pVT1a2kSfsAAAAAKBF3LADAAAAgBZxww4AAAAA\nWsRv2AEAAAAwUH7DLrenG3ZN01Sbm5s9s7t374bbZUu5r66uhtnNmzfDbGJiIsweeeSRorJEx1ZV\nVXXv3r0wm5ubC7PZ2dkwy5Zrz7Lt7e2i7drknXfeCbO1tbUwy677yZMnwyxbOv61114Ls29+85th\ndvny5TCbnp7u+e9bW1vhNrsZGRkJ93ucZZ18tux6PwaHbKl6S8APTj+ubafTCfutbFzJ+uRsu93K\nEpmZmQmzrA5mdTf7vG63G2YjI/FD/KOjo2G2s7MTZpmsnNkYMGiLi4tF22XnOssy2Ziazc9u3LgR\nZufOnSsqy26apgnH0KysWd3OLC8vh1lW15aWlsIsa/PZNbx//36YTU5Ohllpf5DNM7P+NduuTbK5\n2IMHD8Is67eyOWjWF2af9+1vfzvMsnodtcHSvrWq3q2f6+vrPbPsO9LU1FSYZe3o9ddfD7Os7l64\ncCHMsraZtb/bt2+HWdbGFhYWwiyT1c8si65PVeXXYdCy/vrtt98Os2y8ys51duzZ533ta18LszNn\nzuy5LPv5Dsjx5pVYAAAAAGiR9vzJGQAAAIBjwSuxOU/YAQAAAECLuGEHAAAAAC3ihh0AAAAAFKrr\n+ufrur5V1/U3gryu6/r/qev6O3Vdf72u64/vtk837AAAAAAYqLquD81/D+EXq6r6X5L8x6uq+uB7\n/z1fVdX/u9sO97ToRNM04ZLtY2PxrrJljLNlmDc3N8Ps5s2bYZYt3zw7O1u0XbZsd+ky6dny8Bsb\nG2GWLQ9///79MMuWnB+07Niz48uWgM+Wec+cO3cuzLKlx7NGOzc31/Pfs2MD2qvT6VT37t3rmT14\n8CDc7sKFC2F248aNMDt//nyYra2thdn09HSYZf1u1rdmx5eN4dk+M1m/m31eNk6XlqUfvvGNnn90\nraqqqh599NEwe+utt8LsiSeeCLPs2L/3ve+F2ZkzZ8Isq5/Z9duPTqcT1sWsjmZzn/X19TB7/fXX\nw6zb7YZZNP5XVVWdOHEizLK55DvvvBNm2XXKZMdQ2h9kfUybZH1oVieyOVx2bScmJsJsZWUlzN54\n440wu3jxYpjdvXu357+Xfl+pqnfnvNF3vayNjY+Ph1k2b8++V2b1M/ueVzoHP336dJhlx5fJjr10\nn9n32DaZnJwMs+xcZ/1L1sYy2XYf+chHwiw719H1y+o0R0fTNF+o6/pq8j/5X6uq+ofNu53Ar9R1\nfbKu60eapgknee4eAAAAAEBssa7r6+/77/k9bn+xqqrX3vf/v/7ev4Xc6gUAAABgoB7yVdO2WG6a\n5togP9ATdgAAAADQP29UVXX5ff//pff+LeSGHQAAAAD0z+erqvrf31st9keqqlrJfr+uqrwSCwAA\nAMAA7WH11UOhrutfqqrqU9W7v3X3elVVf6GqqvGqqqqmaf5uVVX/uqqq31dV1Xeqqlqrqur/2G2f\nbtgBAAAAQKGmaX56l7ypqur/3Ms+93TDbmRkJFy2PFvOvNTly5eLsn6Yn58/8H1mS3rPzMwU7TNb\nzrxNsvoyNzcXZtk5K707n2335JNPhlnJ8vD7WdJ7Z2enunXrVs9se3s73K7b7YZZVs+Wl5fD7NVX\nXw2zU6dOhdnTTz8dZtky9t/97nfD7JFHHgmz0nb0X//rfw2zhYWFMNva2gqzxx9/vKgs/XD//v0w\ny+poVs9K+8hOpxNm3/nOd8Isq2dZP1FqfHy8Onv2bM9sYmKiaJ/R/naTfV7WNrNrtLi4GGb9GFey\nfumll14KsyeeeCLMpqenw6ykv+6XrM/K+t2VlZUwu3v3bphlfdbq6mqYZXXpmWeeCbOsn9iPsbGx\n8FhOnjwZbpdd+6xNLC0thdnOzk6YZXOKLJucnAyzD3zgA2FWanR0tKgs2Vi9nznOIGVtIqsT2fUr\n7WPOnDkTZr/n9/yeMMvGgaicU1NTD1+wHvuMrn1WJ0plbTqbN2SyuUF2/bL2UCqrS1n/kp3rfsx9\n+iHre0rnU6XtL/u87PtoVieia9umeQiHi5oDAAAAAC1yOP4UBgAAAMCRcZR+w64fdn2Eq0lyAAAg\nAElEQVTCrq7r5+u6vl7X9fXbt28PokzAe97f/u7cuTPs4sCxYvyD4dIGYXi0P4Dh2/WGXdM0LzRN\nc61pmmvZ73kAB+/97S/7nRPg4Bn/YLi0QRge7Q9g+LwSCwAAAMBAeSU2Z9EJAAAAAGiRVj9hly3b\nnS0J3e12w6xNSypnd5MPyzGUKj32u3fvhlm2xHa2NHe2fPrGxkbRPvthbGysGuQrCWtra2H2yU9+\nMsyy+jk2Fnc52XL0jz/+eJj1w4c+9KEwGx8fD7PsGNpkdnY2zLLrNz09feBlyfryp556qmif/bgO\ndV2H1z77vGwcy7zxxhthNjU1FWYXLlwIs4mJiTDLypn116XHl8mue9bPH5a/0C4sLIRZNq5cvHgx\nzErr/JNPPhlm2RgwMzNz4GV5GFl/cdCyvjBrS9mcIpvfDPLYdpO166M+B8288847YZZdv6zNb25u\nhllWX7K+8Cg4LG2lH7K5cuawjIFZH5Jl9+/fD7P19fUwm5+fD7PS8eqo10Ha5fCPugAAAABwhLT6\nCTsAAAAAjp7D8nTosHjCDgAAAABaxA07AAAAAGgRr8QCAAAAMFBeic15wg4AAAAAWqTVT9iVLpl8\nFJacPwrHUCo79lOnToXZxsZG0edNTk6GWenS6kfBhQsXwixrm9kS6aXLp/dDVpbsurfpGEplf8nK\njm/QfwF78OBBmM3Ozg6wJIM3Pz8fZlNTU2GW9Z9tqrtZWbLjOwqydpT1rWtra2E2NzcXZp1OJ8wm\nJiaKsmyfR0W32w2zrJ0dhXnD+Pj4sIvQV6XfL7LzUjo+HvX+rtRx/h5EbzMzMwe+z6y/Lu0n4KAd\n/lkFAAAAAIdGXddeid2FP18AAAAAQIu4YQcAAAAALeKGHQAAAAC0iN+wAwAAAGCg/IZdzhN2AAAA\nANAinrDjUMmW2J6dnS3aZ7Z0fNuWlS/5C0TTNEWflZ3r9fX1MJuamir6PNqvtC6V7rO0TffDzs5O\ndffu3Z7Z5ORkuF3pMczNzYXZ1tZW0T453GZmZsKs0+kU7bN0u+OgbeM/w5f1y6Wy8QP4Ldn3klL6\neQ4DN+wAAAAAGCivxObcVgYAAACAFnHDDgAAAABaxCuxAAAAAAyUV2JznrADAAAAgBZxww4AAAAA\nWmRPr8Q2TVPt7Oz0zLKllvvxmGO32w2zTqcTZuPj4wdeFo6uqL7vZmzs4N8273Q61TvvvNMzm5+f\nP/DPa5omzKanpw98n/D9SseOftSzsbGxamlpac/bZeNR6XZZlvU92h97kbW/ra2tMOvXPKtpmvBz\nR0bivz/3YzzO5qBZ1o+ycHRlfXaWZe3hKMjaWNZvee2OvcjaWOk8DEqoUQAAAAAMlJvpuaP9JxgA\nAAAAOGTcsAMAAACAFvFKLAAAAAADU9e1V2J34Qk7AAAAAGgRN+wAAAAAoEX29EpsXdetWao4W7J8\ne3t7gCXhKMvqe7akdz+Mjo5Wc3NzPbNs6fFB29zcDLOJiYkBlgQO1qDbfCQrRzY2tqX8HA7dbjfM\nRkdHB1iSd9V13ZoxJDs3Xu1hENo07xu0bJyDg5L15W25H8LxoLYBAAAAMFD+0JXzJwoAAAAAaJFd\nb9jVdf18XdfX67q+fvv27UGUCXiP9gfDo/3BcGmDMDzaH8Dw7XrDrmmaF5qmudY0zbWlpaVBlAl4\nj/YHw6P9wXBpgzA82h8wCHVdH5r/hsErsQAAAADQIm7YAQAAAECLHMlVYicnJ4ddBPqk2+2G2aCX\neR8dHR3o57XJ2tpamHU6nTCbmJjoR3EYkJ2dnTAbHx8Ps6Zpij6vdLujbnp6Osyya2QVrsNtdXU1\nzLLxaGpqqujzsvpy3OvS2NiRnD7TMlk7O85zUI6nbE6YZYP+fsjeHfc5xW7UYAAAAABoETfsAAAA\nAKBF3LADAAAAgBbxIxwAAAAADJTfsMt5wg4AAAAAWsQNOwAAAABokQN7JXZ7ezvMsqXHs2WYu91u\nmJUudX4UHrnMzkuWjY215w3ozc3NMMuOYWpqqh/FCWVlyepuv5TU36xtjo+Ph1mn0ynabmZmJsyG\ncc4OWnYN2nR8W1tbYTY5ORlmpfWlH7I62KbrkH1elmXns/Q6tK3POmgjI/HfGUvrSz9k85CsbU5M\nTIRZNoZPT0+HWVYnMqX1ehiy8mTXvvTclNanoz4HzdrnoGV1YmdnJ8yydtam61da5/uhtD/oxzje\npms0aG2qE6VKj+GwHB+/XV3Xrt8u2jOyAgAAAABu2AEAAABAm7hhBwAAAAAt0p4fNQMAAADgWPAb\ndjlP2AEAAABAi7hhBwAAAAAtsudXYjudTs9/Hx8f33dhvt/o6GjRdqVLgR8W2fGNjLTnHmxWzqy+\nZMewuroaZtvb22G2sLAQZtljuFF9r6r8GLrdbpiV2t7ert588809b5eVc2JiIsxefvnlMLt69WqY\n3b17N8yuXLkSZm2qu5msnmXZzMxMmPWjz5qcnAyzL37xi2G2uLgYZpubm2GWXdvTp0+HWXbsL730\nUphldbAfdnZ2qpWVlZ7ZqVOn0u0i/ejL33777TDLxtS5ubmizxu00v46O5+D7nuyz7tz506YfeEL\nXwizrP09++yzYZads69+9athlrXpixcvhtlhkl2nrO0e9Vd7svlN1t9l841+yK7D2Fj89Sc7vmyM\nzz4vG48z2eeVfkfaj6i/yI49y7J2VDovKm2bh6Xdlra/7LvAoI89K2dWlo2NjTDL+uupqamiz9va\n2gqz7DoMuq87Cg5L+xuWw/ENGQAAAACOCTfsAAAAAKBFrBILAAAAwEB5JTbnCTsAAAAAaBE37AAA\nAACgRdywAwAAAIAW2dNv2DVNEy7pXbq8eOmy3f1YQvywvD+dnetsCfhsyet+KL1Ga2trYTY9PR1m\ns7OzD1ew73Pjxo0wi+p7VVXVuXPnwqy0PWTGx8erCxcu7Hm7bOnx7Pg+9rGPhVnWjhYWFh6uYN8n\nK2dp28zaQ7bsenZexsfHi7J+KD0vP/ZjP3bg+3z99dfDbHNzM8weeeSRMHvqqaeKytIPo6Oj1dzc\nXM8sq7ulsuuQ1c+sH8zqfOlYnMnGnNLPy7bL+t2xsXi6k53PTHZ8Ozs7YZZd27feeqvo837wB38w\nzDJZ3c3O5xNPPBFmWb+7H03ThPsu7XtL+7vS7Q7LHLS0nfWjH+mH7Fxn41U2Pz158mSYZe1sfX09\nzLL5aTZ2Tk1Nhdl+9GNuG2lTe2iT7Lxk/WCbzmc2Hm9sbIRZNq7Oz8+HWXbsKysrYXbr1q0wu3r1\napgN+vv2UdCm+tlGahQAAAAAtIgbdgAAAADQInt6JRYAAAAA9qOua6/E7sITdgAAAADQIm7YAQAA\nAECLuGEHAAAAAC2yp9+wq+u6mpiY6FdZen7eYdhnm2RLeh8W2XL0m5ubYTY9PV30eQsLC2F28+bN\nMMuW7e5HPVtbW6tefPHFntnjjz8ebjc7OxtmpUudZ+css729HWZra2sH/nlZf3Xv3r0wy5aHf/Dg\nQZidOHHi4Qr2fUrry8bGRph1u90wm5mZKdpn1jYvXbpUtM9+aJrmwPdZ13VR/5qVJbvunU6naLvS\nMaC0nKWyz8v61tLzkm3XJleuXAmzRx99NMyy85llWT//7LPPhlkmu377Udd1NTZ2sD+9POg54WGZ\ng5aW8yjMQdfX18MsGztL62Y2F8lk43G/2mDUlxyWen0UHPVzndXrycnJMCs9L9l3x2xeexT6ujY5\n6vV6vzxhBwAAAAAt4oYdAAAAALTIrs9v13X9fFVVz1dV/qoGcPDe3/7Onz8/5NLA8WL8g+HSBmF4\ntD9gELwSm9v1CbumaV5omuZa0zTXlpaWBlEm4D3vb3+nTp0adnHgWDH+wXBpgzA82h/A8HklFgAA\nAABa5GCX2wIAAACAXXglNldHS3T3/B/X9e2qql557/9drKpquR+FKqAsvSlLb8Msyweapil6r0D7\neyjK0puy/JaiNvh97a+qhn8c76csvSnLbzfschgD+0tZelOWd2l//aUsvSnLu4rb31H21FNPNX/v\n7/29YRfjof2u3/W7Xmya5togP3NPT9i9v5LVdX190IWNKEtvytJbm8qyF9rf7pSlN2XZv++fZLXp\nOJSlN2VpbzlKGAN3pyy9Kcv+aX+7U5belAX2x2/YAQAAAECL+A07AAAAAAbKb9jl9vOE3QsHVor9\nU5belKW3NpWlVJuOQVl6U5be2lSW/WjTcShLb8ry27WlHPvVpuNQlt6Upbc2laVUm45BWXpTlt7a\nVBZ4KHtadAIAAAAA9uOpp55qXnjh8NxH/dSnPtXuRScAAAAAYD/quvZK7C4sOgEAAAAALeKGHQAA\nAAC0iBt2AAAAANAie/oNu8XFxebq1at9KspgZItsdLvdMBsdHT3wz+t0OmE2NhZfmu3t7TAbHx8v\n+ryRkYO/d5sde/Z5Ozs7YZadl+z6lTro8/Lyyy9Xy8vLRS/qLy4uNleuXOmZ9eP6ZfXl7bffDrPF\nxcWizyut16VWV1fDbHZ2NszW1tbCbHp6OswG/fsM2fUr7c/6sc9M1qaz63DixIkwe/HFF5ebplna\na1my8S8rZ9Y2S8eHTFbPsqy0D8mOoR91vrQODrqcmawspeNmaf9ZOicqrUul7a+qjsYc9LBoU3vp\nh3702aXnZZD7fOWVV4rnoKdPn24uXbrUM8v6mOwYNjc3wyw7L9n3hMnJyTArvbbZdqVjZ3YM2T6z\nczY1NRVmbRrntra2ivZZeh2yucHGxkaYZcdQUs/28x3wqDsK40o/7emG3dWrV6vr16/v+UNKB8Z+\nyBpmlp08eTLMsi8Q2ST6wYMHYZbd9HjzzTfD7MKFC2G2srISZlnHUyobjLIv1Ldv3w6zpaV4nr++\nvh5mpV9KsnKWTLKuXStfVObKlSvVl770pZ5ZdqOoVFZffvmXfznM/tgf+2NFn3fjxo0wO3/+fNE+\nM1/+8pfD7LnnnguzF198Mcx+4Ad+IMyyiVQ/ZNdvYWGhNfvMZDflvva1r4XZj/7oj4ZZXdevlJTl\n6tWr1Ve+8pWeWdb3zMzMhFk2PmQ3xbOJTdaXZ1+qsu2yzyv9w1Mm65OzcTPrr7N9lpazVPZlJcuy\nfn55eTnMzp49G2ZZHczaX1aXsj94lLa/qiqfg7J3pTeA2zTfz2R9dtbOspslpfPo0j9SZ6J+JJvb\n7ObSpUvVv/pX/6pnlvUx2dznu9/9bphl5/rOnTth9sQTTxSVpbTvzcadbOzMvutkfWh2zkqPvR+y\nev3qq68W7TO7DtnxnTp1Ksx+4zd+I8yyY3j00UfDLKoT+/kOyPHWntETAAAAANjbE3YAAAAAsF9e\nic15wg4AAAAAWsQNOwAAAABoEa/EAgAAADBQXonN7emGXdM06UqqJbIVpbJVqrKsdAW9bIWZgz7u\nqspXFspWZ8u2u3fvXphlK3v1Q7a6VXZ82aqK2SpO/ViS/aCve1bG3YyMjBz4arA3b94Ms+9973th\nlrW/X/iFXwizn/iJnwizfqwEm8lWS8vaUVYHs5Vns9Wh5ubmwqxUtmrra6+9VrTPy5cvlxanSNYX\nZCvB9ks0tmTlzGR9crbqXpv0Y4XVrE+en58/8H0O2sTERFGWOXfuXGvKcphkqxxn89NsHMjOW9Ze\n2vSFJeubsnnRoOeZpUrrdulKsJl+9KHR8e2njk1MTFRXrlwp3r6Xixcvhtnq6mqYnTx5MsyyOpjN\ntUZHR8OsH5aWlsIs63suXboUZtncPKvz/Rgfs3qdzfez69eP/uXDH/7wge8TDlp7ZrAAAAAAgBt2\nAAAAANAmfsMOAAAAgIFq009CtJEn7AAAAACgRdywAwAAAIAW8UosAAAAAANT17VXYncx9Bt22VLS\n2fLp/VhavU2y85ItlZ1lTdMUZf1QuoR4ttR5P5YlP+rOnTtXlP3Ij/xIP4rTGidPngyzZ599Nswm\nJib6UZwDd/ny5WEXAWDoRkdHi7Lx8fF+FOdQmJqaGnYR9i27tgzOcf6el8m+z2Tz08NiZmZm2EWA\nQ8UdDgAAAABoETfsAAAAAKBFhv5KLAAAAADHi9+wy3nCDgAAAABaxA07AAAAAGgRr8QCAAAAMFBe\nic25YXcIZZV6c3MzzLrdbpgd5+XTYS/W19fD7Fd+5VfC7PLly2H26KOP7qtMADAITdOEWTbPzOau\nIyNe+IGH0el0wiz7Djg+Pl6UAcNnhAQAAACAFvGEHQAAAAAD5ZXYnCfsAAAAAKBF3LADAAAAgBZx\nww4AAAAAWsRv2AEAAAAwUH7DLndgN+y2t7fDLFsCfmJi4qCKcGxkldrS3MfT+vp6mE1PTw+wJEff\nwsJCmP3O3/k7B1gS2iIb4zImKMBhk/Vbo6OjAywJbdHtdsNsZ2cnzHwH3Lusjc3MzAywJMCgeCUW\nAAAAAFrEK7EAAAAADExd19442YUn7AAAAACgRXa9YVfX9fN1XV+v6/r67du3B1Em4D3aHwyP9gfD\npQ3C8Gh/AMO36w27pmleaJrmWtM015aWlgZRJuA92h8Mj/YHw6UNwvBofwDD5zfsAAAAABgov2GX\n2/MNu5H/v717jZHjqvs8fs709GXuHs+M7bE9vsaBOFYwZIAACU8IIcATooBkobBigxZW4VmR5A0S\n+xCSFeK6rxHPQoy4vuERIrCgJZuQLJdsrmBHxMTkih0S20k8M76M59LT091nX8QsxvT/N+4z09XV\n4+9HipSZn6v6VNU5dU7VVPVpq/1Qnpqae25uru71LUR9XqlUivo8NS15pVIxs0ZUMvV5XV1dZjY7\nO2tmattDCOdWsCWiPq+jo8PMZmZmzExNZ14sFs2sUCiY2alTp8ysp6fHzFSdj1Uul531SsIjjzxi\nLjc8PGxmW7duNbODBw+a2WOPPWZmar9cddVVZrZ69WozU8e9t7fXzJT5+Xkz279/v5m9+uqrUWXZ\nuXOnmak63wgHDhwwM7Wvb731VjNTx/b22283s3/6p38yswceeMDM7r33XjMbHR01s0ZoRB+g6mc2\nmzUzdW5tlQHRct/2crlsZu3t9rAstj9STp48aWbqXKD6lUaOJ6xxmiqr6uMVNZZUY4pMJmNm6lyv\njn3sWFlRx0ltnxqfqnKq49CI7VPUOUa1zyNHjphZX1+fmQ0ODprZc889Z2aqzW/fvt3M8vm8mS2G\n1f5UOdU5W9V5Vc/U8VPtT107pqmPUG1TnZfUNqhtT5q63lbnHlVfVLtV14eHDx82M7WvR0ZGzEzV\nQSAGk04AAAAAAAAAKcIrsQAAAAAAAEhUmp5wTSOesAMAAAAAAABShBt2AAAAAAAAQIrwSiwAAAAA\nAAASxSuxGk/YAQAAAAAAAClS9xN21lTTavptdddUTV2tMjUldOy0z4qacl6VU1HLdXV1mdns7KyZ\nqamkY8uZtPHxcTMbHBw0s8nJSTOLnc78pZdeMrNt27aZmVUHF/MXhLa2NrNeXH311eZyajrzU6dO\nmVlPT4+ZrVy50syuvfZaM8tms2Y2Pz9vZh0dHWYWS237zp07zezRRx81s0suucTMGrENsbZs2WJm\nTzzxhJn98Ic/NLOTJ09GleXWW281s/vvv9/Mjh49amaqfi5GTP+n+o5Y09PTZqb6gEKhYGaqT1Xn\nrUb8VVT14aVSKWqdsX1AI6g6obZP1bOZmRkzU32AOu+qz1P1pRF1fqF1d3d3J/ZZzul9qvabap+K\nGr/FtkG1nGovahuSPhfGUtugxilr1641s9g+fmRkxMxiy9mo8b51DNU1i6pnsddWqi9TWuUpHlXO\nfD5vZrHXuElT5wm1fWo5dU5WVN+hrgHVOAVYaunpPQEAAAAAAADwHXYAAAAAAABIVqs8/dosPGEH\nAAAAAAAApAg37AAAAAAAAIAU4ZVYAAAAAAAAJMZ7zyuxC+AJOwAAAAAAACBF6nrCrlQqucOHD9fM\nbr/9dnO5d7/73Wa2c+dOM/vSl75kZvPz82b2i1/8wsx++9vfmtmWLVvM7LOf/ayZvfe97zWzXbt2\nmdns7KyZfeMb3zAzNXX1xo0bzeyKK64ws6Snp/7d735nZnfccYeZff3rXzezZ555xsyuu+46M3v5\n5ZfN7KGHHjKzL3zhC2Z2/fXX1/z9sWPHzGUWUi6X3cTERM3s17/+tbncjTfeaGZqnw0NDZlZb2+v\nmT355JNm9ra3vc3MXnzxRTP7y1/+YmaqXivPPfecmZVKpajPGx8fN7PYKedjTU1NmdkLL7xgZm94\nwxvMrFgsmtnq1avPqVxnU/3D5OSkmR05csTM/vSnP0WVRRkbG3Pf+ta3amb79u0zl7vhhhvM7NFH\nHzWz3/zmN2am+jjVNvfu3WtmTz31lJn94Ac/MLMvfvGLZvb617/ezNR54jOf+YyZffKTnzSz7u5u\nM7vyyivNLJPJmFms6elpM/vUpz5lZm984xvN7OKLLzazgYGBqHWePHnSzL785S+bmWrvXV1dZrYY\ns7Oz7oknnqiZ7d+/31xu69atZpbP583swQcfNDN1jmlrs/8W/rnPfc7MTpw4YWaqj7/mmmvM7IIL\nLjAz1V/99Kc/NbOLLrrIzFasWBG1XCPaoOrH7733XjNTT3ps3749arnNmzebmSrnPffcE7VcT09P\nzd+rOraQiYkJsy+4//77zeXU+U71gffdd5+ZPfLII2a2atUqM/vJT35iZmpM8f3vf9/Mbr31VjMb\nHR01s+eff97MPv/5z5uZau+qjamyNOLpJjVevOWWW8xMtbE3v/nNZqb6pG3btpmZui678847zayv\nr8/MrHHYK6+8Yi4DKDxhBwAAAAAAAKQI32EHAAAAAACARPEddhpP2AEAAAAAAAApwg07AAAAAAAA\nIEV4JRYAAAAAAACJ4pVYjSfsAAAAAAAAgEje+/d575/x3j/vvf/XGvmV3vuT3vs/nP7vvy20zrqe\nsKtUKuaU4B/4wAfM5dauXWtmY2NjZnbttdea2aFDh8xMTem9adMmM2trs+9fDg0NmZmaZlrJZrNm\n9qtf/crMvvrVr5rZgQMHzCzpu9flctnMnnnmGTO77bbbzExtw8DAwLkV7CzqOMzNzZnZ+9//fjN7\n9tlna/5eTXO+kFwu50ZGRmpmN954Y9Q61TTvysaNG6OWUzZs2BCVxXrrW9+65OscHBw0s6mpKTPr\n7u5e8rKode7YsSNqnYVCwcxUW8nn82a2YsWKqLLEtvdYQ0ND7qabbqp7uZmZGTO7/PLLzezTn/60\nmTXiXH7BBReY2XXXXbfkn6fq4N13321m1WrVzE6dOmVmmUzm3Aq2RLq6uszse9/73pJ/3vT0dNRy\nW7duNbPvfOc7UetUx+iOO+6IWqdzzk1OTrr77ruvZnb48GFzuSuuuMLMvva1r5nZxMSEmX33u981\ns5tvvtnMlAceeMDM1Nghl8tFfd5TTz1lZh0dHWamxu3qPJI01SfdddddZvbBD37QzPbt22dm73jH\nO86tYGd5+umnzeyee+4xMzWG2bJlS83ft7fHv1hVrVbN/uyqq64yl1PnXtWPq2u5Y8eOmZk6p6lM\nHQc1ttu5c6eZKardqmvOq6++2szUtWPstWosdW2l+sfNmzeb2fHjx6M+T1HjBtVe3v72t5tZpVKp\n+Xt1XsXy4L3POOf+zTn3HufcIefc7733Pw8h/Omsf/p/Qwj2zbOz8EosAAAAAAAAErWMXol9i3Pu\n+RDCAeec897/u3Pueufc2Tfs6sIrsQAAAAAAAECcdc65l874+dDp353t7d77fd77/+29v3ihlfKE\nHQAAAAAAAGAb9N7vOePn3SGE3XUs/7hzbkMIYcp7/8/Ouf/pnNumFuCGHQAAAAAAAGAbDyFYXwJ/\n2Dl35hfOrz/9u/8vhDB5xv/f7b3/H977wRDCuPWB3LADAAAAAABAopbRd9j93jm3zXu/2b12o+4G\n59x/OPMfeO/XOOdeDSEE7/1b3GtfUWfPcuW4YQcAAAAAAABECSGUvfc3O+fudc5lnHPfCSHs997/\ny+n8m865Xc65/+K9LzvnZp1zN4QQglqvXyD/O5deeml46KGHambWFMbO6WmY1dTVajk1Tfj8/LyZ\nqam51XLqzm9bW9zcHerzFLWvi8WimfX395tZPfVgKahtUPvzyJEjZqaO0dq1a83sxIkTZvbII4+Y\n2WWXXWZmfX19NX9/+eWXu8cffzzqzwijo6Nhz549NbOHH37YXE5tu6qDjz32mJldfLH9/Zjr1683\nM2u/OOdcuVw2s9nZWTMbGBgwM+XgwYNmps4vP/vZz8xMTQH/8Y9/3Mzy+byZNYLadjXF/SWXXNKI\n4iTKe79XPMpuUu1PnT/VuU7Vl1KpZGbVatXMVFk6OjrMbDlQ/V+hUEiwJPFUfTl69KiZrVy50szU\n+UWdd5999lkz27bN/rqVbDZrZrHtz7n4NhibqbGIap+5XM7M1DhFlaURTx+oY6/6wOnpaTNTxz7p\nfk5RYx+1DTMzM2bW2dm5qDIlYXR01O3Zs2fJx6CTk5M1f++crteqTqj2p+qg6ld7enrMTI0z1TpV\nfVHm5ubMTO2ziQn7QRxVP9U5O2mqvqg6MT5uvjHoent7zUwdd2Xv3r1m9qY3vcnMrPP1Ytrfcnbx\nxReHH/3oR80uxjnbsWNH9DgmFk/YAQAAAAAAIDHe++X0SmxDxD0aBgAAAAAAAKAhuGEHAAAAAAAA\npMiCN+y89zd57/d47/eMjY0lUSYAp9H+gOah/QHNRRsEmof2BwDNt+ANuxDC7hDCaAhhVE0QAWDp\n0f6A5qH9Ac1FGwSah/YHIAl//R67VvivGXglFgAAAAAAAEiRumeJtabZVnccBwcHzUxNK6+WU1Ne\nq+naq9Wqmalp7BtBTQWupvtW2dTUlJmpKa/V9OmNoPa12i/r1683s0qlElWWNWvWmNmHPvQhM1N1\n0DpGi7kzPzU15R544IGamdpnmzZtMjP1isNHP/rRcy7bUsjlcmbW2dm55J+3ebQU1o4AABuQSURB\nVPNmMyuVSmZ2yy23LHlZkqa2HbVVq1U3OztbM1Ptr709bjJ21R7UuS7pc3kjzMzMmFk+nzezQqHQ\niOIkSvWNw8PDS/55qn5eeOGFUcs1SgjBFYvFmpmqF7FtQvXx6vNiJf2Xe3UM1Vi5u7u7EcVJlDpn\nK40Yi7SKEII5NlLnXtWXxWrEOjs6OpZ8nYo6h6g+UPUR/f39iypTUtT1qLJu3TozU9f+ihpPve51\nrzMzZjVFkpIfcQEAAAAAAOC8xg1QrfX/FA8AAAAAAAAsI9ywAwAAAAAAAFKEV2IBAAAAAACQKF6J\n1XjCDgAAAAAAAEgRbtgBAAAAAAAAKVLXK7HVatUVi8WamZpOuaury8za2ux7hnNzc7IsMetsFWr7\nQghmtnLlSjNL035R26DqklpOZYpVp9Mmn8+bU4yrKeAVVSf27dtnZurR5U2bNplZT0/POZWr2XK5\nnJn9+Mc/jlrnrl27YosTRU1VPz09bWadnZ1mNjY2ZmblctnMRkZGzKxVeO9de3vtLjPpR/kzmUyi\nn5c0VQeRHKu+N9NSt0E11oodZ6ZprBVLnc9V36L6zqTPW7HjRVWXVJ1Y7uflEIJZL2LP2aqeqUxR\ndXA5tE11jdTR0ZFgSZI3OztrZrHtTy3X3d0dtU5gqaVvNAYAAAAAAIBlje+w01r/Tw0AAAAAAADA\nMsINOwAAAAAAACBFeCUWAAAAAAAAifHe80rsAnjCDgAAAAAAAEgRbtgBAAAAAAAAKVLXK7HqkcXY\nKb3b2+0iqKmrs9ls1Oep6ZvVVPWKmnpcbZ+ipuZW+1rts9hp7GOpz1P7RR0HVc7YKb1bRTabdatX\nr17SdRYKBTPr6ekxs82bN5vZxMSEmakp2VtlOvpdu3Y1uwjnZHp62szUsVVtbHh4eFFlamXe++h+\np9VVq9Wo5drakv2boCpn0mVBY6hxRQw1flN1RmWxY5g01dFcLhe1XOy5ohFix7Xn8zhT8d6bY/fY\n6wt1LRDb/pTYPkJtn8piy6mu81QWex3bKlrlOgFYanyHHQAAAAAAABLFd9hp6flzHgAAAAAAAABu\n2AEAAAAAAABpwiuxAAAAAAAASBSvxGo8YQcAAAAAAACkCDfsAAAAAAAAgBSp+5VYa0rzubk5c5lC\noWBm8/PzZpbP56OWU1m5XDYzNb24mrY76Wne1TThuVzOzGKnJY+lHm9d7lOPt4qXX37ZzDZt2hS1\nzhUrVkSWpjWcOHHCzNK07b29vc0uwrJjnSdVv5LNZs1MLafO87Fi19mIsjRCq5QTcbz3ZntSYxg1\nFlFjJjVOUZ+n6mHsaz/VajVqnY14zUiVRWVpap+8flU/1f5UW1HXVgt9nkXVs9i2qTTiGqkRqNdo\nVdRdLT29JwAAAAAAAABu2AEAAAAAAABpwg07AAAAAAAAIEXivlgAAAAAAAAAiMR32Gk8YQcAAAAA\nAACkCDfsAAAAAAAAgBSp65VY773LZDI1s1wuF1UA9Qjk2NiYmVnlcM65np6eqLIoaXpUU5Xl+PHj\nZtbZ2WlmsdOuL3dqKvc01YlY69evN7PYOqHaZqs4evSomU1NTZnZ9PS0mfX19ZlZd3f3uRXsPJO2\n9md9ZjabjVqfamNzc3Nmls/noz6vVVSrVTNra7P/zlgqlcwsdoyCdLHqhqoXSuw5JunzT+z2xapU\nKlHLLYdxEZKj2p8aTyU9Zkq6/an9osYG5XLZzNQ1YNLbB5zJe0/fsQBaKAAAAAAAAJAi3LADAAAA\nAAAAUoQbdgAAAAAAAECKLPglVd77m5xzNznn3MjISMMLBOBvzmx/GzZsaHJpgPML7Q9oLtog0Dy0\nPwBJ4DvstAWfsAsh7A4hjIYQRoeGhpIoE4DTaH9A89D+gOaiDQLNQ/sDgObjlVgAAAAAAAAgRRZ8\nJfacV9Rur6parZpZqVQys1wuZ2b5fN7MisVi1DrV45hqnR0dHWYWK7YsavvUMUqamq5dbbs67kom\nkzEzNX36zMyMmalyqunTY5XLZTc+Pl4zU9vX399vZoVCYdHlWo7UPhscHDSztjb+BrKUWuURedXH\nqTqh+j/VpiuVSlSm+gd1HiyXy2aWzWbNLFbscVfbkCaqX2lEH6eouqvGGo3o4xZDHXtVn2IzJfZ8\nkCax9UmdK9Ik9hjF1rNY6nwee4waIXbb5+fnzUyNT9VxUPss9joo9lo1ltqfar/Mzc2ZWZrOPapv\nUWMKtV8asX2Tk5NmpvrANF1vt4pWGe83S3paLwAAAAAAAABu2AEAAAAAAABpwjObAAAAAAAASBSv\nxGo8YQcAAAAAAACkCDfsAAAAAAAAgBThhh0AAAAAAACQInV9h10IwZwKXU2RrqYeV9Nhx07RrKb7\nVmVR7093dXWZmdr2WGob1OdNTU2ZWT6fN7Ok3x1Xx11Nh622XS2n9qfadvV5PT09ZtYImUzG9fX1\n1czUNOjLQezxi6X257e//W0zU9O8f+QjH1lUmc5HBw8eNLOOjg4zW7NmTSOKY4qtg+o8GEv1cYra\nhqTPL7H7U/UBaaLOE0lT46w0lfOvYseFFtW3KKqOxpaxUqmYWWy7boSJiQkzU3UmTe0z9hzTiPGG\nGmfGXlslLbbOq+VUpo5DbD1T54KlPu8shmp/pVLJzIaHhxtRnChqTJF0vY69hk9TnVgO+A47jdoG\nAAAAAAAApAg37AAAAAAAAIAUSc/z6QAAAAAAAFj2vPe8ErsAnrADAAAAAAAAUoQbdgAAAAAAAECK\ncMMOAAAAAAAASJG6vsMuhODm5uZqZjMzM1EFUNM3q6mrjx07ZmabNm0ys/7+fjNT70+rsqipnQcG\nBsxMTSU9Pz9vZmqfWcfHuXRNmVypVMzslVdeMTM1Fbg6tvl83sxU3X388cejyrJ9+/aavy+Xy+Yy\nC/Hey8+MocrT3p7sV1wWi0UzKxQKCZbktXOd5ROf+ESCJVn+1L7evHlzgiXRqtWqm56erpmdOnXK\nXK63t9fMJicnzUydB1Wfs3HjxqiyqL7j1VdfNbM1a9aYmTrvquOuzgWzs7Nmps5nq1atMrOkqfGL\n2j61z4aHh81MjRkOHTpkZn/4wx/MTI2zurq6zGyxrLGD2m+5XM7MVL232rtzevy2YsUKM+vo6DAz\nNUY7efKkmXV2dpqZGjOo+qTGoGp/qv2SJqVSKSpTY9eenh4zix23q3OvGhdZx2gxY9ByueyOHz9e\nM1NtRbWHqakpMxsbGzMzVT/VuWnlypVmpo770aNHzUxtn6oTqv3F9gNqbJAmauyj2oMyODhoZup6\nRtWzvXv3mpnqc63jHrtt54M03aNIo9Zo2QAAAAAAAMB5ght2AAAAAAAAQIok+84bAAAAAAAAznu8\nEqvxhB0AAAAAAACQItywAwAAAAAAAFKEV2IBAAAAAACQKF6J1eq6YRdCMKc0V1OFq6mWx8fHzUxN\nD9/V1WVmavp0NeW1mqpeTeXe399vZko2mzUzNaW32vY1a9ZElSVN1LTravrt2OnMC4WCmam6u3r1\najM7ceJEzd+rerSQ6elp9+ijj9bMLrnkEnO5Y8eOmdm6devMTE1jPzMzY2alUsnMVP3s7e01s0OH\nDpmZan+qrYQQzGz//v1mtmLFiqh1joyMmNn5rFU66ba2NrM+qXqmdHZ2mplqK/Pz82amzoNqX6vz\n4MaNG80slipLPp83s46ODjNbzPk1SaqPU+cQlcX2f+vXr4/KmqFSqbipqama2alTp8zl1P6enJw0\nMzU+VXW0u7vbzFS9n56eNjPVr6o2oaj2ouqadQyc0/14mkxMTJhZe7t9aRR77aG88MILZqbGYVu2\nbFnysighBLPvUf1HT0+Pmak6qOq1un5S/apqf+ocqjK1fYoqi9r2ubk5M1NjgzRR+1Od69R5V7Vb\nRZ3P1DlZ9SvWeTC2jACvxAIAAAAAAAApwg07AAAAAAAAIEV4NhMAAAAAAACJapWvx2kWnrADAAAA\nAAAAUoQbdgAAAAAAAECK8EosAAAAAAAAEuO955XYBdR1w66trc2canrFihXmcmra7tWrV0dluVzO\nzMrlspkVi0UzU9NMj4yMRH1eCMHM1PTbaprw2dlZM1P7RZUlaWra9YmJCTNTx0FNBa6mgFdTeqty\nWtN2O+fc8PBwzd8XCgVzmYV0dna6Sy+9tGamtn39+vVmpqaHV/VMtZULL7zQzFQ5x8bGzExtQ6zj\nx4+b2Y4dO8zs8OHDZtaIciZNtYfu7m4zU3Upn8+bmeofMpmMman6afVTjRJ7bo1dTp3PVH/UKtR+\nUdunzktporZPDVqr1eqSl0Wdk9W+Vn1jo2QyGdfX11czs36/ELUd69ati1pnLHV+VVms9nb7EkC1\nJWt800rWrl0btZzqr2JddNFFUVkMdczPZVmrnam+WlHjaHVdqahrK0X1q0mfC5T+/v5mF2HR1L5W\n1/6qD1THXX2e6jsuu+wyM1PXo5bYdgK0xugWAAAAAAAAOE9www4AAAAAAABIkQWfjfbe3+Scu8m5\nuMc/AcQ7s/1t2LChyaUBzi+0P6C5aINA83ANCCAJfIedtuATdiGE3SGE0RDC6ODgYBJlAnAa7Q9o\nnjPb39DQULOLA5x3aINA89D+AKD5eCUWAAAAAAAASJH46YIAAAAAAACACLwSq9V1w857b071HjuN\ntlIsFs2sVCqZWQhhybNGbJ+qnDMzM1HLqW1IE7U/u7q6zGx2djYq6+joMLNcLmdmnZ2dUcvNzc3V\n/L2aknwh3ntzanI1ZbmSz+fNbOPGjVHrfPDBB81sYGDAzC666KKoz4ul6pnahuXwavL4+LiZ/fGP\nfzSzP//5z2a2Y8cOM7vsssvM7K677jIz1f6uueYaM1Pb1wixAw21XKVSiVpne3vr/x0uk8k0uwgN\nFVtf1LhA9f29vb1Rn2eN96CptquOfavsbzWOWQ7bUC6XzUyNXdWxVX3Z9PS0malxZuy4L5b33hUK\nhSVdp6ov6jioPkJdO6rjrsbDjaDO2adOnTIzVc6ktyGW2nZ1/I4fP25mfX19Ztbf329mql+N3Z9W\n3W2Va3SkT2v0rAAAAAAAAMB5ovX/FA8AAAAAAICWwiuxGk/YAQAAAAAAACnCDTsAAAAAAAAgRbhh\nBwAAAAAAAKQI32EHAAAAAACARPEddlqqb9h1d3ebmZoauVKpNKI4S05VzqWeOj1t1JTsKlP7LHa6\n7Gw2a2ZqKnDFmqr+fDghXX755c0uwjlR07W3yjbEGhwcNLN3vetdUVmsD3/4w2ZWLpfNrL3d7r7U\n9rUKdR7E+amnp8fMYsc9uVwutjgwLIe2a41hlgu1fapNFItFM+vt7Y0qixqDLoe6FEv18Yo6T6aJ\nuh6IrUutoqurK2o51TZj64saL8b2j1ZZzodrQDTG8u6RAQAAAAAAgBaT6ifsAAAAAAAAsLx473n6\ncAE8YQcAAAAAAACkCDfsAAAAAAAAgBThhh0AAAAAAACQInyHHQAAAAAAABLFd9hpdd2w8967fD5f\nM6tUKuZy5XK5vlKdw3Kx0zejtWWz2ahMyWQyUdlyNz09bWaxU7ID9eA8D5yb87mvApLS29u75OvM\n5XJLvs7lIIRgZlzcn586OjqWfJ2dnZ1Lvk5gqfFKLAAAAAAAAJAiPL4AAAAAAACARPHUrMYTdgAA\nAAAAAECKcMMOAAAAAAAASBFeiQUAAAAAAECieCVW4wk7AAAAAAAAIEXqesKuUqm4kydP1szm5+fN\n5Xp6euor1TlQn6dwBxf1UNPKF4tFM2vE1OOHDx92t912W83syiuvNJe75pproj6vq6vLzJ588kkz\ny+fzZrZt27aosgD4m3K5bGaZTMbM6P9Qj2q1amaVSsXMstlsI4rjQgiuVCrVvVwul1vysqg22NZm\n/y1cZcDZ1BhUZY2oZ/Pz8+7VV1+tmXV2dprLxV4Dqv5KnX/UttMHoh6qD1RZezsvMGJpMXIAAAAA\nAAAAUoRbwAAAAAAAAEiM956nXxfAE3YAAAAAAABAinDDDgAAAAAAAEgRXokFAAAAAABAonglVuMJ\nOwAAAAAAACBF6nrCrq2tzRUKhZqZ9ftGUdMpq7u03MFFPdT08ElP271u3Tr3la98JdHPtAwMDJhZ\nsVhMsCTA+Uedl+bn580sl8s1ojhYplQ9U1mjeO9TU4fTtm+wPKlrnUwmk2BJnMtms2716tWJfqZF\nbXsIIcGSYDlT9wxU2wSWGqMKAAAAAAAAIEX4DjsAAAAAAAAkijcgtQWfsPPe3+S93+O93zM2NpZE\nmQCcRvsDmof2BzQXbRBoHtofADTfgjfsQgi7QwijIYTRoaGhJMoE4DTaH9A8tD+guWiDQPPQ/gCg\n+XglFgAAAAAAAInilViNSScAAAAAAACAFGnZJ+xyuZyZVSqVBEuCJJXLZTNTd+fVFPCKmh4+m81G\nrXM5GB4ebnYRgPNWW5v9tzbVN6K1qbFNbB+HOKoNYvlSY8JGPCFCu64t6eOAdKhWq2bWiHOyqkuM\ntZCklr1hBwAAAAAAgNbEjXaNPxECAAAAAAAAKcINOwAAAAAAACBFuGEHAAAAAAAApAjfYQcAAAAA\nAIDEeO/5DrsF8IQdAAAAAAAAkCJ1P2FnTZus7oxWKhW7AO1xD/mp6Zvn5+ejlmsVap+Vy+UES6Kp\nOqGmZC8UCmY2NTVlZplM5twKVgc1hbj6PLV9scrlshsbG6uZTUxMmMsNDAyYmWorL774oplt2LDB\nzFT9XLVqlZm1iiNHjpiZOteNjIw0ojimYrFoZr/85S/NbN26dWZ26aWXLqpM9Tpw4ICZ9fT0mFls\nvwIkQfXTqu42oo9TVP8X278vllWm2H2qztmx26iO03IYg6p9piRdf9UxmpmZMTNVX/L5/KLKVC9V\nr9X+VG13MWLaXyPGymr7crlc1DpbxXJof2obVJZ0+1PboLLlcJ5HunBVAwAAAAAAgETxSqzGLWAA\nAAAAAAAgRbhhBwAAAAAAAKQIN+wAAAAAAACAFOE77AAAAAAAAJAovsNO4wk7AAAAAAAAIEXqesKu\nWq26YrFYe0ViGnQ1RbOa+lhNE66m9M5ms1HLtcrdXbVfZmdnzUxNh92IKahVObu6usxsbGzMzFRd\nUsd2cHAwajmrvjvnXKlUMrOVK1eaWaz29nY3NDRUM1P7s7Oz08yOHDliZlu3bjUzNZ35qlWrzGw5\nUOeX3t7eBEuiTU5Omtl73vMeM1PncuXEiRNmps4Fqm1u2bIlqiyNEEIw27w6f6pMtSN1rstkMlHr\njD22aTI/Px+VdXR0mFma+n7Vr6j+PZfLmZnadmVubs7MCoVC1DoXy2pPavtj1uecHhvELrccqPOP\naoNqnzWiDap1qvobu32x1Jgi9pzdiP0ZQjD78thriNjl0nTOTprq41X/oa4FGkEdI9XGVJ04fvy4\nmal21N3dbWaK6gPV56nxGxCj9UfvAAAAAAAAaCnn8034c8ErsQAAAAAAAECKcMMOAAAAAAAASBFe\niQUAAAAAAECieCVW4wk7AAAAAAAAIEW4YQcAAAAAAACkSF2vxLa1tZnTQqtppmOnb47NqtVq1HKK\n2j4ltpyxj4aqfZ00VZZisWhm+XzezPbu3Wtm73znO81MHb/JyUkze/rpp83swgsvNLP5+fm6y7GQ\nubk5d/DgwZpZX1+fuVy5XDYzdYy6urrMTE0Pr6ZBV3VeTYMeOyW7+rzZ2VkzU9u3YsUKM1PTvDfC\n1NSUmXV0dERlL730kpkNDQ2Zmdov4+PjZvbcc8+Z2cqVK81M1bO1a9eaWSzvvXl8G/Eof5rO5Wmi\n2ljS7S9We3vct5HkcrklLolzExMTZhbbxhr5asti+tB61xc7Xkx6fKos9f5aaJ2qbqfplSd1fj11\n6pSZqbGBOn5q21U7U2Xp7+83s0b0H0n3gbFU/WxEe09aq7QxRZXz0KFDZnby5Ekz2759e1RZ1DrV\neHjr1q1mVigUosoCWPgOOwAAAAAAACTGe98yN5ubpTX+nAAAAAAAAACcJ7hhBwAAAAAAAKQIr8QC\nAAAAAAAgUbwSq/GEHQAAAAAAAJAi3LADAAAAAAAAUqSuV2K99+a01+VyWS5nqVQqZqamro79vEZM\nca9Uq1UzU9Ouq+XU9uVyuXMr2BKJnSJdLTc/P29matputZz6PGuaeuecW7VqlZl1dXWZmXVsF/PI\nby6Xc8PDwzWz2CnEVfvr7OyMWmc+nzezYrFoZh0dHVGfp0xNTZlZb2+vmZVKJTNLuo0p6hip9qfc\neeedZnb06FEz2717t5mtXLnSzJ566ikze/jhh83sYx/7mJmhttj+j1cVlq+BgYFmF6EuS10Xk67b\nseflWI3YvuV+PlDjFDW+UWN65cCBA2Y2ODi45J+3GK1w7FuhjAtRfbXavmbUiaX2yiuvmJlqD7Hn\n1hdeeCFqnY24ZgEsfIcdAAAAAAAAErUcbrQ3Eq/EAgAAAAAAACmy4A077/1N3vs93vs9Y2NjSZQJ\nwGm0P6B5aH9Ac9EGgeah/QFAfbz37/PeP+O9f957/681cu+9/9rpfJ/3/k0LrXPBG3YhhN0hhNEQ\nwujQ0FBs2QFEoP0BzUP7A5qLNgg0D+0PQBK89y3z3wLbkXHO/Ztz7v3Oue3OuY9478/+Av73O+e2\nnf7vJufcNxbaP7wSCwAAAAAAAMR5i3Pu+RDCgRBCyTn3786568/6N9c7534QXvOoc26F9772rJKn\nccMOAAAAAAAAiLPOOffSGT8fOv27ev/N3/Fq6uh/+Mfejznn/nL6x0Hn3Pg5L9xYlKU2ylJbM8uy\nMYQQ9V4B7e+cUJbaKMvfRLXBs9qfc83fjjNRltooyz9qdjnoAxuLstRGWV5D+2ssylIbZXlNdPtb\nzrz397jXjkurKDjnimf8vDuEsNs557z3u5xz7wsh/OfTP/9H59xbQwg3//Ufe+//l3Puv4cQHjz9\n8/9xzv3XEMIe6wPb6yndmZXMe78nhDBaz/KNQllqoyy1paks9aD9LYyy1EZZFu/sQVaatoOy1EZZ\n0luOGPSBC6MstVGWxaP9LYyy1EZZoIQQ3tfsMiyhw865kTN+Xn/6d/X+m7/DK7EAAAAAAABAnN87\n57Z57zd773POuRuccz8/69/83Dl34+nZYi9zzp0MIbysVlrXE3YAAAAAAAAAXhNCKHvvb3bO3euc\nyzjnvhNC2O+9/5fT+Tedc3c75/7ZOfe8c27GOfefFlrvYm7Y7V7EskuNstRGWWpLU1lipWkbKEtt\nlKW2NJVlMdK0HZSlNsryj9JSjsVK03ZQltooS21pKkusNG0DZamNstSWprJgGQoh3O1euyl35u++\necb/B+fcp+pZZ12TTgAAAAAAAABoLL7DDgAAAAAAAEgRbtgBAAAAAAAAKcINOwAAAAAAACBFuGEH\nAAAAAAAApAg37AAAAAAAAIAU4YYdAAAAAAAAkCLcsAMAAAAAAABS5P8BCk8iQIiRwOcAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the first layer of convolutions on an input image\n", + "X = x_train[i][0]\n", + "print(X)\n", + "print(y_train_true[i])\n", + "pl.figure(figsize=(15, 15))\n", + "nice_imshow(pl.gca(), np.squeeze(X), vmin=0, vmax=1, cmap=cm.binary)\n", + "pl.savefig(MODEL_NAME + \"_input_\" + str(int(y_train_true[i])), bbox_inches='tight', pad_inches=1)\n", + "pl.show()\n", + "\n", + "# Visualize convolution result (after activation)\n", + "def get_layer_output(layer, input_img, layer_name):\n", + " convout_f = K.function(model.inputs, [layer.output])\n", + " C = convout_f([input_img])\n", + " C = np.squeeze(C)\n", + " print(layer_name + \" output shape : \", C.shape)\n", + " C = np.transpose(C)\n", + " C = np.swapaxes(C,0,1)\n", + " print(layer_name + \" output shape : \", C.shape)\n", + " return C\n", + "\n", + "\n", + "C1 = get_layer_output(convout1, x_train[i:i+1], layer_name=\"convout1_\" + str(int(y_train_true[i])))\n", + "mosaic_imshow(C1, 2, 5, cmap=cm.binary, border=2, layer_name=\"convout1_\" + str(int(y_train_true[i])))\n", + "plotNNFilter(C1, 2, 5, cmap=cm.binary, layer_name=\"convout1_\" + str(int(y_train_true[i])))\n", + "plotNNFilter2(C1, 2, 5, cmap=cm.binary, layer_name=\"convout1_\" + str(int(y_train_true[i])))\n", + "\n", + "C2 = get_layer_output(convout2, x_train[i:i+1], layer_name=\"convout2_\" + str(int(y_train_true[i])))\n", + "mosaic_imshow(C2, 4, 5, cmap=cm.binary, border=2, layer_name=\"convout2_\" + str(int(y_train_true[i])))\n", + "plotNNFilter(C2, 4, 5, cmap=cm.binary, layer_name=\"convout2_\" + str(int(y_train_true[i])))\n", + "plotNNFilter2(C2, 4, 5, cmap=cm.binary, layer_name=\"convout2_\" + str(int(y_train_true[i])))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "W1 shape : (10, 10, 10)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\matplotlib\\colors.py:861: RuntimeWarning: overflow encountered in true_divide\n", + " resdat /= (vmax - vmin)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAFXCAYAAADZINFGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VfW59//PTQgiEWQeDChWAYtVURHQ4iwWcMAeKwV9\n1Dpc1Fpbe9oef7Q97Wk919PBDpxTa4uoVHsqUo9DRYxVUFtqnQC1TIKkAYQwi0wiQ+D+/ZFNn21I\nTHKvFbK3+/26rn1lr7XXJ/dKsrKz73zX+m5zdwEAAAAAENWiuXcAAAAAAJDfaCwBAAAAAInQWAIA\nAAAAEqGxBAAAAAAkQmMJAAAAAEiExhIAAAAAkAiNJQAAAAAgERpLAAAAAEAiNJYAAAAAgERaNvcO\n1KZNmzbevn37UHbv3r0p7039WraMfxvdPZRr0SL+P4Ek36Oqqqpwdvfu3aHcIYccEq555JFHhrMr\nV64M5bp27RquuWLFinC2V69e4Wz0mNixY0e45r59+8LZQw89NJRr3bp1uOa6devC2ehxuHnz5nBN\nMwtnkzy/RJ8jktRM8rVGj8Mkz0vvvvtuONumTZtQrmPHjuGaFRUV4WySn0309zzJc0v075QUPyaS\nHPtbt24NZ5P8bKJ/M/r16xeu2Rxfa5Jj6f333w9nS0pKQrmdO3eGa3bq1Cmc3bhxYzgb/b0pKioK\n5datW6ctW7b884Aws9gL8YPnGXcf3tw70VA52Vi2b99eN9xwQyi7ffv2UC7JE2ySP9h79uwJ5aJP\nOlKyF6sbNmwIZysrK0O5o446KlzzN7/5TTh76623hnK33HJLuOYXv/jFcPa///u/w9ktW7aEcnPn\nzg3X3LVrVzjbv3//UO64444L1/zFL34Rzv76178O5aZNmxaumeTFarR5keJNU5LntFatWoWz0X+O\nJHleevDBB8PZk08+OZQbO3ZsuOYVV1wRzhYXF4ez0a81SQMS/YeiJPXt2zeUS/IPrxkzZoSzSX5v\non8z/vznP4drzpw5M5yNHofbtm0L13z11VfD2TPOOCOUW7x4cbjm1VdfHc5Onjw5nI0+l3bo0CGU\nS/IarZl0bu4daIycbCwBAAAAoKklGVxqatEzG5sLjSUAAACAgkRjmZ56z5Uys15m9oKZLTKzhWZ2\na2Z9RzObYWZLMx9rHZM2s+FmtsTMys1sfNpfAAAAAABEmFnO3vJNQy7CqZL0DXfvL2mIpC+bWX9J\n4yU95+59JD2XWf4QMyuSdJekEZL6SxqbyQIAAABAs2ru5rGgGkt3X+Pur2fub5P0lqRSSaMkPZDZ\n7AFJl9USHySp3N0r3H23pKmZHAAAAADgY6JR11iaWW9JJ0t6VVI3d1+TeWitpG61REolZU+xtkrS\n4Do+9zhJ4ySpXbt2jdktAAAAAGiUfB0ZzFUNbizN7DBJj0r6mrtvzf4huLsnfR8Yd58kaZIkHXHE\nEfl1pSoAAACAvENjmZ4GNZZmVqzqpvJBd38ss3qdmfVw9zVm1kPS+lqilZKy37W9Z2YdAAAAADQr\nGsv0NGRWWJN0n6S33D37HcKnSbo2c/9aSU/UEp8tqY+ZHW1mrSSNyeQAAAAAoFk19wQ9H6fJexoy\nYvlpSVdLmm9mb2bWfVvSjyU9bGY3SFohabQkmdkRku5195HuXmVmt0h6RlKRpMnuvjDtLwIAAAAA\nGisfG7hcVW9j6e4vSqrrO35+LduvljQya7lMUll0BwEAAAAAua1Rs8ICAAAAwMdBvp5ymqtoLAEA\nAAAUJBrL9ORkY9mqVSsdddRRoewpp5wSyt1+++2hnCR16NAhnL3gggtCuZ/85Cfhmrt27QpnBwwY\nEM62b98+lDv00EPDNZO48sorQ7lvfOMb4Zrf/e53w9m2bduGs//+7/8eym3dujVc88QTTwxn77//\n/lDu9NNPD9f8z//8z3A26ve//30427Jl/On95ptvDmeXLVsWyi1evDhcc9CgQeFsUVFRKPfAAw+E\na/7yl78MZzdt2hTORvXr1y+cveyyy8LZ6PPhbbfdFq754osvhrMzZ84M5X71q1+Fay5fvjyc7dix\nYzi7cePGcDaqpKQknP32t78dyt1xxx3hmr169ap/ozqUlpaGcs8//3y45pe+9KVwdsOGDeFs9HXw\nnj17Qrnt27cfsI7GMj052VgCAAAAQFOjsUxPvW83AgAAAADAR2HEEgAAAEBBYsQyPTSWAAAAAAoO\ns8Kmi8YSAAAAQEGisUwPjSUAAACAgkRjmR4aSwAAAAAFicYyPcwKCwAAAABIhBFLAAAAAAWJEcv0\nMGIJAAAAoODsnxU2V28N2P/hZrbEzMrNbHwtj19lZvPMbL6ZvWRmJ2U9tjyz/k0zm5PG95MRSwAA\nAAAFKV9HLM2sSNJdkoZJWiVptplNc/dFWZstk3S2u79nZiMkTZI0OOvxc919Y1r7RGMJAAAAoCDl\na2MpaZCkcnevkCQzmypplKR/Npbu/lLW9q9I6tmUO0RjCQAAAKAg5XFjWSppZdbyKn14NLKmGyQ9\nnbXskmaa2V5Jd7v7pKQ7lJONZevWrdW3b99Q9qmnngrlvvzlL4dyklRSUnLQsz/4wQ/CNZ9//vlw\n9vDDDw9nKyoqQrk9e/aEayYxY8aMUG7YsGEp70nDPPLII+Fsr169Qrl9+/aFayb5vbn55ptDuR49\neoRrLlq0qP6N6nDEEUeEckOHDg3XXL58eThbVFQUzkafIy644IJwzTZt2oSz8+bNC+UGDhwYrrl2\n7dpw9v333w9nm0P37t3D2bvuuiuU27ZtW7jmd7/73XD2qquuCuWS/Eyvv/76cLZdu3bh7IMPPhjO\nRu3evTuc/e1vfxvKrV69OlzzjDPOCGejWrduHc4OGTIknG3btm04269fv1CuW7duodyjjz4ayjWj\nzjWuf5wUaQDN7FxVN5bZLyyGunulmXWVNMPMFrv7rCQ7m5ONJQAAAAA0tRwfsdzo7nX9J7NSUvbI\nQM/Mug8xsxMl3StphLu/u3+9u1dmPq43s8dVfWptosaSWWEBAAAAFJzmnvU14aywsyX1MbOjzayV\npDGSptX4+o6U9Jikq9397az1JWbWdv99SRdKWpD0+8mIJQAAAICClOMjlnVy9yozu0XSM5KKJE12\n94VmdlPm8YmSviepk6RfZ77OqswIaDdJj2fWtZQ0xd3/lHSfaCwBAAAAFKR8bSwlyd3LJJXVWDcx\n6/6Nkm6sJVch6aSa65OisQQAAABQkPK5scw1XGMJAAAAAEiEEUsAAAAABYkRy/TQWAIAAAAoOA2c\nfRUNRGMJAAAAoCDRWKaHxhIAAABAQaKxTA+NJQAAAICCRGOZnnobSzObLOliSevd/VOZdX+Q1C+z\nSXtJm919QC3Z5ZK2Sdqr//eGnAAAAACAj5GGjFjeL+lXkn63f4W7f37/fTP7uaQtH5E/1903RncQ\nAAAAAJoCI5bpqbexdPdZZta7tses+icxWtJ56e4WAAAAADQdZoVNV9JrLM+UtM7dl9bxuEuaaWZ7\nJd3t7pPq+kRmNk7SOEnq3r272rZtG9qhkSNHhnLbt28P5SSppKQknP3ggw9CueLi4nDNXbt2hbO7\nd+8OZ6+77rpQbsOGDeGaSQwYcMDZ3U1u/fr14Wz37t3D2Y0bYycVXHTRReGa5eXl4WyvXr1CuZUr\nV4ZrvvPOO+HsBRdcEMq1b98+XLNVq1bh7IoVK8LZTZs2hXKnn356uObMmTPD2ej3uHXr1uGaf/nL\nX8LZVatWhXJnnXVWuObAgfGrWN58881wtnfv3qGcu4drTpgwIZyNfp/mz58frnn88ceHs1VVVeFs\ny5YHf4qOioqKcHbJkiWhXJLXAVOmTAlnR48eHcolaZCKiorC2ejfZElq06ZNKDdv3rxQrrbX3TSW\n6Un6zDBW0kMf8fhQd680s66SZpjZYnefVduGmaZzkiT1798//lcBAAAAABqAxjI94cbSzFpK+hdJ\np9a1jbtXZj6uN7PHJQ2SVGtjCQAAAAAHE41lelokyF4gabG713pejpmVmFnb/fclXShpQYJ6AAAA\nAIAcVG9jaWYPSXpZUj8zW2VmN2QeGqMap8Ga2RFmVpZZ7CbpRTP7u6TXJD3l7n9Kb9cBAAAAIG7/\nBD65eMs3DZkVdmwd679Qy7rVkkZm7ldIOinh/gEAAABA6vK1gctVB39aLwAAAADIATSW6aGxBAAA\nAFCQaCzTQ2MJAAAAoCDRWKYnyaywAAAAAAAwYgkAAACgMDFimR4aSwAAAAAFh1lh00VjCQAAAKAg\n0Vimh8YSAAAAQEGisUwPk/cAAAAAABLJyRHLoqIitW3bNpStqqoK5aZMmRLKSVKHDh3C2fXr14dy\nV1xxRbjmmDFjwtno91eS9uzZE8r17NkzXDOJE044IZR78sknwzWHDh0azrZu3Tqc/eCDD0K5v/zl\nL+Gao0ePDmfvvvvuUO7YY48N10zy/Y3q169fONu+fftw9rjjjgtn586dG8oVFxeHa27ZsiWcLS0t\nDeV27NgRrtm/f/9w9vLLLw9no1566aVw9sorrwxnDz/88FCurKwsXPPMM88MZ3fv3h3KtWvXLlwz\nevxK0sMPPxzObt++PZyNWrZsWTgb/blOnTo1XPOzn/1sONuyZezl+WWXXRau+be//S2cPeaYY8LZ\n6O/NySefHMq1adPmgHWMWKYnJxtLAAAAAGhqNJbp4VRYAAAAAAVn/6ywuXprwP4PN7MlZlZuZuNr\nefwqM5tnZvPN7CUzO6mh2QhGLAEAAAAUpHwdsTSzIkl3SRomaZWk2WY2zd0XZW22TNLZ7v6emY2Q\nNEnS4AZmG43GEgAAAEBBytfGUtIgSeXuXiFJZjZV0ihJ/2wO3T37IvlXJPVsaDaCU2EBAAAAIL+U\nSlqZtbwqs64uN0h6OphtEEYsAQAAABSkHB+x7Gxmc7KWJ7n7pMZ+EjM7V9WNZfztBxqAxhIAAABA\nQcrxxnKjuw+s47FKSb2ylntm1n2ImZ0o6V5JI9z93cZkG4vGEgAAAEDBaejsqzlqtqQ+Zna0qpvC\nMZI+9ObBZnakpMckXe3ubzcmG0FjCQAAAKAg5Wtj6e5VZnaLpGckFUma7O4LzeymzOMTJX1PUidJ\nv858nVXuPrCubNJ9orEEAAAAUJDytbGUJHcvk1RWY93ErPs3SrqxodmkmBUWAAAAAJAII5YAAAAA\nClI+j1jmGhpLAAAAAAWJxjI9NJYAAAAACk6ezwqbc3Kysdy8ebOmT58eyrZsGfuSRowYEcpJ0rPP\nPhvOjh49OpRr1apVuOasWbPC2WXLloWzV111VSi3cuXKcM3evXuHs9G6p59+erjm2rVrw9kjjjgi\nnH3qqadCuZ/+9KfhmnPnzg1n+/TpE8qdffbZ4ZpJjsOoysr4W0q1bt06nP3a174Wzp577rmh3OrV\nq8M1N2zYEM7u27cvlNu6dWu45t69e8PZefPmhXK33XZbuOb5558fzq5atSqcjb7YGzJkSLjmH/7w\nh3B25MiRoVyS56Vvfetb4eyPfvSjcHbz5s3hbNQ111xz0GtGX7dIUrt27cLZBx54IJTr379/uOYH\nH3wQzu7cuTOcnTFjRijXrVu3UO79998/YB2NZXpysrEEAAAAgKZGY5keZoUFAAAAACTCiCUAAACA\ngsSIZXrqHbE0s8lmtt7MFmSt+76ZVZrZm5lbrRcWmNlwM1tiZuVmNj7NHQcAAACAJPZP4JOLt3zT\nkBHL+yX9StLvaqyf4O4/qytkZkWS7pI0TNIqSbPNbJq7LwruKwAAAACkIl8buFxVb2Pp7rPMrHfg\ncw+SVO7uFZJkZlMljZJEYwkAAACg2dFYpifJ5D1fMbN5mVNlO9TyeKmk7Pn5V2XW1crMxpnZHDOb\nU9tUwAAAAACQpuY+3fXjdCpstLH8jaRPSBogaY2knyfdEXef5O4D3X1gSUlJ0k8HAAAAADhIQrPC\nuvu6/ffN7B5J02vZrFJSr6zlnpl1AAAAANDs8nFkMFeFGksz6+HuazKLn5W0oJbNZkvqY2ZHq7qh\nHCPpytBeAgAAAEDKaCzTU29jaWYPSTpHUmczWyXpPySdY2YDJLmk5ZK+mNn2CEn3uvtId68ys1sk\nPSOpSNJkd1/YJF8FAAAAADRCvl7LmKsaMivs2FpW31fHtqsljcxaLpNUFt47AAAAAGgiNJbpCZ0K\nCwAAAAD5jsYyPTnZWG7fvl1//etfQ9nOnTuHcr179w7lJGnv3r3hbFFRUSi3ePHicM3o90iS+vfv\nH85+61vfCuUOP/zwcM0zzzwznO3YsWMot3PnznDN6PdIko4++uhwdvDgwaHcvffeG66Z5PvUokVs\nQutTTz01XPPRRx8NZy+88MJQ7oQTTgjXnDBhQjh72223hbMVFRWh3JQpU8I1jznmmHD2c5/7XCi3\nbNmycM1f//rX4WyS54godw9n//d//zecffXVV0O5L37xi+GaSX7nojPaP/HEE+GaV14Zn7ri5z+P\nT+h/7LHHhnJJvr+VlfH5H6dNmxbKTZ9e29yUDRP9uypJxcXFodzy5cvDNZMYOXJk/RvVIfo6rWXL\nWAvTunXrUA4Nk5ONJQAAAAA0NUYs00NjCQAAAKAg0Vimh8YSAAAAQMFhVth00VgCAAAAKEg0lumh\nsQQAAABQkGgs0xObWhEAAAAAgAxGLAEAAAAUJEYs00NjCQAAAKAg0Vimh1NhAQAAABSc/bPC5uqt\nAfs/3MyWmFm5mY2v5fHjzOxlM9tlZt+s8dhyM5tvZm+a2Zw0vp+MWAIAAAAoSPk6YmlmRZLukjRM\n0ipJs81smrsvytpsk6SvSrqsjk9zrrtvTGufGLEEAAAAgPwySFK5u1e4+25JUyWNyt7A3de7+2xJ\new7GDjFiCQAAAKAg5euIpaRSSSuzlldJGtyIvEuaaWZ7Jd3t7pOS7hCNJQAAAICClOONZeca1z9O\nSqMBzBjq7pVm1lXSDDNb7O6zknxCGksAAAAABaehk+Q0o43uPrCOxyol9cpa7plZ1yDuXpn5uN7M\nHlf1qbUfv8bykEMO0THHHBPKXnrppaHc3LlzQzlJ+sxnPhPOzp8/P5yN2rt3bzj78MMPh7Mnnnhi\nKLdv375wzSTefvvtUK5ly/iv1fe+971w9rDDDjvo2aKionDNDh06hLM7d+4M5X72s5+Fa5599tnh\nbNSsWfHn99NPPz2cXbduXTi7adOmUG7o0KHhmhUVFeHsggULQrlOnTqFa/7bv/1bOLt58+ZwNirJ\n72rnzp3D2XPOOSeUix6DkvSJT3winN2+fXsoN2TIkHDN9u3bh7OVlQ1+/XmAiy66KJyNmjdvXjgb\n/bt8/vnnh2t27NgxnC0uLg7lDj300HDN6PErSXfeeWc426JFbLqX6PPSe++9d8C6HG8sP8psSX3M\n7GhVN5RjJF3ZkKCZlUhq4e7bMvcvlHR70h3KycYSAAAAAJpavjaW7l5lZrdIekZSkaTJ7r7QzG7K\nPD7RzLpLmiOpnaR9ZvY1Sf0ldZb0eOZrbylpirv/Kek+0VgCAAAAQJ5x9zJJZTXWTcy6v1bVp8jW\ntFXSSWnvD40lAAAAgIKUryOWuYjGEgAAAEBBorFMD40lAAAAgIKTB7PC5hUaSwAAAAAFicYyPTSW\nAAAAAAoSjWV6Ym8eAwAAAABABiOWAAAAAAoSI5bpobEEAAAAUJBoLNNTb2NpZpMlXSxpvbt/KrPu\np5IukbRb0j8kXefum2vJLpe0TdJeSVXuPjC9XQcAAACAGGaFTVdDrrG8X9LwGutmSPqUu58o6W1J\n3/qI/LnuPoCmEgAAAEAu2d9c5uIt39Q7Yunus8ysd411z2YtviLpc+nuFgAAAAA0rXxs4HJVGrPC\nXi/p6Toec0kzzWyumY1LoRYAAAAAIMckmrzHzL4jqUrSg3VsMtTdK82sq6QZZrbY3WfV8bnGSRon\nSYcddpg2bz7gks0Geeedd0K5qVOnhnKStHfv3nD2pz/9aSi3Y8eOcM0kX+t1110Xzj788MOh3IIF\nC8I1k3jttddCuWHDhoVrfvvb3w5nTzjhhHD2X/7lX0K56M9Ukrp37x7O7ty5M5TbsGFDuGaSr/X6\n668P5SorK8M1u3btGs726dMnnP3FL34RypWUlIRrHn744eFseXl5KFdcXByuOXTo0HD23XffDeWG\nD695RUvD3XfffeHs2LFjw9k//elPody8efPCNc8777xw9pVXXgnlWrSI/49/27Zt4eymTZvC2ehz\n0/e///1wzdmzZ4ez0eeXtm3bhmuWlZWFs+eee24ol+RnmkTr1q3D2bfffjuUW7VqVSj3wQcfHLCO\nEcv0hBtLM/uCqif1Od/dvbZt3L0y83G9mT0uaZCkWhtLd58kaZIkdenSpdbPBwAAAABpobFMT6ix\nNLPhkm6TdLa71zp0ZmYlklq4+7bM/Qsl3R7eUwAAAABISb5OkpOrGvJ2Iw9JOkdSZzNbJek/VD0L\n7CGqPr1Vkl5x95vM7AhJ97r7SEndJD2eebylpCnuHjuvBQAAAABSRmOZnobMClvbBRK1XnDh7qsl\njczcr5B0UqK9AwAAAIAmQmOZnjRmhQUAAAAAFLBEs8ICAAAAQL5ixDI9NJYAAAAAChKNZXpoLAEA\nAAAUHGaFTReNJQAAAICCRGOZHhpLAAAAAAWJxjI9zAoLAAAAAEiEEUsAAAAABYkRy/TQWAIAAAAo\nSDSW6cnJxrJLly66+eabQ9mnn346lLv00ktDOUnq1q1bOLtz585Qrm/fvuGanTt3Dmf37NkTzkb9\n4Ac/OOg1JekTn/hEKNezZ89wzSTH4d69e8PZTp06hXJf//rXwzXvueeecPbqq68O5RYvXhyuuWzZ\nsnA26vjjjw9nFy1aFM5OmzYtnP2v//qvUO6xxx4L1zz11FPD2R49eoRy69atC9esqKgIZw855JBw\nNuqaa64JZ1966aVw9v333w/los/dkvSXv/wlnD3mmGNCuTfeeCNcs3v37uHswIEDw9mjjjoqnI26\n4IILwtm///3vodxZZ50VrtmyZfwldlVV1UHNScn2d/jw4eHs/PnzQ7l27dqlUo9ZYdPFNZYAAAAA\nCtL+5jIXbw3Y9+FmtsTMys1sfC2PH2dmL5vZLjP7ZmOyETk5YgkAAAAATS1fRyzNrEjSXZKGSVol\nabaZTXP37FOWNkn6qqTLAtlGY8QSAAAAAPLLIEnl7l7h7rslTZU0KnsDd1/v7rMl1byWrd5sBCOW\nAAAAAApSvo5YSiqVtDJreZWkwQchWycaSwAAAAAFKccby85mNidreZK7T2q2vakHjSUAAACAgpMH\ns8JudPe6pnCulNQra7lnZl1DJMnWicYSAAAAQEHK8cbyo8yW1MfMjlZ1UzhG0pUHIVsnGksAAAAA\nBSlfG0t3rzKzWyQ9I6lI0mR3X2hmN2Uen2hm3SXNkdRO0j4z+5qk/u6+tbZs0n2isQQAAACAPOPu\nZZLKaqybmHV/rapPc21QNikaSwAAAAAFKV9HLHMRjSUAAACAgkRjmR4aSwAAAAAFJw9mhc0rNJYA\nAAAAChKNZXpaNPcOAAAAAADym7l7c+/DAQYOHOhz5sxp7t0AAAAA8DFhZnPdfeD+5R49evh1113X\nnLv0kX70ox99aH9zHafCAgAAAChInAqbHhpLAAAAAAWJxjI9NJYAAAAACg6zwqar3sl7zGyyma03\nswVZ6zqa2QwzW5r52KGO7HAzW2Jm5WY2Ps0dBwAAAIAk9jeXuXjLNw2ZFfZ+ScNrrBsv6Tl37yPp\nuczyh5hZkaS7JI2Q1F/SWDPrn2hvAQAAAAA5p97G0t1nSdpUY/UoSQ9k7j8g6bJaooMklbt7hbvv\nljQ1kwMAAACAZtfco5IfpxHL6DWW3dx9Teb+WkndatmmVNLKrOVVkgbX9QnNbJykcZJ05JFHBncL\nAAAAABomHxu4XJV48h53dzNL/GaY7j5J0iSp+n0sk34+AAAAAPgoNJbpiTaW68ysh7uvMbMektbX\nsk2lpF5Zyz0z6wAAAACgWeXrKae5qiGT99RmmqRrM/evlfRELdvMltTHzI42s1aSxmRyAAAAANDs\nmvs6yo/TNZYNebuRhyS9LKmfma0ysxsk/VjSMDNbKumCzLLM7AgzK5Mkd6+SdIukZyS9Jelhd1/Y\nNF8GAAAAAKC51HsqrLuPreOh82vZdrWkkVnLZZLKwnsHAAAAAE0kH0cGc1XiyXsAAAAAIB/RWKaH\nxhIAAABAQaKxTE9ONpYffPCB5s2bF8ru3bs3lLvjjjtCOUnq27dvODty5Mj6N6rF7NmzwzWPP/74\ncPaVV14JZ88+++xQrl27duGan/rUp8LZGTNmhHKvv/56uGa/fv3C2WnT4nNjde/ePZS74oorwjXv\nueeecHbo0KGh3JIlS8I133rrrXD24YcfDuUeeeSRcM21a9eGs0neS3jjxo2h3DvvvBOu2bJl/E/Z\n0qVLQ7lLL700XHPu3Lnh7KJFi0K5P/7xj+GaEyZMCGcHDhwYzka/1mHDhoVrTpkyJZwdNGhQKPfU\nU0+Fa5555pnhbHR/Jen5558P5b7whS+Ea0ZfF0rSmjVr6t+oFkmegw877LBwdvTo0aFcp06dwjWn\nT58ezh5zzDHhbM+ePUO5l19+OZTr1avXqdnL+TpJTq7KycYSAAAAAJoajWV6om83AgAAAACAJEYs\nAQAAABQoRizTQ2MJAAAAoCDRWKaHxhIAAABAQaKxTA+NJQAAAICCw6yw6WLyHgAAAAAFaX9zmYu3\nBuz7cDNbYmblZja+lsfNzH6ZeXyemZ2S9dhyM5tvZm+a2Zw0vpeMWAIAAABAHjGzIkl3SRomaZWk\n2WY2zd2z3wR4hKQ+mdtgSb/JfNzvXHePvQF1LWgsAQAAABSkPD4VdpCkcnevkCQzmypplKTsxnKU\npN+5u0t6xczam1kPd1/TFDtEYwkAAACgIOVxY1kqaWXW8ip9eDSyrm1KJa2R5JJmmtleSXe7+6Sk\nO0RjCQAAAKAg5Xhj2bnG9Y+T0mgAM4a6e6WZdZU0w8wWu/usJJ+QxhIAAABAwcmDWWE3uvvAOh6r\nlNQra7loDfdzAAAa20lEQVRnZl2DtnH3/R/Xm9njqj61NlFjyaywAAAAAApSc8/8mmBW2NmS+pjZ\n0WbWStIYSdNqbDNN0jWZ2WGHSNri7mvMrMTM2ma+/hJJF0pakPR7yYglAAAAAOQRd68ys1skPSOp\nSNJkd19oZjdlHp8oqUzSSEnlknZIui4T7ybp8Uzz2lLSFHf/U9J9ysnGcs+ePVq9enUoO21azUa9\nYW666aZQTpLefPPNcLa4uDiUmzMn/nYzkydPDmcnTYqf1v3II4+Ecrt27QrXnDBhQji7bdu2UO7s\ns88O1ywtLQ1nd+zYEc6++OKLodx3vvOdcM1x48aFs507dw7lknyPhg0bFs5GzZgxI5xNciyddtpp\n4ewhhxwSynXt2jVcs3fv3uHsN7/5zVBuyJAh4Zo9e/YMZ0eNGhXORl1xxRXh7ObNm8PZk08+OZSb\nMmVKuOamTZvC2ejf82effTZcc+7cueHs/fffH87u3LkznI265557wtnZs2eHcuvWrQvXLCsrC2cn\nTpwYyn3hC18I12zRIn4S429/+9tw9o477gjlLr744lCuttexOX4q7Edy9zJVN4/Z6yZm3XdJX64l\nVyHppLT3JycbSwAAAABoavncWOYaGksAAAAABYnGMj00lgAAAAAKTh7MCptXaCwBAAAAFCQay/Tw\ndiMAAAAAgEQYsQQAAABQkBixTA+NJQAAAICCRGOZHhpLAAAAAAWJxjI9NJYAAAAACg6zwqaLyXsA\nAAAAAImEG0sz62dmb2bdtprZ12psc46Zbcna5nvJdxkAAAAAkts/apmLt3wTPhXW3ZdIGiBJZlYk\nqVLS47Vs+ld3vzhaBwAAAACaQj42cLkqrWssz5f0D3dfkdLnAwAAAIAmRWOZnrQayzGSHqrjsTPM\nbJ6qRzS/6e4La9vIzMZJGidJXbp00b59+0I7MmDAgFCue/fuoZwkHXLIIeHsgw8+GModc8wx4Zqt\nW7cOZ999991wdsuWLaHc9ddfH66ZxD/+8Y9Qrri4OFzT3cPZN954I5w966yzDmpOkubPnx/Otm3b\nNpQ79NBDwzXLy8vD2aFDh4ZyvXv3DtdM8pyW5Bh+7733QrmFC2v909AglZWV4ew3v/nNUG769Onh\nmkmOpS5duoRygwcPDtd89tlnw9mWLeMvM9q3bx/KRV8HJKkpSSUlJaHcV77ylXDNJF/r9u3bw9nP\nfOYz4WxUkr+P0b9V0eduSVq6dGk4+/nPfz6U27lzZ7hmv379wtlt27aFs08++WQot3bt2lBu/fr1\nB6yjsUxP4sbSzFpJulTSt2p5+HVJR7r7djMbKemPkvrU9nncfZKkSZLUp0+f+LMHAAAAANQjX69l\nzFVpzAo7QtLr7r6u5gPuvtXdt2ful0kqNrPOKdQEAAAAAOSINE6FHas6ToM1s+6S1rm7m9kgVTey\n8XMpAQAAACAljFimJ1FjaWYlkoZJ+mLWupskyd0nSvqcpC+ZWZWkDySN8SQnyQMAAABASmgs05Oo\nsXT39yV1qrFuYtb9X0n6VZIaAAAAANAUaCzTk9assAAAAACQN5i8J100lgAAAAAKEo1letKYFRYA\nAAAAUMAYsQQAAABQkBixTA+NJQAAAICCRGOZHhpLAAAAAAWJxjI9NJYAAAAACg6zwqaLxhIAAABA\nQaKxTA+zwgIAAABAnjGz4Wa2xMzKzWx8LY+bmf0y8/g8MzulodmInByx3LVrlyoqKkLZ3r17h3Iz\nZswI5SRpz5494eyNN94Yyu3atStcc/Xq1eHs8ccfH8527do1lPvb3/4WrnnaaaeFs/v27Qvlli1b\nFq7Zv3//cPaSSy4JZ3fs2BHKde/ePVzzk5/8ZDgb/Z075JBDwjVbtWoVzkadeeaZ4ew777wTzr7+\n+uvh7LHHHhvKlZaWhmu+/PLL4WybNm1CuXbt2oVrdunSJZyN/q4mcdJJJ4WzSX420efgJM9LSSxY\nsCCUGzBgQLjm+vXrw9m33347nO3bt28od/TRR4drjhs3LpydOXNmKJfke7R79+5wdtu2baHcCSec\nEK6Z5Dl4xIgR4ewbb7wRykVf3z355JMHrMvXEUszK5J0l6RhklZJmm1m09x9UdZmIyT1ydwGS/qN\npMENzDZaTjaWAAAAANDU8rWxlDRIUrm7V0iSmU2VNEpSdnM4StLv3N0lvWJm7c2sh6TeDcg2Go0l\nAAAAgIKUx41lqaSVWcurVD0qWd82pQ3MNhqNJQAAAICCkwezwnY2szlZy5PcfVKz7U09aCwBAAAA\nFKQcbyw3uvvAOh6rlNQra7lnZl1DtiluQLbRmBUWAAAAAPLLbEl9zOxoM2slaYykaTW2mSbpmszs\nsEMkbXH3NQ3MNhojlgAAAAAKUo6PWNbJ3avM7BZJz0gqkjTZ3Rea2U2ZxydKKpM0UlK5pB2Srvuo\nbNJ9orEEAAAAUJDytbGUJHcvU3XzmL1uYtZ9l/TlhmaTorEEAAAAUJDyubHMNTSWAAAAAApOHswK\nm1doLAEAAAAUJBrL9DArLAAAAAAgEUYsAQAAABQkRizTQ2MJAAAAoCDRWKaHxhIAAABAQaKxTE9O\nNpZ79uxRZWVlKLthw4ZQbt++faGcJI0dOzacbdOmTShXXFwcrtmpU6dwtqKiIpx98cUXQ7kOHTqE\nayYRrbtx48ZwzenTp4ez5513Xjj76KOPhnI33nhjuOby5cvD2egfgTVr1oRrnnrqqeFsVLdu3cLZ\nJM8RXbp0CWeXLl0aynXu3DlcM8nPtX379qFcUVFRuOasWbPC2XHjxoWzUYcddlizZIcNGxbKvf32\n2+GaSV4LnHbaaQe95pNPPhnOVlVVhbOXX355OBsVfV0oSQsXxt73/ZJLLgnX3LFjRzj79NNPh3It\nW8Zf1u/ZsyecTfK6J/q36qWXXgrltm/f/qFlZoVNV042lgAAAADQ1Ggs08OssAAAAACARBixBAAA\nAFCQGLFMT6LG0syWS9omaa+kKncfWONxk/TfkkZK2iHpC+7+epKaAAAAAJAGGsv0pDFiea6713XV\n7ghJfTK3wZJ+k/kIAAAAAM2KxjI9TX0q7ChJv3N3l/SKmbU3sx7uHp/CDwAAAAASYlbYdCWdvMcl\nzTSzuWZW2xzopZJWZi2vyqw7gJmNM7M5ZjYnyRTNAAAAAICDK+mI5VB3rzSzrpJmmNlidw+9QZe7\nT5I0SZJ69OjhCfcLAAAAAD4SI5bpSdRYuntl5uN6M3tc0iBJ2Y1lpaReWcs9M+sAAAAAoFnRWKYn\nfCqsmZWYWdv99yVdKGlBjc2mSbrGqg2RtIXrKwEAAADkgv3XWebiLd8kGbHsJunxzBfdUtIUd/+T\nmd0kSe4+UVKZqt9qpFzVbzdyXbLdBQAAAIB05GMDl6vCjaW7V0g6qZb1E7Puu6QvR2sAAAAAQFPI\n15HBXJV0VlgAAAAAQIFr6vexDCkuLlZpaa3vSlKvc845J5T761//GspJ0oYNG8LZli1jP4L58+eH\na65cubL+jerQuXPncPass84K5ZYuXRqumcSxxx4byo0ePTpc85Of/GQ4e8kll4Szn//850O5F154\nIVwzejxIUvv27UO5kpKScM3XX389nD3llFNCueeffz5cc+/eveHsmWeeGc62atUqlOvQoUO45q23\n3hrOtmgR+//q+PHjwzWTZLds2RLORj300EPh7HHHHRfOLlmyJJTbuXNnuGanTp3C2S5duoRyK1as\nCNdM8nv+r//6r+HsxIkT69+oFrfffnu4ZpKfTfS1YZLXPNG/U1L8b8Z9990XrpnkOXjr1q3hbLt2\n7UK56GuI3/3udwesY8QyPTnZWAIAAABAU6OxTA+NJQAAAICCRGOZHhpLAAAAAAWJxjI9NJYAAAAA\nCg6zwqaLWWEBAAAAAInQWAIAAAAoSPtHLXPxlvDr6mhmM8xsaeZjrVP/mtlwM1tiZuVmNj5r/ffN\nrNLM3szcRtZXk8YSAAAAQEFq7uaxqRpLSeMlPefufSQ9l1mu+bUXSbpL0ghJ/SWNNbP+WZtMcPcB\nmVtZfQW5xhIAAABAQfoYX2M5StI5mfsPSPqzpP+vxjaDJJW7e4UkmdnUTG5RpCAjlgAAAAAKUnOP\nSjbhiGU3d1+Tub9WUrdatimVtDJreVVm3X5fMbN5Zja5rlNpszFiCQAAAKDgpNTANaXOZjYna3mS\nu0/av2BmMyV1ryX3newFd3cz80bW/o2k/5TkmY8/l3T9RwVoLAEAAAAg92x094F1PejuF9T1mJmt\nM7Me7r7GzHpIWl/LZpWSemUt98ysk7uvy/pc90iaXt/OciosAAAAgILU3Ke7NuGpsNMkXZu5f62k\nJ2rZZrakPmZ2tJm1kjQmk1OmGd3vs5IW1FeQEUsAAAAABSnHT4VN4seSHjazGyStkDRakszsCEn3\nuvtId68ys1skPSOpSNJkd1+Yyd9hZgNUfSrscklfrK8gjSUAAACAgvRxbSzd/V1J59eyfrWkkVnL\nZZIOeCsRd7+6sTVzsrHcs2eP1q5dG8reeeedodzXv/71UE6Sfvazn4Wz3bvXdr1t/RYtCs0CLEn6\n4Q9/GM7efffd4Wz79u1DuW7dapvEqul17tw5lJswYUK4ZpLv78SJE8PZT37yk6HcyJH1vldunebM\nmVP/RnU44ogjQrnnn38+XHPw4MHhbNRnPvOZcHbz5s3h7IoVK8LZ6dPrvQSjVldddVW45o4dO8LZ\nN954I5Tr0aNH/RvV4bnnngtnR48eHc5Gvfbaa+Fskp9r3759Q7kxY8aEa95+++3h7MqVK+vfqBZF\nRUXhmhdddFE4+9RTT4Wzl156aTgbleTF/65du0K5e+65J1yzVatW4exJJ50Uyr3//vvhmjNmzAhn\n+/XrF86WlJSEcnv27Anl3A+cv+bj2lg2h5xsLAEAAACgKeXBrLB5hcl7AAAAAACJMGIJAAAAoCAx\nYpkeGksAAAAABYnGMj00lgAAAAAKEo1lemgsAQAAABQkGsv00FgCAAAAKDjMCpsuZoUFAAAAACTC\niCUAAACAgsSIZXpoLAEAAAAUJBrL9IRPhTWzXmb2gpktMrOFZnZrLducY2ZbzOzNzO17yXYXAAAA\nANKx/zrLXLzlmyQjllWSvuHur5tZW0lzzWyGuy+qsd1f3f3iBHUAAAAAIHX52MDlqnBj6e5rJK3J\n3N9mZm9JKpVUs7EEAAAAgJySryODuSqVWWHNrLekkyW9WsvDZ5jZPDN72syOT6MeAAAAACB3JJ68\nx8wOk/SopK+5+9YaD78u6Uh3325mIyX9UVKfOj7POEnjJKlr164666yzQvuzY8eOUO6VV14J5STp\n8ssvD2d37doVyvXo0SNc85133glnTznllHD21Vdr+79D/c4777xwzSR+//vfh3Ldu3cP14wev5L0\nuc99LpxduHBhKPfoo4+Ga27cuDGcraqqCuVWr14drvnYY4+FsxdfHLsa4MUXXwzX7Nu3bzg7a9as\ncLZdu3ah3EsvvRSu+eabb4azAwcODOVKS0vDNYcPHx7ObtiwIZTr169fuOZXvvKVcHbFihXh7Fe/\n+tVQrmXL+EubJH8fo88vTz31VLjmySefHM4OGjQonP3hD38YyiV5Hk3yNyP6HNyiRXz8ZdmyZeFs\n9Gdz9tlnh2smeR0cfR6V4qehtm7dOpQrKipKbR9woEQjlmZWrOqm8kF3P+DZwt23uvv2zP0yScVm\n1rm2z+Xuk9x9oLsPPPzww5PsFgAAAADUq7kn6GHyHklW/dXeJ+ktd/9FHdt0l7TO3d3MBqm6kX03\nWhMAAAAA0pKPDVyuSnIq7KclXS1pvpntPw/p25KOlCR3nyjpc5K+ZGZVkj6QNMbdPUFNAAAAAEgF\njWV6kswK+6Kkj/xJuPuvJP0qWgMAAAAAkPsST94DAAAAAPkmX69lzFU0lgAAAAAKEo1lemgsAQAA\nABQkGsv00FgCAAAAKEg0lumhsQQAAABQkGgs09OiuXcAAAAAAJDfGLEEAAAAUHCYFTZdjFgCAAAA\nKEj7m8tcvCX8ujqa2QwzW5r52KGO7Sab2XozWxDJZ6OxBAAAAFCQmrt5bKrGUtJ4Sc+5ex9Jz2WW\na3O/pOEJ8v9EYwkAAACgIDV389iEjeUoSQ9k7j8g6bLaNnL3WZI2RfPZcvIay/fee0+PPPJIKPvp\nT386lOvYsWMoJ0nbt28PZ909lNu0qbaff8NMmzYtnB09enQ4O2HChFBu9uzZ4ZrnnntuODtkyJBQ\n7rDDDgvXfOaZZ8LZu+++O5w97bTTQrmTTz45XPNvf/tbOPuPf/wjlOvTp0+45muvvRbORr300kvh\nbFlZWTjbtm3bcPb5558P5Vq3bh2u2aVLl3B2zpw5ody6devCNZN8re+8804oN3To0HDNn/zkJ+Fs\nkt+5rVu3hnJHHnlkuGZJSUk4u3r16lAuyeuPJ554IpwtLS0NZ9u1axfORt15553h7BlnnBHKzZ07\nN1zz0EMPDWd3794dyq1atSpcM/r7Jknf/e53w9mrrroqlJs5c2Yot3bt2gPWpdDA5apu7r4mc3+t\npG5Nnc/JxhIAAAAAClxnM8v+D+gkd5+0f8HMZkrqXkvuO9kL7u5mFhvNakSexhIAAABAwUnplNOm\ntNHdB9b1oLtfUNdjZrbOzHq4+xoz6yFpfSNrNzrPNZYAAAAAClJzX0fZhNdYTpN0beb+tZIae+58\no/M0lgAAAAAKUnM3j03YWP5Y0jAzWyrpgsyyzOwIM/vnRAxm9pCklyX1M7NVZnbDR+U/CqfCAgAA\nAChIOX4qbJi7vyvp/FrWr5Y0Mmt5bGPyH4XGEgAAAEBB+rg2ls2BU2EBAAAAAIkwYgkAAACg4OTB\nrLB5hcYSAAAAQEGisUwPjSUAAACAgkRjmR4aSwAAAAAFicYyPTSWAAAAAAoO11imi1lhAQAAAACJ\n5OSI5eGHH66LL744lD3ttNNCuVdffTWUk6QNGzaEs8OGDQvlunfvHq7597//vVmyd911Vyg3ffr0\ncM0kFi1aFMpdd9114ZpJfq633nprODt16tRQbtu2beGaxx57bDh7/fXXh3IPPPBAuOYvf/nLcDbq\n/PMb9b7EH9K3b99wdvny5eHsuHHjQrm77747XPOaa64JZ4uLi0O51157LVyzqqoqnL355pvD2agf\n//jH4ewf/vCHcPbyyy8P5crLy8M1582bF85ecskloVyLFvH/8e/evTuc/fOf/xzOJnl+iUryHPz0\n00+HcnfeeWe45v/8z/+Es7169Qrl5s6dG655+umnh7Pvv/9+OLt48eJQLvr38YUXXjhgHSOW6cnJ\nxhIAAAAAmhqNZXpoLAEAAAAUJBrL9NBYAgAAAChINJbpSTR5j5kNN7MlZlZuZuNredzM7JeZx+eZ\n2SlJ6gEAAABAGvbPCpurt3wTbizNrEjSXZJGSOovaayZ9a+x2QhJfTK3cZJ+E60HAAAAAMhNSU6F\nHSSp3N0rJMnMpkoaJSl7Ks1Rkn7n7i7pFTNrb2Y93H1NgroAAAAAkFg+jgzmqiSNZamklVnLqyQN\nbsA2pZIOaCzNbJyqRzXVpUuXBLsFAAAAAPWjsUxPzkze4+6TJE2SpGOPPdabeXcAAAAAfMzRWKYn\nSWNZKSn7HVx7ZtY1dhsAAAAAOOhoLNOTZFbY2ZL6mNnRZtZK0hhJ02psM03SNZnZYYdI2sL1lQAA\nAACaW3PP+vpxmxU2PGLp7lVmdoukZyQVSZrs7gvN7KbM4xMllUkaKalc0g5J1yXfZQAAAABALkl0\njaW7l6m6ecxeNzHrvkv6cpIaAAAAANAU8nFkMFflzOQ9AAAAAHAw0Vimh8YSAAAAQEGisUyPVZ+t\nmlvMbIOkFXU83FnSxoO4O/j44lhCWjiWkBaOJaSFYwlp+TgdS0e5e5f9C2b2J1V/fblqo7sPb+6d\naKicbCw/ipnNcfeBzb0fyH8cS0gLxxLSwrGEtHAsIS0cS2ioJG83AgAAAAAAjSUAAAAAIJl8bCwn\nNfcO4GODYwlp4VhCWjiWkBaOJaSFYwkNknfXWAIAAAAAcks+jlgCAAAAAHJI3jSWZjbczJaYWbmZ\njW/u/UF+MbPJZrbezBZkretoZjPMbGnmY4fm3EfkPjPrZWYvmNkiM1toZrdm1nMsoVHMrLWZvWZm\nf88cSz/IrOdYQoiZFZnZG2Y2PbPMsYRGM7PlZjbfzN40szmZdRxLaJC8aCzNrEjSXZJGSOovaayZ\n9W/evUKeuV9SzfcBGi/pOXfvI+m5zDLwUaokfcPd+0saIunLmecijiU01i5J57n7SZIGSBpuZkPE\nsYS4WyW9lbXMsYSoc919QNZbjHAsoUHyorGUNEhSubtXuPtuSVMljWrmfUIecfdZkjbVWD1K0gOZ\n+w9Iuuyg7hTyjruvcffXM/e3qfpFXKk4ltBIXm17ZrE4c3NxLCHAzHpKukjSvVmrOZaQFo4lNEi+\nNJalklZmLa/KrAOS6ObuazL310rq1pw7g/xiZr0lnSzpVXEsISBz6uKbktZLmuHuHEuI+i9Jt0na\nl7WOYwkRLmmmmc01s3GZdRxLaJCWzb0DQC5wdzczpkhGg5jZYZIelfQ1d99qZv98jGMJDeXueyUN\nMLP2kh43s0/VeJxjCfUys4slrXf3uWZ2Tm3bcCyhEYa6e6WZdZU0w8wWZz/IsYSPki8jlpWSemUt\n98ysA5JYZ2Y9JCnzcX0z7w/ygJkVq7qpfNDdH8us5lhCmLtvlvSCqq8D51hCY31a0qVmtlzVlwqd\nZ2a/F8cSAty9MvNxvaTHVX05GscSGiRfGsvZkvqY2dFm1krSGEnTmnmfkP+mSbo2c/9aSU80474g\nD1j10OR9kt5y919kPcSxhEYxsy6ZkUqZ2aGShklaLI4lNJK7f8vde7p7b1W/Pnre3f+POJbQSGZW\nYmZt99+XdKGkBeJYQgOZe36MZpvZSFVfQ1AkabK7/99m3iXkETN7SNI5kjpLWifpPyT9UdLDko6U\ntELSaHevOcEP8E9mNlTSXyXN1/+7lunbqr7OkmMJDWZmJ6p6EowiVf+T92F3v93MOoljCUGZU2G/\n6e4XcyyhsczsE6oepZSqL5eb4u7/l2MJDZU3jSUAAAAAIDfly6mwAAAAAIAcRWMJAAAAAEiExhIA\nAAAAkAiNJQAAAAAgERpLAAAAAEAiNJYAAAAAgERoLAEAAAAAidBYAgAAAAAS+f8BY/JkICCpMkkA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1UAAAFbCAYAAAA9aqSfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3WuQ1+Vh9vEb2GVhYQUWBTQIWg8lURnPiYdqSm0i4rka\nkbEmMknjoa2TVoKKlWl1YlNPNSZpYlFrpDZRq5GgJqKSFE/VCiZWRBwPiBBARHZZYFkO+7zoq8zz\nlF3uKx37zHw+r+9v72X3v7/9X7tO2qe7u7sAAABQp+/H/QEAAAD8/8yoAgAACBhVAAAAAaMKAAAg\nYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQKBhVw63trZ2jx49uvqy7u7u6raUUt5+++2oHzRo\nUNSPGDEi6tevXx/1LS0tH+v9ra2tUd/QsEsvt9+wfPnysm7duj47OzNkyJDuUaNGVd/R0dFR3ZZS\nSnNzc9R/+OGHUd+/f/+o33333aN+1apVUb/bbrtF/ebNm6N+06ZN0d1dXV09vj6TZ0hXV1d1W0op\nAwYMiPr0/s7Ozqjv02enn94eJV/fUkrZY489or69vT3qN27cWN1u2bKlbN26daefwJaWlu7hw4dX\n35H+fE2/f4cMGRL1a9eujfrBgwdH/cf9/iD9+JPX95o1a0p7e3uP3+Dpe9D0GbZmzZqo79evX9SP\nHDky6pP3YKXk71EGDhwY9U1NTVHf1tZW3a5bt650dHT0+Brdpc/w6NGjy9y5c6s/qO3bt1e3pZRy\n3nnnRf2nP/3pqL/kkkuiPvnclVLKCSecEPU//vGPo37KlClRn7xpnzhxYo9nRo0aVe64447qOxYs\nWFDdllLKoYceGvWzZ8+O+k984hNR/yd/8idR/41vfCPqe/M13plf/vKXUb9o0aLq9vnnn+/xzIgR\nI8qtt95afcfy5cur21JKOfDAA6N+xYoVUb9kyZKoT39p8PLLL0d9+vyfN29e1L/wwgvV7auvvtrj\nmeHDh5cZM2ZU3/GZz3ymui2ldx/jzkyaNCnq77777qg/9thjo/7hhx+O+gkTJkT9McccE/VPPPFE\ndfv1r3+9V+dGjx5dHn300ep73n333eq2lFK+853vRH06/C+//PKoT37pXEopd911V9SPHz8+6vfb\nb7+of/zxx6vbv/u7v+vVOf/5HwAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAw\nqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEGnbl8JYtW8qbb75Zfdm3vvWt6raUUr7z\nne9E/bx586J+wIABUf/YY49F/fTp06N+6dKlUX/DDTdE/aZNm6rb5cuX93hm+/btZf369dV3nHba\nadVtKaXss88+Ud/R0RH1P/vZz6L+oosuivqrr7466keNGhX16efv7LPPrm4vvPDCHs98+OGHZfbs\n2dV3HHDAAdVtKaX84R/+YdQPHDgw6seOHRv1n/rUp6I+/fefcsopUX/ggQdG/aWXXlrd9ua13dra\nWi644ILqO5JnbymlHHXUUVF/9913R/2aNWuivrGxMernzp0b9S+88ELUP/TQQ1Gf/HzfsWNHr86t\nXLmyzJw5s/qe9D3g+++/H/WrV6+O+quuuirqr7nmmqjv169f1P/N3/xN1M+ZMyfqp06dWt3edddd\nvTrnL1UAAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoA\nACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAoGFXDnd3d5ft27dXX3bSSSdVt6WUsu+++0b9\noEGDon7mzJlRf/jhh0f94MGDo/7999+P+g8++CDqb7rppur2P//zP3s809nZWRYvXlx9R//+/avb\nUkrZsWNH1D/77LNRP3HixI+1f/HFF6N+yJAhUZ9+f7/22mvVbWdnZ49nBg4cWA4++ODqO/bZZ5/q\ntpRSmpqaon7NmjVR/9xzz0X9m2++GfV33HFH1M+aNSvqFy5cGPV77713dfvRRx/1eKatra3MnTu3\n+o7GxsbqtpRShg0bFvVHHnlk1A8dOjTqW1paon7atGlRf9RRR0V9e3t71J9++unV7c0339zrs8nP\n2TPPPLO6LaWU0047Lep/+ctfRv3Xvva1qN+4cWPUp+9he/Mc2pk777wz6pctW1bd9vb9s79UAQAA\nBIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQ\nMKoAAAACRhUAAEDAqAIAAAgYVQAAAIGGXTm8adOm8sorr1Rfduihh1a3pZRy1113RX1XV1fU33zz\nzVG/adOmqF+6dGnUn3DCCVE/duzYqH/ooYeq27a2th7PdHd3l+3bt1ffsWTJkuq2lFIOP/zwqL/g\ngguivqOjI+rHjBkT9em/v7OzM+qbm5ujvqmpqbq99dZbezwzdOjQcuaZZ1bf8cYbb1S3pZTy1FNP\nRX36/N5vv/2ifu7cuVHf0tIS9a2trVG/9957R/2GDRuq2948F5ubm8sRRxxRfceCBQuq21JK2bFj\nR9TvtddeUZ9atGhR1B911FFR/+tf/zrqFy9eHPUHHXRQddvb90Z77bVXue6666rv+dGPflTdlpJ/\njbds2RL1H330UdQfe+yxUZ8+wy+88MKo/8UvfhH1J510UnX79NNP9+qcv1QBAAAEjCoAAICAUQUA\nABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAA\nQMCoAgAACBhVAAAAgYZdOdzZ2VneeOON6svee++96raUUrZv3x71M2fOjPohQ4ZEfVNTU9SPHj06\n6hctWhT1999/f9TvueeeUd+ThoaGsscee1T3q1atiu7/53/+56g/88wzo/7OO++M+iuvvDLqly5d\nGvV9+2a/41m2bFnU/97v/V5125tnU1NTUxk7dmz1HR/38+OVV16J+r322ivq33nnnahPng2l/Nfz\nJfHggw9G/Te/+c3qdu7cuT2e6devX2lpaam+Y/DgwdVtKaWccsopUf/6669H/Y4dO6L+2GOP/Vjv\nT19f27Zti/pDDz20um1ubu7VuS1btpS33367+p4XX3yxui2llIsuuijqOzo6ov7ee++N+sbGxqjf\nsmVL1P/617+O+vRn4KOPPlrdtrW19eqcv1QBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQMCoAgAA\nCBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAgYZdOTxg\nwIAybty46sv++I//uLotpZT77rsv6pcvXx71jY2NUf+LX/wi6hcvXhz1Y8eOjfopU6ZE/Ysvvljd\n9u3b8/4fOHBgOeigg6rv+OpXv1rdllJKnz59oj79/rj44oujfs6cOVF/yimnRP3w4cOjfvDgwVH/\nzDPPVLcdHR09nlm3bl354Q9/WH3Htm3bqttSSjn77LOjvqmpKepHjhwZ9d/+9rejvl+/flE/adKk\nqL/nnnuifu3atdVtb147a9euLXfffXf1HQcffHB1W0r+862zszPqd99996gfMWJE1L/zzjtRv337\n9qi/+uqro/7v//7vq9sPPvigV+caGxvLqFGjqu8566yzqttSShk9enTUpz/jPvvZz0b9zJkzoz59\nhn/00UdRP2zYsKg/44wzqtv777+/V+f8pQoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABA\nwKgCAAAIGFUAAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAINOzK4a6u\nrvL2229XXzZ16tTqtpRS7r333qifMmVK1O+3335R/+yzz0b9008/HfV/9md/FvV77LFH1O+7777V\nbVNTU49nGhsby5577ll9x1VXXVXdllLKo48+GvXXXXdd1B922GFRP3ny5Kj/t3/7t6gfO3Zs1D/y\nyCNRP2HChOq2f//+PZ4ZPnx4+dKXvlR9x5o1a6rbUkpZsmRJ1H/ve9+L+hkzZkR9e3t71KfPz+T5\nVUop9913X9T/5V/+ZXXbm+fnxo0by/PPP199x5e//OXqtpT/+v5IJN9bpZRy0003Rf2yZcuivl+/\nflF/1llnRf1DDz0U9eecc051O3v27F6d69OnT+nbt/5vAZs3b65uSynlmmuuifqBAwdG/fHHHx/1\nHR0dUZ8+w4444oioHzJkSNR3dXVVt93d3b065y9VAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAw\nqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQKBh\nVw4PGzasTJ48ufqytra26raUUn784x9H/fTp06N+48aNUb///vtH/WuvvRb1J598ctQ/8sgjUX/h\nhRdWt/369evxzJo1a8ptt91Wfcfo0aOr21Ly18eXv/zlqH/55ZejftasWVG/evXqqO/q6or6ZcuW\nRf2dd95Z3a5du7bHM+vXr4+eYYcffnh1W0opDzzwQNQPHz486ufMmRP18+fPj/rPfe5zUZ8+vy+6\n6KKoX758eXXbm++tkSNHlmnTplXf8fbbb1e3peQ/nxsbG6P+3Xffjfr3338/6h966KGoP+qoo6L+\nuOOOi/q/+qu/qm5XrlzZq3NdXV29Pvv/MnXq1Oq2lN69D9mZ9D1c+gw766yzov7xxx+P+pNOOinq\n+/TpE/XNzc3VbW+/9v5SBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAASMKgAA\ngIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAAQaduXwqlWryg033FB92bnn\nnlvdllLKXnvtFfXr1q2L+u7u7qhfsWJF1D/zzDNRP2PGjKj/4he/GPWPPfZYdbtq1aoez7S0tJST\nTjqp+o7ddtutui2llAcffDDqr7/++qg/8cQTo/64446L+nnz5kX94sWLo/7ggw+O+p///OfVbWdn\nZ49n2trayty5c6vvmDVrVnVbSimtra1R/8Mf/jDqBw4cGPVjx46N+vT1uWzZsqgfNGhQ1L/xxhvV\n7erVq3s8s3LlyjJz5szqOz75yU9Wt6WUsn79+qjfd999oz79+ixfvjzqd99996hPf/6k31/Jz8++\nfXv3+/3333+/XHHFFdX3TJo0qbotpZSnn3466gcPHhz1vfk5szNLly6N+o8++ijqzzvvvKifNm1a\n1N9///3V7Xvvvderc/5SBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAASMKgAA\ngIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAAQaduXwiBEjyp/+6Z9WX3bq\nqadWt6WUMmfOnKhfvnx51E+dOjXqf+d3fifq58+f/7H2r776atR/+9vfrm7/9V//tcczmzZtKi+/\n/HL1HVdccUV1W0ope++9d9Rff/31Uf8P//APUd/W1hb1n/rUp6L+61//etTffPPNUf/www9Xt2ec\ncUaPZ4YNG1bOO++86jsOP/zw6raUUhYvXhz1N9xwQ9RPnz496mfOnBn1/fv3j/qf/vSnUb9ly5ao\nT17fr7zySo9nxowZEz2j77nnnuq2lFLOP//8qF+6dGnUL1y4MOrPOeecqO/bN/sdd1dXV9TPmzcv\n6pPn/2OPPdarcwceeGD0cd57773VbSmlPPnkk1H/zW9+M+r333//qH/66aejfuLEiVGfvsf4j//4\nj6g/99xzq9vevrf0lyoAAICAUQUAABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAE\njCoAAICAUQUAABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAg0Ke7u7v3h/v0+aCUsux/7sOB\n/9bY7u7uPXZ2wOuTj5HXJ/+beX3yv1mPr89SvEb5WPXuNborowoAAIDf5D//AwAACBhVAAAAAaMK\nAAAgYFQBAAAEjCoAAICAUQUAABBo2JXDAwcO7G5paam+bPv27dXtb0NjY2PUp//z8/369Yv6rVu3\nRn1XV1fUd3Z2Rv3AgQOr202bNpWurq4+OzszYMCA7kGDBlXfMWbMmOq2lFIWL14c9ePGjYv6bdu2\nRX17e3vU79ixI+qTr91vo1+2rP7//cnGjRvLli1bdvr6HDJkSPeIESOq7+jTZ6f/53vUt2/2O7T0\n+ZM+/9KPP/35kzy/SillxYoVUT9kyJDq9oMPPigbNmzY6QuooaGhu6mpqfqO9OuTfv+mX98tW7ZE\nffr6SD9/H3300cd6f/LzZ9u2bWXHjh09PuCGDh3aPWrUqOp70mdo+hpra2uL+uQZUMp/vY9KJJ/7\nUkpZuXJl1KffYw0NuzR5fsOqVatKW1tbjy+gXbqhpaWlfOELX6j+oNatW1fd/jaMHj066tNRMWzY\nsKhftWpV1CdvGkspZcmSJVF/yCGHVLcLFizo8cygQYPKpEmTqu+4/fbbq9tSSjn00EOj/vHHH4/6\ntWvXRv0TTzwR9Zs3b476Y445JuqPPvroqP/qV79a3f7sZz/r8cyIESPKbbfdVn1HOkqSX4iVkv9A\nTN8QDBgwIOo3bNgQ9cnzq5RSrr766qj//Oc/X91ee+21PZ5pamoqBx10UPUdySArpZTPfOYzUb9+\n/fqof+utt6I+fX00NzdH/cMPPxz16dcveX+3evXqXp0bNWpUueOOO6rvSf+N6Wvspz/9adQn729K\nKeWll16K+quuuirq//qv/zrq0188J7/UvPjii3t1zn/+BwAAEDCqAAAAAkYVAABAwKgCAAAIGFUA\nAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABAwKgCAAAIGFUAAACBhl05PHDgwDJ+\n/PjqyyZNmlTdllLKhAkTov4Tn/hE1F988cVRn/77N23aFPUTJ06M+lGjRkV9S0tLdfvv//7vPZ7Z\nc889y9VXX119x4knnljdllLK/fffH/Wtra1Rn76+Pvzww6hPP3/XXntt1J9++ulR/8gjj1S3Rx55\nZI9nVqxYUa688srqOwYMGFDdllLK97///ahfuHBh1L/wwgtRf9ppp0V9Y2Nj1F9xxRVRv3jx4qhf\nuXJldXvjjTf2eGbgwIHlkEMOqb7jS1/6UnVbSilf+cpXor43/8adeeKJJ6I+eX6UUspDDz0U9W+8\n8UbUjxw5MupXr15d3c6fP79X5/r27Vt222236nvOOuus6raUUn7yk59E/QEHHBD1++23X9Sn71GO\nP/74qF+xYkXUn3/++VHf2dlZ3a5fv75X5/ylCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUA\nAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAg07Mrh\nwYMHl2OPPbb6sltuuaW6LaWUH/zgB1E/dOjQqG9tbY36BQsWRP2sWbOiftSoUVH/0ksvRf2WLVuq\n2+7u7h7PfPjhh9Fr5Itf/GJ1+9uQfn+MGzfut/SR1Em/v2677bao33fffaP+ueeeq247Ojp6PDNs\n2LAyefLk6jteffXV6raUUhobG6N+5MiRUT916tSoHzJkSNQ/+eSTUX/qqadG/VtvvRX169evr263\nbt0a3d0bo0ePjvqHH3446tvb26P+9ttvj/pLL7006jds2BD106ZNi/r0+f3d7363uu3ts6m7uzt6\nH/HKK69Ut6WU8s4770R9+gzp2zf7O0hzc3PUn3zyyVGfvoc+4ogjon7MmDHV7VNPPdWrc/5SBQAA\nEDCqAAAAAkYVAABAwKgCAAAIGFUAAAABowoAACBgVAEAAASMKgAAgIBRBQAAEDCqAAAAAkYVAABA\nwKgCAAAIGFUAAAABowoAACBgVAEAAAQadulwQ0PZfffdqy/7i7/4i+q2lFI+/PDDqG9tbY369vb2\nqG9qaor6zZs3R/2mTZui/vbbb4/69957r7p97rnnejyz2267lT/4gz+ovqNPnz7VbSmlLFu2LOr3\n3XffqF++fHnUX3zxxVG/cOHCqB83blzUL1myJOoXL15c3XZ0dPR4prGxsYwcObL6jjfffLO6LaWU\nV199NepXrlwZ9eecc07Uz5o1K+pHjRoV9YMGDYr62bNnR/3rr79e3a5atarHMy0tLeWEE06ovuP5\n55+vbksp5Xd/93ejfseOHVF/9dVXR33yuSullJdeeinqDzvssKjfunVr1Dc07NLbyd/Q25+9mzdv\njp5jL7/8cnVbSv41vvHGG6P+8ssvj/r0PU5jY2PUH3jggVHf0tIS9QsWLKhue/MzvhR/qQIAAIgY\nVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBU\nAQAABIwqAACAgFEFAAAQMKoAAAACDbt0uKGhtLa2Vl+2devW6raUUq688sqo33PPPaP+nXfeifqZ\nM2dG/fXXXx/1XV1dH2s/bty46nbAgAE9nhk8eHA5/vjjq+/43ve+V92WUspZZ50V9c3NzVG/YcOG\nqP/Rj34U9dOmTYv6K664IuoPO+ywqB80aFB127dvz7+fGjx4cDnuuOOq7xg5cmR1W0qJvjdKKeWx\nxx6L+qampqhfvXp11CfPn1JKaWtri/oTTjgh6q+66qrq9phjjunxTHt7e3nyySer77jsssuq21JK\nGTp0aNSnz6+JEydGfWdnZ9QPGzYs6vfZZ5+onzVrVtS3t7dXt9u3b+/Vuc2bN5fXXnut+p4zzzyz\nui2llFtuuSXqL7300qhPn6GXXHJJ1P/kJz+J+vHjx0d9+j32+7//+9VtS0tLr875SxUAAEDAqAIA\nAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAA\nIGBUAQAABIwqAACAgFEFAAAQaNiVw6tXry633HJL9WUDBgyobksp5c///M+j/rvf/W7UX3fddVHf\n1NQU9T/4wQ+i/uWXX476G2+8MeoXL15c3XZ2dvbqzNKlS6vvOO2006rbUkp59913o36//faL+u9/\n//tRP3/+/Kh/4oknov6www6L+smTJ0f9kiVLqtvm5uYez3R2dkZ3DB48uLotpZTx48dH/YUXXhj1\nyb+9lPz7a8eOHVG/Zs2aqN+2bVvUz5s3r7pduXJlj2eGDh1azjjjjOo70q9PasKECVGfPj/T58/E\niROjfurUqVF/9913R/3atWur2+eff75X5/bcc88yY8aM6ntS06dPj/rW1taov/7666P+05/+dNRv\n3LjxY+3/5V/+Jer33nvv6ratra1X5/ylCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDA\nqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAg07MrhdevW\nlfvuu6/6stGjR1e3pZQyfvz4qN+2bVvUNzTs0qfr//Lss89G/ZgxY6L+s5/9bNQfeeSRUT9y5Mjq\ndtmyZT2eaWxsLKNGjaq+o6Ojo7otpZTPf/7zUX/IIYdE/aRJk6J++vTpUZ9+/vr16xf16ef/lltu\nqW5Xr17d45mWlpYyYcKE6jumTJlS3ZZSygMPPBD1ixYtivprr7026o844oionzFjRtS/8sorUf+V\nr3wl6h955JHqds6cOb06t2PHjuo77rjjjuq2lFLmz58f9VdddVXUH3300VHf0tIS9bNnz476Sy65\nJOqvvPLKqD/44IOr2/b29l6d27JlS3nrrbeq75k1a1Z1+9vo059RTU1NUf/6669HfXd3d9RfdNFF\nUX/66adHff/+/avbQYMG9eqcv1QBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQMCoAgAACBhVAAAA\nAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAgYZdOdzc3FyOOOKI\n6sumT59e3ZZSypw5c6L+sssui/onn3wy6ru7u6N++PDhUT9z5syo/9znPhf1W7durW4XL17c45mN\nGzeWl156qfqOxsbG6raUUh544IGoHzp0aNS3trZGfUPDLj0O/i8jR46M+o0bN0b91KlTo/4LX/hC\ndbtw4cIez6xbt67Mnj27+o5zzjmnui2llHfffTfqV6xYEfXnnXde1C9atCjq58+fH/WjR4+O+vT5\nsGrVquq2N8/ehoaGsscee1TfMWrUqOq2lFJOPfXUqP/ggw+ifty4cVHf3t4e9RMmTIj6YcOGRf2y\nZcui/vzzz69uH3zwwV6d6+joKM8880z1Pf369atuS8mfYenPyKampqgfNGhQ1Le1tUX95ZdfHvXp\ne5QRI0ZUt2vWrOnVOX+pAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAJGFQAA\nQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAICAUQUAABAwqgAAAAINu3J469atZfXq1dWX/epX\nv6puSyllxowZUb9t27aoTz/+9evXR/0111wT9d/61reifubMmVH/5JNPVrebN2/u8UxbW1t5/PHH\nq++48MILq9tSSjn55JOj/oQTToj6r33ta1F/0003Rf2YMWOiftOmTVH//vvvR/2NN95Y3fbmudjZ\n2VneeOON6jv22Wef6raUUo4++uionzx5ctQPHTo06keMGBH1L774YtQ3NTVF/ZQpU6J++fLl1W1b\nW1uPZ1atWhV9D1xyySXVbSmlPPDAA1Gffn1PP/30qH/qqaeivl+/flHfm6/xzqxZsybq33333ep2\n1apVvTrX3t5e5s2bV33PkCFDqttS8mfYPffcE/Xnnntu1Pf28/zf6e7ujvrBgwdH/cKFC6P+zTff\nrG47Ojp21hvVAAACVUlEQVR6dc5fqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoA\nAICAUQUAABAwqgAAAAJGFQAAQMCoAgAACBhVAAAAAaMKAAAgYFQBAAAEjCoAAIBAw64c3meffcrd\nd99dfdltt91W3ZZSyrRp06J+//33j/oNGzZE/THHHBP1Y8aMifrOzs6oTz3zzDPV7ZQpU3o809zc\nXMaPH199x4EHHljdllLKZZddFvXbtm2L+r322ivq//Ef/zHqr7jiiqifOXNm1L/00ktR/6tf/aq6\n/ad/+qcez7S0tJQTTzyx+o4FCxZUt6WUcuutt0b9q6++GvV/+7d/G/WnnHJK1B9wwAFR//bbb0f9\nokWLor65ubm67du359+fjhw5slx++eXVdzzxxBPVbSn5z9dx48ZF/WOPPRb1n/zkJ6P++eefj/r0\n+f9Hf/RHUZ+8v/r5z3/eq3Otra1l8uTJ1fekz9Czzz476vv37x/1XV1dUZ8aMGBA1F9wwQVRn36P\ntba2Vrff+MY3enXOX6oAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAgFEFAAAQ\nMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIGBUAQAABIwqAACAQJ/u7u7eH+7T54NSyrL/uQ8H\n/ltju7u799jZAa9PPkZen/xv5vXJ/2Y9vj5L8RrlY9W71+iujCoAAAB+k//8DwAAIGBUAQAABIwq\nAACAgFEFAAAQMKoAAAACRhUAAEDAqAIAAAgYVQAAAAGjCgAAIPB/ANW7+ybtMOrgAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOgAAAHICAYAAAD0q9V4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuUnWV58P/rJgk5DjmSBAinIhQRKULEY1EpKgERcHlA\nfhaFVxEPLa8tyMmatrhqrYpFRTFFqEqtogWJGOQg1IJCTTgoEjkJxBBMQkgyIYdJCHl+fzD7fUcW\nvJmdXDt3h/l81ppFZubZ37mHzDN7z53rmV2apgkAAAAAoI7tai8AAAAAAAYzG3QAAAAAUJENOgAA\nAACoyAYdAAAAAFRkgw4AAAAAKrJBBwAAAAAV2aADAAAAgIps0AEAAABARTboAAAAAKCioe0cPGHC\nhGbatGmpC2iaJrXX8tBDD6U3R48end6cPHlyenPlypXpzYiIrq6u9GYn1jphwoT0ZkTE0KFtnS6b\ntXDhwli+fHnp7/Fjx45tpk6dmrqG1atXp/ZaRo0ald584okn0pvbb799enPSpEnpzYiIxYsXpzd3\n2GGH9Oa6devSmxERa9euTe2tW7cuNmzY0Nb5l/39esOGDam9lhEjRqQ3O7HWnp6e9GYp/f4rbUv2\n119ExI477pjeXLVqVXozImLNmjWpvfXr18dTTz3V1l9WV1dXM3HixNR1dOJxXURnvg+OHTs2vbls\n2bL05pgxY9KbEZ15vNiJx7Wd+vyzz+2lS5fGqlWr+n0OduJnwE7dBy5dujS9OWTIkPTmlClT0pvZ\nP6u0dOIx+MiRI9Obw4cPT29GRHR3d6f2li9fHqtXr+7MA5YBrJTSmY2hiGubpjmiQ+10bZ3F06ZN\ni6uvvjp1AU8//XRqr+Vd73pXevMVr3hFevNDH/pQejP776jl0EMPTW/+4Ac/SG+ecMIJ6c2I/I2X\nGTNmtHX81KlTY9asWalruPnmm1N7LQceeGB687LLLktv7rLLLunNU045Jb0ZEfEP//AP6c12vwb7\n45e//GV6MyLizjvvTO3deuutbR0/efLk+MIXvpC6hoULF6b2WvbZZ5/05qJFi9Kb9957b3qzE5vu\nERG33357erMT9//XX399ejMi4rbbbkvt3X333W3fZuLEiXHuueemruOVr3xlaq9lSz6/zTnqqKPS\nm5deeml689WvfnV6MyLiyiuvTG8edthh6c1XvepV6c2IiOuuuy619/GPf7yt46dNmxY/+tGPUtfw\nyCOPpPZaLrzwwvRmJzbITzvttPRm9j/kt1xyySXpzQMOOCC9uddee6U3IyKuueaa1N4//dM/pfbY\nrM5MT3SIS1wBAAAAoKLOzMECAAAAQD904leVdOpXqnWKDToAAAAAqrFB5xJXAAAAAKjKBB0AAAAA\n1XRigm6gMUEHAAAAABWZoAMAAACgGhN0NugAAAAAqKSUYoMuXOIKAAAAAFWZoAMAAACgGhN0JugA\nAAAAoCoTdAAAAABUY4LOBB0AAAAAVGWCDgAAAIBqTNDZoAMAAACgIht0LnEFAAAAgKpM0AEAAABQ\nRSnFBF2YoAMAAACAqkzQAQAAAFCNCbo2N+jWr18fDzzwQOoCvvjFL6b2Wi688ML05vXXX5/eHDFi\nRHpzzpw56c2IiDPPPDO9ef/996c3P/3pT6c3IyLWrl2b2lu4cGFbxz/99NOxcuXK1DUcffTRqb2W\nPfbYI725evXq9Oa1116b3jzppJPSmxER55xzTnpz6tSp6c1O/D1FRLztbW9L7Z144oltHf/EE0/E\nZZddlrqGvffeO7XX8sY3vjG9OXLkyPTm7rvvnt7cb7/90psRnfl/euSRR6Y399lnn/RmRMSHP/zh\n1N6WnM8TJkyI97znPanryL5PbXn5y1+e3rz00kvTm0uXLk1vDhs2LL0ZEXH11VenN2+77bb05hVX\nXJHejMh/DLpp06a2jn/sscdi5syZqWvoxM9VERGPPvpoenPJkiXpzbPPPju9+YlPfCK9GRExZMiQ\n9Obf//3fpzdnz56d3oyIOPnkk1N7l1xySWrvhcQGnUtcAQAAAKAql7gCAAAAUI0JOhN0AAAAAFCV\nCToAAAAAqjFBZ4MOAAAAgEpKKTbowiWuAAAAAFCVCToAAAAAqjFBZ4IOAAAAAKqyQQcAAABANa3f\nQ5f50o+PeUQp5b5SyoOllLOe4/3/XynlV6WUu0spPy+l/El/b7slXOIKAAAAQDXb+hLXUsqQiLgw\nIt4YEY9GxNxSyuymaeb3OezhiHhd0zQrSikzImJWRLyin7dt22Yn6Eopp5RS5pVS5q1cuXJrPhbQ\npr7n36pVq2ovBwaVvuff+vXray8HBp2+5+CyZctqLwcGlb7nX09PT+3lAHTCIRHxYNM0DzVNsyEi\nvhMRx/Q9oGmanzdNs6L31dsiYlp/b7slNrtB1zTNrKZppjdNM33cuHFb+/GANvQ9/3bYYYfay4FB\npe/5N3z48NrLgUGn7zk4adKk2suBQaXv+TdixIjaywEGgQ5d4jqp9Y8NvS+n9PmQu0TEwj6vP9r7\ntufzvyLimi28bb+4xBUAAACAF5plTdNM39pIKeUN8cwG3Wu3fknPzwYdAAAAAFX090kdki2KiF37\nvD6t921/oJRyQERcHBEzmqZ5op3btsuzuAIAAAAwmMyNiL1LKXuWUraPiOMjYnbfA0opu0XEFRHx\n503T3N/ObbeECToAAAAAqtnWE3RN02wspXw0Iq6NiCERcUnTNPeUUk7tff9FEfHJiJgYEV/pXd/G\n3t/P+Zy33do12aADAAAAoJoKl7hG0zRzImLOs952UZ8/vz8i3t/f224tl7gCAAAAQEUm6AAAAACo\npsYE3f80JugAAAAAoCITdAAAAABUY4KuzQ26pmni6aefTl3A4Ycfntpr2XPPPdObo0ePTm/OnDkz\nvXnQQQelNyMixowZk9589NFH05uPP/54ejMi4nOf+1xq79e//nVbx/f09MT8+fNT17D99tun9lo2\nbdqU3vzZz36W3pwxY8aAaEZE/OIXv0hvjh07Nr3Zie+TERH33LPVT4r0B3p6eto6fuTIkbH//vun\nrmGPPfZI7bUMHz48vbl06dL05s9//vP05gMPPJDejIiYNWtWevPiiy9Ob95xxx3pzYiIXXfdNbW3\nYsWKtm/T3d0dV199deo6hg0bltprGT9+fHpz+vTp6c1x48alN7u6utKbERFnnHFGevPlL395enPV\nqlXpzYiIt771ram9z3/+823fJvux3bHHHpvaazn66KPTm7/85S/Tmx/72MfSm2vWrElvRnTmZ8st\nuR/YnK9//evpzYiIBQsWpPY68fPvC0EpxQZduMQVAAAAAKpyiSsAAAAA1ZigM0EHAAAAAFWZoAMA\nAACgGhN0NugAAAAAqMgGnUtcAQAAAKAqE3QAAAAAVGOCzgQdAAAAAFRlgg4AAACAKkopJujCBB0A\nAAAAVGWCDgAAAIBqTNDZoAMAAACgIht0LnEFAAAAgKpM0AEAAABQjQk6E3QAAAAAUJUJOgAAAACq\nMUFngw4AAACASkopNujCJa4AAAAAUJUJOgAAAACqMUFngg4AAAAAqmprgm7t2rVx1113pS7gwAMP\nTO21XHLJJenNDRs2pDc///nPpzfXrl2b3oyIuP/++9Obhx56aHpz9913T29GRFxxxRWpve7u7raO\nb5omnn766dQ13Hvvvam9loMOOii9+Z73vCe9uXr16vTmbrvtlt6M6Mz/056envTmqFGj0psREcOH\nD0/tfeELX2jr+HHjxsWxxx6buob77rsvtdfyk5/8JL3ZifvqvfbaK7159dVXpzcjIrq6utKbEyZM\nSG/uuuuu6c2IiCeffDK1tyX3ZaNGjYqDDz44dR0333xzaq9l06ZN6c2dd945vdkJd955Z0e6L3/5\ny9Obv//979Ob8+fPT29GRLzkJS9J7bX7s8LOO+8c5513Xuoavvvd76b2WjrxNbh+/fr05ooVK9Kb\nr371q9ObEZ25vz7xxBPTmz/96U/TmxERhx9+eGrvxhtvTO29kJigc4krAAAAABXZoHOJKwAAAABU\nZYIOAAAAgGpM0JmgAwAAAICqTNABAAAAUEUpxQRdmKADAAAAgKpM0AEAAABQjQk6G3QAAAAAVGSD\nziWuAAAAAFCVCToAAAAAqjFB148JulLKKaWUeaWUeWvWrNkWawJ6Of+gnr7n34oVK2ovBwadvufg\n8uXLay8HBhXnH8C2t9kNuqZpZjVNM71pmumjR4/eFmsCejn/oJ6+59/48eNrLwcGnb7n4IQJE2ov\nBwYV5x+wrZVS0l8GGpe4AgAAAFDFQN1Qy+ZJIgAAAACgIhN0AAAAAFRjgs4EHQAAAABUZYIOAAAA\ngGpM0NmgAwAAAKAiG3QucQUAAACAqkzQAQAAAFCNCbo2N+h6enrivvvuS13A7373u9Rey9NPP53e\nnDlzZnpz7Nix6c3hw4enNyMipk2blt68884705uXX355ejMiYqeddupIt7+GDh0aO+64Y2pz8eLF\nqb2Wf/u3f0tvHnvssenNr3/96+nNs846K70ZEXH//fenN7fbLn+IesGCBenNiIg//dM/Te21ex8x\nfPjw2H333VPXMJC+V991113pzZ133jm9+fDDD6c3IyL9e2/EM9/Ts33/+99Pb0ZEfOYzn0ntXX31\n1W3fZsiQIdHV1ZW6jjFjxqT2Wo488sj05m9+85v05qZNm9Kbr371q9ObEZ1ZayfOl40bN6Y3IyIO\nPPDA1N6oUaPaOn79+vXx0EMPpa7hF7/4RWqv5aSTTkpvrl69Or35rW99K705bNiw9GbEM3//2X7/\n+9+nNzv1uOpHP/pRaq+7uzu1xwuLCToAAAAAqiilmKALv4MOAAAAAKoyQQcAAABANSbobNABAAAA\nUJENOpe4AgAAAEBVJugAAAAAqMYEnQk6AAAAAKjKBB0AAAAA1Zigs0EHAAAAQCWlFBt04RJXAAAA\nAKjKBh0AAAAA1bSm6DJf+vExjyil3FdKebCUctZzvH/fUsqtpZT1pZTTn/W+R0opd5dS7iqlzMv4\nf+ASVwAAAAAGjVLKkIi4MCLeGBGPRsTcUsrspmnm9zlseUT8ZUQc+zyZNzRNsyxrTSboAAAAAKim\nwgTdIRHxYNM0DzVNsyEivhMRx/Q9oGmapU3TzI2IpzrzWf8hG3QAAAAAVFNhg26XiFjY5/VHe9/W\nX01E3FBKub2Uckqbn+5zcokrAAAAAC80k571++FmNU0zK6n92qZpFpVSJkfE9aWUe5um+a+tCdqg\nAwAAAKCa/jypwxZY1jTN9Od536KI2LXP69N639YvTdMs6v3v0lLKlfHMJbNbtUHnElcAAAAABpO5\nEbF3KWXPUsr2EXF8RMzuzw1LKaNLKV2tP0fEmyLi11u7IBN0AAAAAFTRz98Zl6ppmo2llI9GxLUR\nMSQiLmma5p5Syqm977+olDI1IuZFxA4RsamU8r8jYr+ImBQRV/aueWhEfLtpmh9v7Zps0AEAAAAw\nqDRNMyci5jzrbRf1+fPieObS12dbFRF/kr0eG3QAAAAAVLOtJ+j+J7JBBwAAAEA1Nuja3KAbMWJE\n7LvvvqkL+PM///PUXsu3v/3t9ObChQvTm8OGDUtv/vSnP01vRkTMnz8/vbn77runN0844YT0ZkTE\nL37xi9Tedtu19xwtI0eOjJe85CWpa/jgBz+Y2mvpxDfXTnyvOPXUU9Obs2f36/eKtu3II49Mb06c\nODG9OWbMmPRmRMQtt9yS2lu9enVbxy9fvjy+853vpK5h48aNqb2Wt73tbenN4cOHpzenTJmS3vzy\nl7+c3oyIGDJkSHrzqKOOSm9+4xvfSG9GRCxbtiy1tyVf+8uWLYtLL700dR37779/aq+lE4+Xenp6\n0puTJk1Kb06ePDm9GRHx8MMPpzeffvrp9OY555yT3oyI+Od//ufU3uOPP97W8cOGDYupU6emruG4\n445L7bVMm/ZcV6JtnU48Xnr961+f3pw5c2Z6M6Iz99crVqxIb44fPz69GRFxzDHHpPYuv/zy1B4v\nLCboAAAAAKjGBF1EeyM8AAAAAEAqE3QAAAAAVGOCzgYdAAAAAJWUUmzQhUtcAQAAAKAqE3QAAAAA\nVGOCzgQdAAAAAFRlgg4AAACAakzQ2aADAAAAoCIbdP24xLWUckopZV4pZd6aNWu2xZqAXn3Pv5Ur\nV9ZeDgwqfc+/J598svZyYNDxGBTq6Xv+rVixovZyAAaFzW7QNU0zq2ma6U3TTB89evS2WBPQq+/5\nN27cuNrLgUGl7/nX1dVVezkw6HgMCvX0Pf/Gjx9feznAIFBKSX8ZaDxJBAAAAABU5HfQAQAAAFDF\nQJ14y2aCDgAAAAAqMkEHAAAAQDUm6GzQAQAAAFCRDTqXuAIAAABAVSboAAAAAKjGBJ0JOgAAAACo\nygQdAAAAANWYoGtzg27Dhg3x0EMPpS7g5JNPTu21fOtb30pvnnDCCenNvfbaK735s5/9LL0ZEXHj\njTemN//iL/4ivbnjjjumNyMi9txzz9Te8OHD2zp+2LBhsdNOO6Wu4eyzz07ttfzoRz9Kb5533nnp\nzZe97GXpzeOPPz69GRHxX//1X+nN3XffPb151VVXpTcjIg477LDU3vbbb9/W8RMnToz3ve99qWtY\nunRpaq/l3nvvTW9edNFF6c1zzz03vblq1ar0ZkRn7v+y71MiIr797W+nNyMi/vqv/zq11+79X0TE\nmjVr4tZbb01dx/vf//7UXsvEiRPTm9nffyIiPve5z6U3FyxYkN6MiBgyZEh687jjjktvXnHFFenN\niIi3v/3tqb3LLrusreNLKbHddrkXXq1bty611/KJT3wivTly5Mj05mtf+9r05urVq9ObEZ25bzn4\n4IPTm2PHjk1vRjyzB5KpaZrU3gtFKcUGXbjEFQAAAACqcokrAAAAANWYoDNBBwAAAABVmaADAAAA\noBoTdDboAAAAAKjIBp1LXAEAAACgKhN0AAAAAFRjgs4EHQAAAABUZYIOAAAAgCpKKSbowgQdAAAA\nAFRlgg4AAACAakzQ2aADAAAAoCIbdC5xBQAAAICqTNABAAAAUI0JOhN0AAAAAFCVCToAAAAAqiil\nmKALG3QAAAAAVGSDziWuAAAAAFCVCToAAAAAqjFBZ4IOAAAAAKpqa4Ju/Pjxcfzxx6cuoLu7O7XX\n8oMf/CC9eeaZZ6Y316xZk9580YtelN6MiLjnnnvSm0cccUR686qrrkpvRkSceOKJqb0hQ4a0dfzS\npUvjggsuSF3DtGnTUnstnfi6fv/735/evP3229ObF198cXozImLJkiXpzQ0bNqQ3FyxYkN6MiPj6\n17+e2lu2bFlbx69cuTL9fuWggw5K7bV873vfS29OnDgxvTl79uz05k033ZTejIh405velN7sxH31\nSSedlN6MiFi4cGFqb0u+90yZMiXOOOOM1HU89NBDqb2WTjxeHDZsWHrzkUceSW8++uij6c2IiCuu\nuCK9+fKXvzy9+ZrXvCa9GRHxN3/zN6m9xx57rK3jN2zY0PZtNufkk09O7bW0+/i6PzrxM1An7leO\nO+649GZExDXXXJPePPzww9ObnZq+GjVqVGqvE1+jLxQm6FziCgAAAEBFNuhc4goAAAAAVZmgAwAA\nAKCKUooJujBBBwAAAABVmaADAAAAoBoTdCboAAAAAKAqE3QAAAAAVGOCzgYdAAAAABXZoHOJKwAA\nAABUZYIOAAAAgGpM0PVjgq6UckopZV4pZV53d/e2WBPQq+/5t27dutrLgUGl7/m3atWq2suBQafv\nObhy5cray4FBxc+AANveZjfomqaZ1TTN9KZppo8dO3ZbrAno1ff8GzlyZO3lwKDS9/zbYYcdai8H\nBp2+5+C4ceNqLwcGFT8DAttSKaUjLwON30EHAAAAQDU1NuhKKUeUUu4rpTxYSjnrOd6/bynl1lLK\n+lLK6e3cdkvYoAMAAABg0CilDImICyNiRkTsFxHvLqXs96zDlkfEX0bE57bgtm2zQQcAAABANRUm\n6A6JiAebpnmoaZoNEfGdiDim7wFN0yxtmmZuRDzV7m23hA06AAAAAAaTXSJiYZ/XH+19W6dv+7yG\nbm0AAAAAALZUh57UYVIpZV6f12c1TTOrEx8ogw06AAAAAKrp0AbdsqZppj/P+xZFxK59Xp/W+7b+\n2JrbPi+XuAIAAAAwmMyNiL1LKXuWUraPiOMjYvY2uO3zMkEHAAAAQBX9fFKHVE3TbCylfDQiro2I\nIRFxSdM095RSTu19/0WllKkRMS8idoiITaWU/x0R+zVNs+q5bru1a2prg27x4sXx6U9/ems/5h94\nxzvekdpr2XnnndOby5cvT282TZPeXLRoqycrn9Mtt9yS3jz33HPTm+9973vTmxERc+bMSe0tXry4\nreO7urri8MMPT13DDjvskNpr+f73v5/e/NSnPpXefN3rXpfefM1rXpPejIi4/vrr05vz589Pb+6/\n//7pzYiI//zP/0zt9fT0tHV8d3d3XH311alruPjii1N7LRMmTEhvfuc730lvjhw5Mr25++67pzcj\nOnP+LViwIL05evTo9GZExH333ZfaW7JkSdu3eeyxx2LmzJmp63jxi1+c2mtZuXJlenPPPfdMb3bi\n62XhwoWbP2gLTJo0Kb3ZiccqnfoelP14bbvt2ruI6tFHH43TTz89dQ1HHXVUaq/lxhtvTG+OGTMm\nvdnu45D+uP/++9ObERErVqxIb77rXe9Kb55xxhnpzYiIyy+/PLX3u9/9LrXH1mmaZk5EzHnW2y7q\n8+fF8czlq/267dYyQQcAAABANdt6gu5/Iht0AAAAAFRjg86TRAAAAABAVSboAAAAAKjGBJ0JOgAA\nAACoygQdAAAAANWYoDNBBwAAAABVmaADAAAAoIpSigm6sEEHAAAAQEU26FziCgAAAABVmaADAAAA\noBoTdCboAAAAAKAqE3QAAAAAVGOCzgYdAAAAABXZoHOJKwAAAABUZYIOAAAAgCpKKSbowgQdAAAA\nAFRlgg4AAACAakzQ2aADAAAAoCIbdC5xBQAAAICqTNABAAAAUI0JujY36CZPnhwf/ehHUxfwlre8\nJbXXMnv27PTmwoUL05snn3xyevOP/uiP0psRETfddNOAaN59993pzYiIL3/5y6m9//iP/2jr+LVr\n18btt9+euobTTz89tdey6667pjc/9alPpTe/+tWvpje7u7vTmxER++23X3rz4x//eHrz85//fHoz\nIuLKK69M7R1zzDFtHT9+/Ph417velbqGgw46KLXXMn/+/PTmpz/96fTmmWeemd6cOXNmejMiYvvt\nt09v/vjHP05vrl+/Pr0ZkX9e33XXXW3fZrfddku/H/7GN76R2mt597vfnd68//7705t33HFHevPt\nb397ejMiYrvt8i/62bBhQ3rz+uuvT29G5D8GmDNnTlvH77PPPumf27e+9a3UXssNN9yQ3vzMZz6T\n3nzRi16U3rzxxhvTmxERM2bMSG924vHyvHnz0psREe94xztSe9k/z/HCYoIOAAAAgGpM0PkddAAA\nAABQlQk6AAAAAKoopZigCxt0AAAAAFRkg84lrgAAAABQlQk6AAAAAKoxQWeCDgAAAACqMkEHAAAA\nQDUm6GzQAQAAAFCRDbp+XOJaSjmllDKvlDKvu7t7W6wJ6NX3/Fu7dm3t5cCg4v4P6up7Dq5YsaL2\ncmBQ6Xv+LVu2rPZyAAaFzW7QNU0zq2ma6U3TTB87duy2WBPQq+/5N2rUqNrLgUHF/R/U1fccHD9+\nfO3lwKDS9/ybNGlS7eUAL3CllI68DDSeJAIAAAAAKvI76AAAAACoZiBOvGWzQQcAAABANTboXOIK\nAAAAAFWZoAMAAACgGhN0JugAAAAAoCoTdAAAAABUY4LOBB0AAAAAVGWCDgAAAIAqSikm6CKiNE3T\n/4NLeTwiFvTj0EkRsWxLF7WNDZS1DpR1RgyctdZe5+5N0+zY34PbOP8i6n9u/WWd+QbKWmuv0/k3\ncNYZMXDWOlDWGVF3rW2dfxEeg1Zmnflqr7VT94G1P692DJS1DpR1RgyctdZeZ9v3gYPBzjvv3Lz/\n/e9P75533nm3N00zPT3cIW1N0PX3C6mUMm+g/E8YKGsdKOuMGDhrHSjrbGnzgdSA+NysM99AWetA\nWWeL86+ugbLWgbLOiIG11giPQWuyznwDaa0Rzr+aBso6IwbOWgfKOhmcXOIKAAAAQDUucfUkEQAA\nAABQVacm6GZ1qNsJA2WtA2WdEQNnrQNlnVtioHxu1plvoKx1oKxzSwyUz22grDNi4Kx1oKwzYmCt\ntR0D6fMaKGu1znwDaa3tGEif10BZ60BZZ8TAWetAWeegY4KuzSeJAAAAAIAsO++8c/PBD34wvfu3\nf/u3A+pJIlziCgAAAAAVeZIIAAAAAKoopbjENUzQAQAAAEBVJugAAAAAqMYEXZsbdCNHjmy6urpS\nF/D000+n9jpp2LBh6c1OPEnHkCFD0psREU899VR6c8OGDenNnp6e9GZExMiRI1N7a9eujQ0bNvT7\nu9CIESOa0aNHp65ht912S+21zJ8/P7257777pjc3btyY3ly1alV6MyJi06ZN6c3sr6dONSMiFixY\nkNpbs2ZNrF+/vt/n39ixY5vJkyenrqFTD0K22y5/OL4T3/87cV/Vic89ojOPVbLvUyIiFi1alN6M\niBg7dmxq7/HHH48nn3yyrRNg6NChzfDhw1PX0amvl058H+zE1+D69evTm534uo7ozN/VihUr0pud\n+prKfryycePG2LRpU7/PwXHjxjVTp05NXUOn7gM7ca50d3enN7O/r0Y887NFJ2T/3UdEPPbYY+nN\nTn3/GTo0d6Zp8eLF0d3dbSfqOdiga3ODrqurK975znemLmD58uWpvU6aNm1aerMTm0njx49Pb0Y8\n880kW/YP3RER9957b3ozIuKlL31pau/mm29u6/jRo0fHUUcdlbqGL33pS6m9lgMPPDC9ec0116Q3\nly1blt687rrr0psREevWrUtvvupVr0pvHnLIIenNiIjsZ3W69tpr2zp+8uTJccEFF6SuoVP/mJL9\nD2kRnXmn30dIAAAceElEQVQg3YkfTkaMGJHejIh48skn05vZ9ykREeecc056MyLizW9+c2rvk5/8\nZNu3GT58eLzkJS9JXUf2hl/LK1/5yvTmypUr05u//e1v05ud+LqOiBg1alR688orr0xvduprKvvn\npSVLlrR1/NSpU2PWrFmpa+jU/6tOnCs//vGP05vZj+kjIubOnZvejIg4++yz05t/93d/l97sxD/m\nRzzzGDDTqaeemtrjhcUlrgAAAABUY4LOk0QAAAAAQFUm6AAAAACoxgSdCToAAAAABplSyhGllPtK\nKQ+WUs56jveXUsoXe9//q1LKQX3e90gp5e5Syl2llHkZ6zFBBwAAAEAVpZRtPkFXShkSERdGxBsj\n4tGImFtKmd00zfw+h82IiL17X14REV/t/W/LG5qmSXvmQRN0AAAAAFTT2qTLfNmMQyLiwaZpHmqa\nZkNEfCcijnnWMcdExDebZ9wWEeNKKTvlf/bPsEEHAAAAwGCyS0Qs7PP6o71v6+8xTUTcUEq5vZRy\nSsaCXOIKAAAAQDUdusR10rN+P9yspmlmJbVf2zTNolLK5Ii4vpRyb9M0/7U1QRt0AAAAALzQLGua\nZvrzvG9RROza5/VpvW/r1zFN07T+u7SUcmU8c8nsVm3QucQVAAAAgGoq/A66uRGxdyllz1LK9hFx\nfETMftYxsyPixN5nc31lRHQ3TfP7UsroUkpX77pHR8SbIuLXW/v/wAQdAAAAANVs62dxbZpmYynl\noxFxbUQMiYhLmqa5p5Ryau/7L4qIORFxZEQ8GBFrI+Kk3ptPiYgre9c8NCK+3TTNj7d2TTboAAAA\nABhUmqaZE89swvV920V9/txExEee43YPRcSfZK/HBh0AAAAAVfTzktQXPL+DDgAAAAAqMkEHAAAA\nQDUm6GzQAQAAAFCRDTqXuAIAAABAVSboAAAAAKjGBF2bG3QjR46MAw44IHUBRx11VGqv5bDDDktv\n7rLLLunNU089Nb3Zqf+na9euTW/OmDEjvTl16tT0ZkREV1dXau+///u/2zp+p512inPOOSd1Da97\n3etSey2XX355enPChAnpzU6cK0888UR6M6Izf1ef/OQn05tvfetb05sREVdddVVqb/r06W0dv2jR\nojjrrLNS1zBixIjUXsvXvva19OYdd9yR3rztttvSm0cffXR6MyJi2LBh6c3TTz89vTl//vz0ZkTE\nY489ltr77Gc/2/ZtRo4cGS996UtT1/G+970vtdfygQ98IL25Jf/PNue6665Lb2Z/r2654oor0pv3\n3XdfenPKlCnpzYiIJUuWpPZuuummto7fbrvtYocddkhdw3HHHZfaa/nhD3+Y3tx7773Tm3vttVd6\nsxOPvyMiXvva16Y3Fy1alN5897vfnd6MiOjp6UntrVy5MrXHC4sJOgAAAACqMUHnd9ABAAAAQFUm\n6AAAAACoopRigi5s0AEAAABQkQ06l7gCAAAAQFUm6AAAAACoxgSdCToAAAAAqMoEHQAAAADVmKCz\nQQcAAABARTboXOIKAAAAAFWZoAMAAACgilKKCbroxwRdKeWUUsq8Usq81atXb4s1Ab36nn8rVqyo\nvRwYVPqefxs3bqy9HBh0+p6DPT09tZcDg0rf82/lypW1lwMwKGx2g65pmllN00xvmmb6mDFjtsWa\ngF59z7/x48fXXg4MKn3Pv6FDDZzDttb3HBwxYkTt5cCg0vf8GzduXO3lAINAa4ou82Wg8RMHAAAA\nANUMxA21bJ4kAgAAAAAqMkEHAAAAQDUm6EzQAQAAAEBVJugAAAAAqMYEnQk6AAAAAKjKBB0AAAAA\nVZRSTNCFDToAAAAAKrJB1+YG3ZgxY+LVr3516gLOP//81F7LN7/5zfTmuHHj0psTJkxIb958883p\nzYiIiy++OL05derU9ObcuXPTmxER69evT+01TdPW8U888UT61/V73/ve1F4ndeJ7xb777pve7JRO\nfP+54IIL0pt77rlnejMi4uc//3lqb/Xq1W0dP378+Dj++ONT13D33Xen9lqGDRuW3pwyZUp68+ST\nT05vjh07Nr0ZEXHDDTekN9/ylrekN3/729+mNyMiVq5cmdp76qmnUntbatq0aR3pXnnllenNVatW\npTe/9KUvpTc//OEPpzcjIp588sn05hlnnJHe7MR9dUTEV77yldReu/cTTdOkPw6+6667UnstDz/8\ncHqzE9+vt9su/zdNjRo1Kr0ZEXHEEUekNzvxM/DBBx+c3oyI2G233VJ7P/nJT1J7vLCYoAMAAACg\nGhN0niQCAAAAAKoyQQcAAABANSbobNABAAAAUJENOpe4AgAAAEBVJugAAAAAqKKUYoIuTNABAAAA\nQFUm6AAAAACoxgSdDToAAAAAKrJB5xJXAAAAAKjKBB0AAAAA1ZigM0EHAAAAAFWZoAMAAACgilKK\nCbowQQcAAAAAVZmgAwAAAKAaE3Q26AAAAACoyAadS1wBAAAAoCoTdAAAAABUY4LOBB0AAAAAVGWC\nDgAAAIBqTNC1uUE3dOjQmDRpUuoC/uqv/iq11/LEE0+kNydMmJDeXLVqVXpz+PDh6c2IiHXr1qU3\n165dm9780pe+lN6MiPjd736X2vv5z3/e1vE77LBD/Nmf/VnqGjr1TXDBggXpzT333DO9uXDhwvTm\nqaeemt6MiLjjjjvSm/vuu2968957701vRkTMnz8/tbd69eq2jh82bFhMmTIldQ0PPPBAaq/l7rvv\nTm8+9thj6c23v/3t6c2LL744vRkRMXXq1PTm6NGj05uXXXZZejMi4je/+U1qb/HixW3fpqurKw49\n9NDUddx6662pvZY//uM/Tm9u2rQpvXnOOeekN7P/jlrmzp2b3nzZy16W3nzqqafSmxHP/AyWqd3H\nf+vWrUu/b7n99ttTey2d+Br87Gc/m9487bTT0pudelw/bNiw9OY+++yT3uzq6kpvRkTcfPPNqb12\nH4MOFqUUG3ThElcAAAAAqMolrgAAAABUY4LOBB0AAAAAVGWCDgAAAIBqTNDZoAMAAACgIht0LnEF\nAAAAgKpM0AEAAABQjQk6E3QAAAAADDKllCNKKfeVUh4spZz1HO8vpZQv9r7/V6WUg/p72y1hgw4A\nAACAKkopHXnZzMccEhEXRsSMiNgvIt5dStnvWYfNiIi9e19OiYivtnHbttmgAwAAAGAwOSQiHmya\n5qGmaTZExHci4phnHXNMRHyzecZtETGulLJTP2/bts1u0JVSTimlzCulzHviiSe29uMBbeh7/q1c\nubL2cmBQ6Xv+Pfnkk7WXA4OOcxDqcf4B29q2nqCLiF0iYmGf1x/tfVt/junPbdu22Q26pmlmNU0z\nvWma6RMnTtzajwe0oe/5N27cuNrLgUGl7/nX1dVVezkw6DgHoR7nH7CtdWiDblLrHxt6X06p/Xn+\nv3gWVwAAAABeaJY1TTP9ed63KCJ27fP6tN639eeYYf24bdv8DjoAAAAAqqlwievciNi7lLJnKWX7\niDg+ImY/65jZEXFi77O5vjIiupum+X0/b9s2E3QAAAAADBpN02wspXw0Iq6NiCERcUnTNPeUUk7t\nff9FETEnIo6MiAcjYm1EnPT/uu3WrskGHQAAAADV9GPiLV3TNHPimU24vm+7qM+fm4j4SH9vu7Vs\n0AEAAABQRT8vSX3B8zvoAAAAAKAiE3QAAAAAVGOCzgQdAAAAAFTV1gTd0KFDY8KECakLeOqpp1J7\nLWeddVZ6c6eddkpvPvzww+nNmTNnpjcjIj71qU+lNzds2DAgmhER++67b2pvxIgRbR0/ZsyYeO1r\nX5u6hosuumjzB22B4447Lr05atSo9OaTTz6Z3vzud7+b3oyIOOOMM9Kbp59+enrzZS97WXozImL0\n6NGpve22a+/fp8aMGROvec1rUtcwZcqU1F5L9veJiIg5c1J//21ERAwfPjy9uWTJkvRmRP73/4iI\n7u7u9Oahhx6a3oyIOPvss1N7r3rVq9q+zapVq+KGG25IXcdHPvKcv/N5q40bNy692Yn7lhkzZqQ3\ne3p60psREePHj09v7rHHHunNiy++OL0Z8czXf6ann366rePXrVsX99yz1U9O+AeOPfbY1F7L+eef\nn9788Ic/nN7sxH3ghz70ofRmRMQPf/jD9OYBBxyQ3uzU9583vOENqb2urq7U3guJCTqXuAIAAABQ\nkQ06l7gCAAAAQFUm6AAAAACoxgSdCToAAAAAqMoEHQAAAABVlFJM0IUNOgAAAAAqskHnElcAAAAA\nqMoEHQAAAADVmKAzQQcAAAAAVZmgAwAAAKAaE3Qm6AAAAACgKhN0AAAAAFRjgs4GHQAAAACVlFJs\n0IVLXAEAAACgKhN0AAAAAFRjgs4EHQAAAABUZYIOAAAAgGpM0NmgAwAAAKAiG3QucQUAAACAqkzQ\nAQAAAFCNCToTdAAAAABQVVsTdEuWLInzzz8/dQEjRoxI7bX85V/+ZXrzK1/5SnrzvPPOS28OHz48\nvRkR8c1vfjO9efvtt6c3P/vZz6Y3IyLmz5+f2uvp6Wn7+Pvvvz91DUcffXRqr+WRRx5Jb+61117p\nza997WvpzZtuuim9GRFx3XXXpTdf9rKXpTePP/749GZExL333pvaGzVqVFvH9/T0pK9hzJgxqb2W\nAw44IL154oknpjez/39GdOZ7T0TEpk2b0ptLly5Nb27cuDG9GRFx/fXXp/Yee+yxtm8zbty4OOaY\nY1LX0amvl0447LDD0puduA/s1H3AjBkz0psnn3xyevPSSy9Nb0ZELFu2LLV36623tnX8TjvtFOee\ne27qGjrlzDPPTG9OmDAhvfmpT30qvfmKV7wivRkRsWbNmgHR/Pd///f0ZkTErrvumtrr7u5O7b1Q\nlFJM0IVLXAEAAACoyAadS1wBAAAAoCoTdAAAAABUY4LOBB0AAAAAVGWCDgAAAIBqTNCZoAMAAACA\nqkzQAQAAAFCNCTobdAAAAABUUkqxQRcucQUAAACAqkzQAQAAAFCNCbp+TNCVUk4ppcwrpcxbs2bN\ntlgT0Kvv+bdixYray4FBpe/5t2rVqtrLgUHHOQj19D3/nnjiidrLARgUNrtB1zTNrKZppjdNM330\n6NHbYk1Ar77n3/jx42svBwaVvuffDjvsUHs5MOg4B6GevuffxIkTay8HGARav4cu82WgcYkrAAAA\nANUMxA21bJ4kAgAAAAAqMkEHAAAAQDUm6EzQAQAAAEBVJugAAAAAqGKgPqlDNht0AAAAAFRjg84l\nrgAAAABQlQk6AAAAAKoxQdfmBt3y5cvj29/+duoCpk2bltprOeCAA9KbGzduTG8OHZq/R/qzn/0s\nvRkRsdtuu6U3X//616c3p0+fnt6MiJgyZUpqb8GCBW0dP2zYsJg6dWrqGlavXp3aa3nzm9+c3nzp\nS1+a3jzqqKPSm2eeeWZ6M6Izf1dDhgxJb3bi7z4i4vzzz0/tLVmypK3ju7q64rDDDktdwwknnJDa\na/ne976X3rzzzjvTm5/85CfTmwcffHB6MyLi3HPPTW/edddd6c0PfOAD6c2IiKuuuiq1N3v27C26\n3aZNm1LXMWvWrNRey0033ZTePPvss9ObhxxySHqzq6srvRkRcdlll6U3P/ShD6U3zzrrrPRmRMT+\n+++f2lu1alVbx69fvz5++9vfpq7h4osvTu11stuJxzbDhw9Pb/7mN79Jb0ZENE2T3jzppJPSm299\n61vTmxER22+/fWpv9OjRqT1eWEzQAQAAAFCNCTq/gw4AAAAAqjJBBwAAAEA1Juhs0AEAAABQSSnF\nBl24xBUAAAAAqjJBBwAAAEA1JuhM0AEAAABAVSboAAAAAKjGBJ0NOgAAAAAqskHnElcAAAAA+D9K\nKRNKKdeXUh7o/e/45znuiFLKfaWUB0spZ/V5+9+WUhaVUu7qfTlycx/TBh0AAAAA1ZRS0l+20lkR\n8ZOmafaOiJ/0vv7sNQ+JiAsjYkZE7BcR7y6l7NfnkC80TXNg78uczX1AG3QAAAAA8H8dExHf6P3z\nNyLi2Oc45pCIeLBpmoeaptkQEd/pvd0WsUEHAAAAQBWdmJ5LmKCb0jTN73v/vDgipjzHMbtExMI+\nrz/a+7aWvyil/KqUcsnzXSLblw06AAAAAKrp0AbdpFLKvD4vpzzrY95QSvn1c7z8wRRc0zRNRDRt\nfkpfjYg/iogDI+L3EfH5zd3As7gCAAAA8EKzrGma6c/3zqZpDn++95VSlpRSdmqa5vellJ0iYulz\nHLYoInbt8/q03rdF0zRL+rT+JSKu3txiTdABAAAAUM3/wEtcZ0fEe3v//N6IuOo5jpkbEXuXUvYs\npWwfEcf33i56N/VajouIX2/uA5qgAwAAAID/6x8j4vJSyv+KiAUR8c6IiFLKzhFxcdM0RzZNs7GU\n8tGIuDYihkTEJU3T3NN7+38qpRwYz1wa+0hEfHBzH9AGHQAAAADVJEy8pWqa5omI+LPnePtjEXFk\nn9fnRMSc5zjuz9v9mC5xBQAAAICKTNABAAAAUM3/tAm6GtraoBs1alQcfPDBqQs488wzU3sts2fP\nTm9+5CMfSW/ecMMN6c1nngE438SJE9ObM2fOTG++6U1vSm9GRDz11FOpvfnz57d1/Jo1a2Lu3Lmp\naxg2bFhqr+V73/teenPcuHHpzQkTJqQ3hw7tzL97TJkyJb25Zs2a9ObJJ5+c3oyIeOc735nau+OO\nO9o6fvny5XHZZZelruHtb397aq/lkUceSW8uWrQovfmud70rvXnnnXemNyMibrrppvTmtGnT0pud\n+N4bEbF48eLU3pbcnw4dOjR23HHH1HVMnTo1tdfylre8Jb35+OOPpzf33Xff9OaqVavSmxERhx12\nWHpz/Pjx6c0FCxakNyMi3v3ud6f2vv/977d1/OrVq+OWW25JXcOQIUNSey2duG/pxGOw4cOHpzdH\njx6d3oyI6O7uTm+edtpp6c1OPQafPHlyam/p0ud6IlCSntRhwHOJKwAAAABU5BJXAAAAAKoxQWeC\nDgAAAACqMkEHAAAAQDUm6GzQAQAAAFCRDTqXuAIAAABAVSboAAAAAKjGBJ0JOgAAAACoygQdAAAA\nAFWUUkzQhQ06AAAAACqyQdePS1xLKaeUUuaVUub19PRsizUBvfqef93d3bWXA4NK3/Nv9erVtZcD\ng477QKin7/m3Zs2a2ssBGBQ2u0HXNM2spmmmN00zfcSIEdtiTUCvvuff2LFjay8HBpW+59+YMWNq\nLwcGHfeBUE/f82/06NG1lwMMAq3LXDNfBhpPEgEAAAAAFfkddAAAAABUMxAn3rKZoAMAAACAikzQ\nAQAAAFCNCTobdAAAAABUMlCf1CGbS1wBAAAAoCITdAAAAABUY4LOBB0AAAAAVNXWBN1TTz0VS5Ys\nSV3Ar371q9Rey7nnnpve3LhxY3qzE5//ypUr05sREZ/4xCfSm1/84hfTmzNnzkxvRkTccMMNqb11\n69a1dXx3d3dcc801qWs48cQTU3stRxxxRHrz0EMPTW9+7GMfS29+7nOfS29GROy2227pzbVr16Y3\nH3300fRmRMRnP/vZ1F6792U9PT1x3333pa5hjz32SO21HHLIIenN448/Pr05bty49ObkyZPTmxER\nv/jFL9Kbw4cPT2+ecMIJ6c2IiIULF6b2uru7277N4sWL078PfOhDH0rttXzve99Lb3bia/Ctb31r\nevMnP/lJejMiYsiQIenNLfk63JylS5emNyMiHnnkkdTe4sWL2zp+1apVcf3116euYezYsam9lk7c\nt3zjG99Ib77jHe9Ib7b799pfTdOkN8eMGZPevOOOO9KbEREPPPBAam/16tWpvRcSE3QucQUAAACg\nIht0LnEFAAAAgKpM0AEAAABQjQk6E3QAAAAAUJUJOgAAAACqKKWYoAsbdAAAAABUZIPOJa4AAAAA\nUJUJOgAAAACqMUFngg4AAAAAqjJBBwAAAEA1JuhM0AEAAABAVSboAAAAAKjGBJ0NOgAAAAAqKaXY\noAuXuAIAAABAVSboAAAAAKjGBJ0JOgAAAACoygQdAAAAANWYoLNBBwAAAEBFNuhc4goAAAAAVZmg\nAwAAAKCKUooJujBBBwAAAABVtTVBt8cee8Sll16auoALLrggtddyxhlnpDdf9KIXpTeffPLJ9Oar\nXvWq9GZExG677Zbe7OnpSW92yi233JLaO+GEE9o6ftSoUXHAAQekrmGfffZJ7bV85CMfSW9u3Lgx\nvbnzzjunN//lX/4lvRkRcfrpp6c3Z86cmd6cO3duejMi4le/+lVq71//9V/bOr6rqyte97rXpa7h\n5ptvTu21fOELX0hv3n333enNf/zHf0xvHnnkkenNiIi99947vfnQQw+lN++88870ZsQz9z+Zttuu\n/X8fnjJlSpx22mmp67juuutSey2deGy37777pjfnzJmT3nzxi1+c3vz/27tj1sqKKA7g5zQhTQg+\nVta1sRK/QL6BKyw2StJECGwh+BkE+8XPkELcyloLEXQh2KRJabeVIK6uMRDSpRkLX9xXZOO72Xsz\nOft+Pwh5N7kz+Q9h8m4Oc+dGRBweHo7e5xTXADs7O6P3GTH+/yAHBweDzp/NZrG7uztqhqneA7e3\nt0fvc21tbfQ+z8/PR+9zKuvr66P3ube3N3qfU/39mc1mo/b36NGjUft7nVhB5xZXAAAAADpSoHOL\nKwAAAAB0ZQUdAAAAAN1YQWcFHQAAAAB0ZQUdAAAAAN1YQWcFHQAAAAB0ZQUdAAAAAF1kphV0oUAH\nAAAAQEcKdG5xBQAAAICurKADAAAAoBsr6JZYQZeZn2XmUWYenZyc3EQmYG5x/p2dnfWOAytlcf6d\nnp72jgMrxxyEflyDAty8/y3Qtdb2W2tbrbWt2Wx2E5mAucX5t7Gx0TsOrJTF+be5udk7DqwccxD6\ncQ0K3LSLB0WM+fGKeWaZ+WNmPp1/fuMl532Vmc8z85frtF9kDzoAAAAAurltBbqI+DwinrTW3o2I\nJ/Pjy3wdEQ9eof1/FOgAAAAA4IWPIuLx/PXjiPj4spNaaz9HxGX7wS3VfpGHRAAAAADQxUgr3sZ2\nt7X2bP76j4i4O3V7BToAAAAAXjd3MvNo4Xi/tbZ/cZCZP0XEW5e0+2LxoLXWMrNdN8Sy7RXoAAAA\nAOhmohV0x621rZd9s7V2/4o8f2bmvdbas8y8FxHPB/7swe3tQQcAAABAN7fwIRHfRcTD+euHEfHt\n1O0V6AAAAADghS8j4oPMfBoR9+fHkZlvZ+b3Fydl5jcRcRgR72Xmb5n56VXtr+IWVwAAAAC6uW0P\niWit/R0R71/y9d8j4sOF40+GtL9Ktrb8PneZ+VdE/LrEqXci4nhIkI6qZK2SM6JO1t4532mtvbns\nyQPmX0T/sS1LzvFVydo7p/lXJ2dEnaxVckb0zTpo/kW4Bu1MzvH1zjrVe2DvcQ1RJWuVnBF1svbO\nOfg9cBVk5g/x7+9mbMettQcT9DuJQQW6pTvNPLpqI77bpErWKjkj6mStkvM6qoxNzvFVyVol53VU\nGVuVnBF1slbJGVEr6xCVxlUlq5zjq5R1iErjqpK1Ss6IOlmr5GQ12YMOAAAAADpSoAMAAACAjqYq\n0O1P1O8UqmStkjOiTtYqOa+jytjkHF+VrFVyXkeVsVXJGVEna5WcEbWyDlFpXFWyyjm+SlmHqDSu\nKlmr5Iyok7VKTlbQJHvQAQAAAADLcYsrAAAAAHSkQAcAAAAAHSnQAQAAAEBHCnQAAAAA0JECHQAA\nAAB09A+zS3AMvbfZSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "W2 shape : (10, 10, 20)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\matplotlib\\colors.py:860: RuntimeWarning: invalid value encountered in subtract\n", + " resdat -= vmin\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAKaCAYAAAB1MteQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmMnfd5H/rnxyE55JDivog7KZHmIkrWQkmUZdWyVMWK\nkkZOgmzNjYPCgZugThy0xb2+LdA2vUVxUTftRYE0qhsZtW9cO2kat6oh25UVy4K8iloiyRIl0lzE\nVdxXkRxy+Lt/aBxMeV+Fw+c9HA6PPx9gwJlzzneed86c8573x+eZ95RaawAAAMCFxlzpDQAAAGB0\nsmAEAACgkQUjAAAAjSwYAQAAaGTBCAAAQCMLRgAAABpZMAIAANDIghEAAIBGFowAAAA0GjuSxaZM\nmVJnz56dyo4fPz6VO3PmTCoXEVFKSWfHjRuXyp0/fz5ds7+/P52ttaaz2d9Nm+3NPo4iIl5++eVU\nbuzY/NOlp6cnnW3zmDh9+nQ6mzVlypR0NvucO3XqVLpmX19fOrt06dJU7tixY+mabbTZpw0MDIx4\nzd7e3nQ2u385e/ZsuubkyZPT2ew+eMKECemae/bsSWcnTZqUzmb3S20eS1diH9zmNaPNPu3cuXPp\nbPY5N2fOnHTNN998M53N3sdt7t+JEyems232L1ltXm/aPG+y+8M2z5s9e/YcqLXOjogopeQPbEfG\n12qtD17pjRiuEV0wzp49O/7Vv/pXqeyiRYtSuTfeeCOVi2h3sDJ37txUrs0Cd8eOHelsm4VF9nez\nc+fOdM3f+q3fSmevu+66VK7NIrXNwVWbF7aNGzemcm3+A+FDH/pQOpt9cXrllVfSNW+77bZ09tFH\nH03lnnjiiXTNNr+bNi/Ex48fT+XaHHBkn6sR+f3hW2+9la55zz33pLPZffDq1avTNf/5P//n6ewd\nd9yRzm7atCmVy/7nZMSVWeC2WUT95V/+ZTp74MCBdDb7nPvEJz6Rrvnbv/3b6ez06dNTuTavGWvX\nrk1n9+7dm8q12e+3eb3J3r8REevXr0/lssfPERG/93u/tz0dHnmzrvQGXAojqQAAADQa0Q4jAADA\n5dZmjP1ya9M1vhJ0GAEAAGikwwgAAHQVHcbO0WEEAACgkQUjAAAAjYykAgAAXWU0j6RebXQYAQAA\naKTDCAAAdBUdxs7RYQQAAKCRBSMAAACNjKQCAABdo5RiJLWDRnTBOGnSpLj99ttT2bfeeiuVW7p0\naSoXEdHb25vOZh+kx44dS9ds87MeOnQonZ01a1YqN3369HTNNj73uc+lcj09PemaU6dOTWeXLVuW\nzp48eTKVGzMmP3zQJjtt2rRU7oUXXkjXzO5b2mjzWDp//nw6u3nz5nR2zZo1qdzhw4fTNU+dOpXO\nzps3L5U7ePBguua5c+fS2VdeeSWVW716dbrmQw89lM5m9y0REb/6q7+aym3fvj1ds0324YcfTuXa\n3EcLFixIZ7OP/YiI5557Lp3N+p3f+Z10NnvMtGrVqnTNG264IZ3NPia2bNmSrvmJT3winT1w4EA6\nOzAwkMr19/ena3L56DACAABdRYexc/wNIwAAwChSSnmwlPJ6KWVzKeWTDdf/ainlpVLKy6WUb5dS\n3jvkum2Dl79YStnQdlt0GAEAAEaJUkpPRPxBRDwQETsj4tlSymO11leH3GxrRHyg1nq4lPKTEfHp\niLhzyPUfrLXm54qHsGAEAAC6ylU+knpHRGyutW6JiCilfDEiHo6Iv1ow1lq/PeT2342IhZdrY4yk\nAgAAjJxZpZQNQz4+dsH1CyJix5Cvdw5e9m4+GhFfGfJ1jYivl1Kea/jel0yHEQAA6CqjvMN4oNa6\nrhPfqJTywXhnwfj+IRe/v9a6q5QyJyKeKKVsrLU+na2hwwgAADB67IqIRUO+Xjh42f+ilHJTRPxR\nRDxca/2r94Wqte4a/HdfRHwp3hlxTbNgBAAAukopZdR+DMOzEbGilLKslDI+In45Ih674OdbHBF/\nHhG/Vmt9Y8jlk0op1/zo84j4iYjIvdnvICOpAAAAo0St9Vwp5eMR8bWI6ImIz9Raf1BK+c3B6x+J\niH8SETMj4t8PLkLPDY65zo2ILw1eNjYi/nOt9atttseCEQAAYBSptT4eEY9fcNkjQz7/jYj4jYbc\nloh474WXt2HBCAAAdI1LGP1kGPwNIwAAAI10GAEAgK6iw9g5I7pg7O/vj507d6ay+/btS+XmzJmT\nykVEfPWr+b8PnTVrVip38uTJdM3bb789nT169Gg629fXl8oNDAyka7Zx6NChVK63tzdds9aazj7x\nxBPp7Llz51K5Nts7Zkx+cOGWW25J5U6fPp2umX08tDF9+vR09qmnnkpnV6xYkc4ePHjw4jdqsHDh\nwnTNl156KZ1973tzf77R5vG7adOmdHbevHnpbFZ/f386e+zYsXT20UcfTeVWr16drrls2bJ09mtf\n+1oqd+rUqXTN7OtqRMSf/MmfpLNtjiOy9u7dm86OHz8+lWvzmvHZz342nb311ltTuTVr1qRr/o//\n8T/S2ZUrV6azb7zxxsVv1OBDH/pQuiaXj5FUAAAAGhlJBQAAuoqR1M7RYQQAAKCRDiMAANBVdBg7\nZ9gdxlJKTynlhVLKlwe/nlFKeaKUsmnw3/xZHAAAABh1LmUk9RMR8dqQrz8ZEU/WWldExJODXwMA\nANAlhrVgLKUsjIifiog/GnLxwxHxo3MLfzYiPtzZTQMAALh0pZRR+3G1GW6H8f+JiP89Is4PuWxu\nrXXP4Od7I2JuJzcMAACAK+uiJ70ppfx0ROyrtT5XSrm36Ta11lpKaXyn71LKxyLiYxERc+daUwIA\nAJfP1drJG62G02G8OyJ+ppSyLSK+GBH3lVL+OCLeKqXMi4gY/HdfU7jW+ula67pa67pp06Z1aLMB\nAAC43C66YKy1/p+11oW11qUR8csR8Re11v8tIh6LiF8fvNmvR8R/v2xbCQAAwIhr8z6M/3dE/Gkp\n5aMRsT0ifrEzmwQAAJBnJLVzLmnBWGt9KiKeGvz8YETc3/lNAgAAYDRo02EEAAAYdXQYO2dEF4xn\nz56NXbt2pbLZX/r+/ftTuYiIa6+9Np29+eabU7kdO3akay5YsCCdbfOk2rp1ayq3ZMmSdM02rrvu\nulTuxIkT6ZonT55MZ48ePZrO7t27N5VbunRpumatjSdMHpYnnngilVu0aFG6Zvbx0MYPfvCDdHbV\nqlXpbJt9Wl9fXyqX3T9EtPvdZOtOnjw5XbOnpyedPX78eDqblf2dRkScP3/+4jd6FytWrEjlrr/+\n+nTNbdu2pbMHDx5M5WbNmpWuuWbNmnS2zevNnDlz0tmssWPzh6LXXHNNKtfmufpzP/dz6Wz29bHN\nffTQQw+ls3/5l3+ZzmZfq44dO5auyeUz3PdhBAAA4MeMkVQAAKCrGEntHB1GAAAAGukwAgAAXUWH\nsXN0GAEAAGhkwQgAAEAjI6kAAEDXKKUYSe0gHUYAAAAa6TACAABdRYexc3QYAQAAaGTBCAAAQCMj\nqQAAQFcxkto5OowAAAA00mEEAAC6ig5j54zogvGaa66JD3zgA6nsCy+8kMrNnz8/lWtrx44dqVyb\n7X3mmWfS2TvvvDOdPXDgQCp34sSJdM02tmzZkspt27YtXXPKlCnpbK01nb3//vtTuTY72bNnz6az\n/f39qdyePXvSNV9//fV0dv369ancqVOn0jUXLFiQzrZ5LB05ciSVmzVrVrrm3r1709kbb7wxlXv+\n+efTNdv8XmfPnp3OZr3xxhvpbJt92nve855U7rnnnkvXbPPYv+GGG1K57P4sIv+6GhHR19eXzra5\nn7LGjs0fip47dy6Vmz59errmsWPH0tne3t5U7pprrknXPHnyZDrb5jht4sSJqdzixYvTNbl8jKQC\nAADQyEgqAADQVYykdo4OIwAAAI10GAEAgK5RStFh7CAdRgAAABrpMAIAAF1Fh7FzdBgBAABoZMEI\nAABAIyOpAABAVzGS2jk6jAAAADTSYQQAALqKDmPn6DACAADQyIIRAACARkZSAQCArmIktXNGdMF4\n5syZ2Lp1ayq7a9euVO7ll19O5SIiZsyYkc7OnDkznc1aunRpOvvSSy+ls2fPnh3RXFuHDh1K5Vas\nWJGuec0116Sz2edMRMS1116byn3rW99K13zllVfS2QULFqRy+/btS9ccP358Ops1b968dHbZsmXp\n7J/8yZ+ks+fOnUvlJk2alK45d+7cdPaRRx5J5bKPwYiIOXPmpLNjx478/9+2eeyfPHkynR0YGEjl\n2jxv9uzZk86++eabqdz58+fTNc+cOZPO3nnnnelsm9eqrI0bN6azO3bsSOUmTpyYrtnf35/O/sRP\n/EQq9+KLL6ZrfupTn0pn77333nQ2+1qV/Z1yeekwAgAAXaOUosPYQf6GEQAAgEYWjAAAADQykgoA\nAHQVI6mdo8MIAABAIx1GAACgq+gwdo4OIwAAAI0sGAEAAGhkJBUAAOgqRlI7R4cRAACARjqMAABA\nV9Fh7BwdRgAAABpZMAIAANBoREdS+/v7Y/v27anspEmTUrklS5akchERmzZtSmezdu/efUWyd911\nVzr73HPPpXLjxo1L12zjgQceSOXGjMn//8qJEyfS2cWLF6ezb7/9dir3/ve/P12zzf100003pXJ9\nfX3pmvv3709ns1588cV09syZM+ns0qVL09nsaM+uXbvSNb/whS+ks/fdd18qN2vWrHTNU6dOpbNt\nnudZa9euTWdfffXVdPaVV15J5dasWZOuef78+XT28OHDqdy0adPSNefPn5/OZvf7ERE7duxI5doc\na7UZG/yFX/iFVC77c0ZEvPDCC+ns6dOnU7mdO3ema37kIx9JZ2+55ZZ0NnvcM2PGjHTNoUopRlI7\nSIcRAACARk56AwAAdBUdxs7RYQQAAKCRBSMAAACNjKQCAABdxUhq5+gwAgAA0EiHEQAA6Co6jJ2j\nwwgAAEAjC0YAAAAaGUkFAAC6ipHUztFhBAAAoJEOIwAA0DVKKTqMHaTDCAAAQCMdRgAAoKvoMHbO\niC4YBwYG4uTJk6nsuHHjUrmDBw+mchERhw4dSmcnT56cyi1ZsiRdc9GiRenspk2b0tnx48encqtW\nrUrXbOPw4cOp3Pnz59M133zzzXR29uzZ6ezYsbmneK01XfP48ePp7GuvvZbKHTlyJF3zjjvuSGez\nli5dms5OmzYtnX3mmWfS2ey+9O67707XvOmmm9LZl156KZWbNGlSuuacOXPS2d27d6dya9asSdf8\n1re+lc62eRwuXLgwlfsv/+W/pGuuXbs2ne3v70/l+vr60jXbvCb39vams22OmbLmzp2bzj711FOp\n3JkzZ9I1r8Rzrs3xx/Tp09PZ06dPp7PZbd6/f3+6JpePkVQAAAAaWTACAABd5UcnvhmNH8Pc/gdL\nKa+XUjaXUj7ZcP2vllJeKqW8XEr5dinlvcPNXioLRgAAgFGilNITEX8QET8ZEWsi4ldKKRfOQ2+N\niA/UWm+MiP8rIj59CdlL4qQ3AABAV7nKT3pzR0RsrrVuiYgopXwxIh6OiFd/dINa67eH3P67EbFw\nuNlLddEOYyllQinl+6WUvyyl/KCU8nuDl/+zUsquUsqLgx8PZTcCAADgx8SsUsqGIR8fu+D6BRGx\nY8jXOwcvezcfjYivJLMXNZwO45mIuK/WeqKUMi4iniml/GiD/m2t9V+32QAAAIAfIwdqres68Y1K\nKR+MdxaM7+/E92ty0QVjfef8+icGvxw3+JE/5z4AAMBldJWPpO6KiKHvl7dw8LL/RSnlpoj4o4j4\nyVrrwUvJXophnfSmlNJTSnkxIvZFxBO11u8NXvXbg2fn+UwppfGNXkopH/tRu/XEiRNNNwEAAOAd\nz0bEilLKslLK+Ij45Yh4bOgNSimLI+LPI+LXaq1vXEr2Ug1rwVhrHai13hzvrFDvKKWsjYg/jIjr\nIuLmiNgTEb//LtlP11rX1VrXZd/MHgAAYDiu9NtmtH1bjVrruYj4eER8LSJei4g/rbX+oJTym6WU\n3xy82T+JiJkR8e8Hzyez4a/Ltrk/L+ksqbXWI6WUb0TEg0P/drGU8h8j4sttNgQAAICIWuvjEfH4\nBZc9MuTz34iI3xhuto3hnCV1dill2uDnEyPigYjYWEqZN+RmPxsRr3RqowAAALjyhtNhnBcRnx18\nE8gx8U5b88ullP+3lHJzvHMCnG0R8Xcv32YCAAAMz1V+0ptRZThnSX0pIm5puPzXLssWAQAAMCpc\n0t8wAgAAjHY6jJ0zogvGvr6+uOWW/1+zclhOnz6dyu3ZsyeVi4i4++6709lJkyalcm3eeuS5555L\nZ++777509siRI6nc1KlT0zXbeP3111O5ffv2pWtmH78RESdPnkxn22xzVpvH8IEDB1K5MWOGdcLn\nRs8++2w6u2rVqlRu9+7d6Zrnzp1LZ++66650dsOGDanc/Pnz0zU3bdqUzv7UT/1UKrd///50zVde\nyf8pf/a1sY2ZM2eOeM2I/O913br8e1xv3bo1nV2zZk06m5V9XY2IWL58eTrb29ubzma1eY3L/qyH\nDh1K1xwYGEhnb7vttlTuzTffTNccOzZ/qH/+/Pl0Nvu6PG/evIvfiBGXP8oCAACgqxlJBQAAuoqR\n1M7RYQQAAKCRDiMAANBVdBg7R4cRAACARhaMAAAANDKSCgAAdI1SipHUDtJhBAAAoJEOIwAA0FV0\nGDtHhxEAAIBGFowAAAA0MpIKAAB0FSOpnaPDCAAAQCMdRgAAoKvoMHbOiC8YBwYGUrnp06encjNn\nzkzlIto90LZu3ZrKnTp1Kl1zxowZ6Wz29xIR0dfXl8rVWtM129i/f38qd/vtt6drbtu2LZ0dP358\nOrtw4cJU7tixY+ma2cdDRMSRI0dSuTa/m4MHD6azWT/zMz+TzrbZL7399tvp7Pve975U7ujRo+ma\nixcvTmez++BbbrklXXP16tXpbJvneVb2+RYRcdNNN6Wz48aNS+XOnj2brrl8+fJ0dvv27anc2LH5\nQ6ydO3ems23qZp+v999/f7pmm99r9vWmp6cnXXPMmPxw3q5du1K5a665Jl1z2rRp6Wx2PxqRv58m\nT56crsnlYyQVAACARkZSAQCArmIktXN0GAEAAGikwwgAAHSNUooOYwfpMAIAANDIghEAAIBGRlIB\nAICuYiS1c3QYAQAAaKTDCAAAdBUdxs7RYQQAAKCRDiMAANBVdBg7R4cRAACARhaMAAAANCq11hEr\ntm7durphw4YRqwcAAHS/UspztdZ1ERGTJ0+uN99885XepHf1rW9966+29WqgwwgAAEAjJ70BAAC6\nRinFSW86SIcRAACARhaMAAAANDKSCgAAdBUjqZ2jwwgAAEAjHUYAAKCr6DB2jg4jAAAAjSwYAQAA\naGQkFQAA6CpGUjtHhxEAAIBGOowAAEBX0WHsHB1GAAAAGlkwAgAA0GhER1KPHj0aX/7yl1PZt99+\nO5U7fPhwKhcR8b3vfS+d/YVf+IVU7vvf/3665n333ZfOjh8/Pp198803U7lrr702XfOee+5JZ59+\n+ulUbty4cema/f396eyePXvS2VprKtfm8TAwMJDOTp06NZVrc/9OmTIlnf3ABz6Qyj366KPpmitX\nrkxnN27cmM4uW7YslVuyZEm65gsvvJDOTpgwIZXbvn17uuaCBQvS2ezj8P7770/X/NSnPpXOZh8P\nERG7d+9O5dq8ns+bNy+d3bJlSyo3bdq0dM3nn38+nV2+fHk6+/73vz+Ve+ihh9I1s8eFERHnz59P\n5caMyfdLli5dms5OmjQpldu/f3+65okTJ9LZ7PFdRMSNN96Yyh09ejRdc6hSipHUDtJhBAAAoJGT\n3gAAAF1Fh7FzdBgBAABoZMEIAABAIyOpAABAVzGS2jk6jAAAADTSYQQAALqKDmPn6DACAADQyIIR\nAACARkZSAQCArmIktXN0GAEAAGikwwgAAHSNUooOYwfpMAIAANDIghEAAIBGIzqSOm7cuFiwYEEq\nO2ZMbm177NixVC4i4kMf+lA6e/To0VTul37pl9I1d+7cmc7u3r07nV21alUqd6VGBa655ppUrre3\nN13z+9//fjq7ZMmSdPbkyZOp3JEjR9I126i1pnJz585N15w2bVo6m3Xu3Ll09sSJE+ns+PHj09mt\nW7emcrt27UrX3LZtWzp76tSpVO6hhx5K19yyZUs6O27cuHQ2a/Xq1ens1KlT09kJEyakctdff326\n5sGDB9PZFStWjHjNtWvXprPnz59PZ6+ENvvDgYGBVG7evHnpmm2OK/fs2ZPKtXmN++EPf5jOvuc9\n70lns9u8f//+dM0LGUntHB1GAAAAGjnpDQAA0FV0GDtHhxEAAIBGF+0wllImRMTTEdE7ePs/q7X+\n01LKjIj4k4hYGhHbIuIXa62HL9+mAgAAXJwOY+cMp8N4JiLuq7W+NyJujogHSynrI+KTEfFkrXVF\nRDw5+DUAAABd4qILxvqOH52Wb9zgR42IhyPis4OXfzYiPnxZthAAAIArYlgnvSml9ETEcxGxPCL+\noNb6vVLK3Frrj84PvDciGs+fW0r5WER8LCLi2muvbb/FAAAAfw0jqZ0zrJPe1FoHaq03R8TCiLij\nlLL2gutrvNN1bMp+uta6rta6bvr06a03GAAAgJFxSW+rUWs9Ukr5RkQ8GBFvlVLm1Vr3lFLmRcS+\ny7KFAAAAw1RK0WHsoIt2GEsps0sp0wY/nxgRD0TExoh4LCJ+ffBmvx4R//1ybSQAAAAjbzgdxnkR\n8dnBv2McExF/Wmv9cinlOxHxp6WUj0bE9oj4xcu4nQAAAIywiy4Ya60vRcQtDZcfjIj7L8dGAQAA\nZBlJ7ZxhnfQGAACAHz+XdNKbtk6dOhUvv/xyKrtgwYJU7r/9t/+WykVE3Hrrrens4cOHU7m1a9de\n/EbvYsKECelsb29vOtvf35/KTZw4MV2zjRMnTlz8Rg0OHjyYrnnmzJl0dmBgIJ0dP358Knfvvfem\na+7atSudPX/+fCq3e/fudM2ZM2ems1kPPPBAOrtz58509vbbb09ns8+b1157LV1z5cqV6ez8+fNT\nuTbbm90XRkS8733vS2ezzp49m85+97vfTWezr1Vf+tKX0jWnTZuWzmaPP9o8V++777509uTJk+ns\njBkz0tmsNm+5duzYsVTum9/8ZrrmvHnz0tns/Xv06NF0zTbHd08//XQ6u379+lRu27Zt6ZoX0mHs\nHB1GAAAAGlkwAgAAjCKllAdLKa+XUjaXUj7ZcP2qUsp3SilnSin/8ILrtpVSXi6lvFhK2dB2W0Z0\nJBUAAOByu5pHUgffneIP4p23M9wZEc+WUh6rtb465GaHIuJ3IuLD7/JtPlhrPdCJ7dFhBAAAGD3u\niIjNtdYttdb+iPhiRDw89Aa11n211mcjIv8H6cOkwwgAAHSVUd5hnHXBqOina62fHvL1gojYMeTr\nnRFx5yV8/xoRXy+lDETEf7jge18yC0YAAICRc6DWuu4yfv/311p3lVLmRMQTpZSNtdb0aW+NpAIA\nAIweuyJi0ZCvFw5eNiy11l2D/+6LiC/FOyOuaRaMAABA1yiljOqPYXg2IlaUUpaVUsZHxC9HxGPD\n/NknlVKu+dHnEfETEfFK8q6MCCOpAAAAo0at9Vwp5eMR8bWI6ImIz9Raf1BK+c3B6x8ppVwbERsi\nYkpEnC+l/G5ErImIWRHxpcGF6diI+M+11q+22R4LRgAAoKuM8pPeXFSt9fGIePyCyx4Z8vneeGdU\n9ULHIuK9ndwWI6kAAAA0smAEAACgkZFUAACgq1ztI6mjiQ4jAAAAjUa0wzhmzJiYOHFiKjt58uRU\n7jd+4zdSuYiI/v7+dPbYsWOp3KlTp9I1Fy1adPEbvYspU6aks1u3bk3l5s+fn67Zxvbt21O5kydP\npmu2eSxNnTo1nX388ccvfqMGCxc2/Q318Bw6dCidPXDgQCrX5rHf29ubzmY999xz6Wyb382ePXvS\n2ezzfMaMGemazz//fDo7Zkzu/0M/+MEPpmvu3r07nT1//nw6m7VkyZJ09uzZs+ls9vVm0qRJ6Zrr\n169PZ19++eVUbtWqVemaW7ZsSWfbvN7ccUert2pLeeutt9LZvr6+VO66665L17z++uvT2exjad++\nfemabZ43H/7wh9PZnp6eVO7EiRPpmhfSYewcHUYAAAAaWTACAADQyElvAACArlFKMZLaQTqMAAAA\nNNJhBAAAuooOY+foMAIAANDIghEAAIBGRlIBAICuYiS1c3QYAQAAaKTDCAAAdBUdxs7RYQQAAKCR\nBSMAAACNjKQCAABdxUhq5+gwAgAA0GhEO4xjx46NmTNnprJnzpxJ5RYvXpzKRUQ8++yz6eyCBQtS\nuVOnTqVrbt++PZ1dvnx5Onvy5MlUbtu2bemad955Zzr7zDPPpHLLli1L1zx+/Hg6+/u///vpbPZx\n+PLLL6drHjp0KJ3N3k+9vb3pmmPH5neDCxcuTOWmTp2artnT05POTpo0KZ299dZbU7k2z/N77703\nnd21a1c6m7V///50du7cuR3ckuHZsWNHOrto0aJ0ds+ePanc9ddfn6755ptvprPZuvv27UvXzO5b\nItrtg6/E7+bs2bPp7O7du1O5iRMnpmsePnw4nT169Ggqd//996drHjlyJJ09cOBAOvv9738/lfub\nf/NvpmsOVUrRYewgHUYAAAAa+RtGAACgq+gwdo4OIwAAAI0sGAEAAGhkJBUAAOgqRlI7R4cRAACA\nRjqMAABAV9Fh7BwdRgAAABpZMAIAANDISCoAANBVjKR2jg4jAAAAjXQYAQCArlFK0WHsIB1GAAAA\nGlkwAgAA0OiqGUk9fPhwKnfw4MEOb8nwzJ49O5WbO3duuubTTz+dzv7FX/xFOrt69epUbvz48ema\nbdx5552p3Pz589M1s4+HiIjp06ens319falcmzGOt956K53du3fviOYiIo4dO5bOZrV5vi1ZsiSd\n/frXv57O/vzP/3wqd+DAgXTNo0ePprPLli1L5T73uc+lay5fvjyd/e53v5vKrVq1Kl3z0KFD6ey5\nc+fS2R9FhyjlAAAgAElEQVT+8Iep3Lx589I19+zZk86ePn06lfuf//N/pms+9NBD6Wyb19YpU6ak\ns1nbtm1LZ1euXJnKtdkH33///els9jnX09OTrvnYY4+ls9ljiIiIG264IZVrc8xzISOpnaPDCAAA\nQKOrpsMIAAAwHDqMnaPDCAAAQCMLRgAAABoZSQUAALqKkdTO0WEEAACgkQ4jAADQVXQYO0eHEQAA\ngEYWjAAAADQykgoAAHSNUoqR1A7SYQQAAKCRDiMAANBVdBg7R4cRAACARiPaYezp6YmpU6emsmPG\n5Na2R44cSeUiInp7e9PZr3zlK6nclClT0jXPnz+fzr7nPe9JZzdt2pTKzZgxI12zje3bt6dy27Zt\nS9c8depUOvvqq6+ms/fee28q9xd/8RfpmosXL05n586dm8pde+216ZqHDh1KZ7MmTZqUzn7ve99L\nZ9s8z5966qlUbu/evemaL774Yjr7wQ9+MJWbP39+uubTTz+dzt52223pbNa+ffvS2fXr16ez2de5\nnp6edM01a9aksz/84Q9TuV/6pV9K1zx8+HA628Ybb7yRyt10003pmm0eh9ljwwcffDBdc9y4cens\njTfemMo9//zz6ZqzZ89OZ9scB48fPz6V27lzZ7oml4+RVAAAoKsYSe0cI6kAAAA00mEEAAC6ig5j\n5+gwAgAA0OiiC8ZSyqJSyjdKKa+WUn5QSvnE4OX/rJSyq5Ty4uDHQ5d/cwEAABgpwxlJPRcR/6DW\n+nwp5ZqIeK6U8sTgdf+21vqvL9/mAQAAXBojqZ1z0QVjrXVPROwZ/Px4KeW1iFhwuTcMAACAK+uS\n/oaxlLI0Im6JiB+9Edhvl1JeKqV8ppQy/V0yHyulbCilbLhS7ysEAAD8eCiljOqPq82wF4yllMkR\n8V8j4ndrrcci4g8j4rqIuDne6UD+flOu1vrpWuu6Wuu66dMb15QAAACMQsN6W41Syrh4Z7H4+Vrr\nn0dE1FrfGnL9f4yIL1+WLQQAALgEV2Mnb7QazllSS0Q8GhGv1Vr/zZDL5w252c9GxCud3zwAAACu\nlOF0GO+OiF+LiJdLKS8OXvaPIuJXSik3R0SNiG0R8XcvyxYCAABwRQznLKnPRERTT/fxzm8OAABA\nO0ZSO+eSzpIKAADAj49hnfSmU8aMGROTJ09OZQ8dOpTKfe9737v4jd7FzTffnM6eOXMmlVu0aFG6\nZpuf9dSpU+nsxIkTU7nx48ena7bx0z/906nc3r170zXPnj2bzv7tv/2309kbb7wxlfvwhz+crrlx\n48Z0Nvv4f/PNN9M1V65cmc5m3Xnnnelsm+3t7+9PZ0+ePJnKTZs2LV3zX/7Lf5nO7t+/P5WbOXNm\nuuaGDRvS2fXr16ezWQ888EA62+ZnPXDgQCq3bNmydM0pU6aksz09Palc9jkTEbF9+/Z0dvHixels\n9tiljbvvvjudPXjwYCr35JNPpmsePXo0nb3uuutSuQULrszbn8+bN+/iN3oX2cdS9nfaRIexc3QY\nAQAAaGTBCAAAQKMRHUkFAAC43Iykdo4OIwAAAI10GAEAgK5RStFh7CAdRgAAABpZMAIAANDISCoA\nANBVjKR2jg4jAAAAjXQYAQCArqLD2Dk6jAAAADSyYAQAAKCRkVQAAKCrGEntHB1GAAAAGo1oh/HE\niRPxzDPPpLILFy5M5davX5/KRUSMGzcuna21prNZPT096eyZM2fS2bVr16Zyr776arpmG0ePHk3l\nzp49m6558uTJdHZgYCCd/fznP5/KzZ49O13z3Llz6exrr72Wyk2ePDld8ytf+Uo6+573vCeVmzVr\nVrrm6dOn09k77rgjnc3uu0+dOpWumX08RETMnDkzlWuzvatXr05nN27cmMqtWbMmXfPxxx9PZxcv\nXpzOnj9/PpV7/vnn0zXvv//+dDa7758xY0a65pgx+f/PnzRpUjrb39+fzma1OV5673vfm8otW7Ys\nXfPAgQPpbG9vbyq3d+/edM3sMVpEu8fhtm3bUrm+vr50zQvpMHaODiMAAMAoUkp5sJTyeillcynl\nkw3XryqlfKeUcqaU8g8vJXupLBgBAABGiVJKT0T8QUT8ZESsiYhfKaVcOFJyKCJ+JyL+dSJ7SZz0\nBgAA6BqllKt9JPWOiNhca90SEVFK+WJEPBwRf/X3XLXWfRGxr5TyU5eavVQ6jAAAACNnVillw5CP\nj11w/YKI2DHk652Dlw1Hm2wjHUYAAKCrjPIO44Fa67orvRHDpcMIAAAweuyKiEVDvl44eNnlzjay\nYAQAABg9no2IFaWUZaWU8RHxyxHx2AhkGxlJBQAAusooH0n9a9Vaz5VSPh4RX4uInoj4TK31B6WU\n3xy8/pFSyrURsSEipkTE+VLK70bEmlrrsaZsm+2xYAQAABhFaq2PR8TjF1z2yJDP98Y746bDyrZh\nwQgAAHSVq7nDONr4G0YAAAAaWTACAADQyEgqAADQVYykds6ILhh7enpiypQpqey0adNSua1bt6Zy\nERGTJ09OZ2+88cZU7gc/yJ/EqL+/P509f/58Ojtu3LhU7rrrrkvXbOPUqVOp3IoVKzq8JcPz2muv\npbN33XVXKnfkyJF0za997WvpbPY+3rt3b7rmsmXL0tmsSZMmpbNz5sxJZw8dOpTOfuADH0jltm/f\nnq45fvz4dHbbtm2p3IIFC9I1a61XJJv14Q9/OJ198cUX09l163LvVd3T05OuOWHChHR2YGAgldu3\nb1+6ZvY+ioh49dVX09nVq1ens1l9fX3pbPYYr81rXJvH0tKlS1O5GTNmpGu22e+3Oe7ZtSv3tn+H\nDx9O1+Ty0WEEAAC6RilFh7GD/A0jAAAAjSwYAQAAaGQkFQAA6CpGUjtHhxEAAIBGOowAAEBX0WHs\nHB1GAAAAGukwAgAAXUWHsXN0GAEAAGhkwQgAAEAjI6kAAEBXMZLaOTqMAAAANNJhBAAAukYpRYex\ng3QYAQAAaFRqrSNWbN26dXXDhg0jVg8AAOh+pZTnaq3rIiLmz59fP/rRj17pTXpX/+Jf/Iu/2tar\ngZFUAACgqxhJ7RwjqQAAADTSYQQAALqKDmPn6DACAADQyIIRAACARkZSAQCArmIktXN0GAEAAGik\nwwgAAHQVHcbO0WEEAACgkQUjAAAAjYykAgAAXaOUYiS1g3QYAQAAaKTDCAAAdBUdxs7RYQQAAKDR\niHYYjx8/Hk8++WQqu2XLllRu+fLlqVxExOnTp9PZnp6eVO6ZZ55J17z77rvT2SNHjqSzAwMDqdzR\no0fTNX/rt34rnb3nnntSuZtvvjld8+DBg+nspEmT0tk1a9akcm0eD0uXLk1nv/GNb6Rybf4X8fbb\nb09nP/7xj6dyn/3sZ9M1s8+3iIgHHnggnT1z5kwqN2ZM/v8lz549m87u3LkzlWvzXF28eHE6u2vX\nrlTu53/+59M1H3vssXT25MmT6eyyZctSuc2bN6drttl/b926NZVbuXJluubGjRvT2TbPuUOHDqVy\nH/nIR9I1v/CFL6Sz2debNvfv7Nmz09ns/vv48ePpmn19fensggUL0tl9+/alcm32o1w+RlIBAICu\nYiS1c4ykAgAA0EiHEQAA6Co6jJ1z0Q5jKWVRKeUbpZRXSyk/KKV8YvDyGaWUJ0opmwb/nX75NxcA\nAICRMpyR1HMR8Q9qrWsiYn1E/L1SypqI+GREPFlrXRERTw5+DQAAQJe46EhqrXVPROwZ/Px4KeW1\niFgQEQ9HxL2DN/tsRDwVEf/HZdlKAACAYTKS2jmXdNKbUsrSiLglIr4XEXMHF5MREXsjYu67ZD5W\nStlQStnQ5lT9AAAAjKxhn/SmlDI5Iv5rRPxurfXY0FV7rbWWUmpTrtb66Yj4dETEypUrG28DAADQ\nCaUUHcYOGlaHsZQyLt5ZLH6+1vrngxe/VUqZN3j9vIjIvUMnAAAAo9JwzpJaIuLRiHit1vpvhlz1\nWET8+uDnvx4R/73zmwcAAMCVMpyR1Lsj4tci4uVSyouDl/2jiPi/I+JPSykfjYjtEfGLl2cTAQAA\nhs9IaucM5yypz0TEu93j93d2cwAAABgthn3SGwAAgKuBDmPnXNLbagAAAPDjY0Q7jLXWOHfuXCq7\nZMmSVG7mzJmpXNvszp07U7mPfvSj6ZpbtmxJZ5cuXZrOTp06NZX7zne+k67Zxj/+x/84lXv77bfT\nNSdOnJjO9vT0pLOrV69O5Z5//vl0zTY+9alPpXJbt25N13z99dfT2axbbrklnX3ppZfS2UOHDqWz\ne/fuTeVWrFiRrjl+/Ph0dtasWanc5MmT0zV7e3vT2eXLl6ezWdl9d0S7nzX7nGuzH92/f386u2jR\nolSuzWvynDlz0tk2rxmTJk1KZ7PWr1+fzp44cSKVu+GGG9I123Stss+b5557Ll1z3Lhx6ezx48fT\n2WuvvTaVa3OsxeVjJBUAAOgqRlI7x0gqAAAAjXQYAQCArqLD2Dk6jAAAADTSYQQAALpGKUWHsYN0\nGAEAAGhkwQgAAEAjI6kAAEBXMZLaOTqMAAAANNJhBAAAuooOY+foMAIAANDIghEAAIBGRlIBAICu\nYiS1c0Z0wVhKiQkTJqSy06ZNS+V2796dykVEjBmTb8Du2bMnlRs7Nv8rWbRoUTq7efPmdHbnzp2p\n3J133pmu2cb58+dTue3bt6drDgwMpLN9fX3p7LFjx1K5JUuWpGsePHgwnX300UdTuVtvvTVdc+nS\npelsVnb/EBExZcqUdDb72G9T97nnnkvXPHr0aDq7atWqVG7y5Mnpmv39/elsm7pZR44cSWfnzJmT\nzmZfW9s8ftscOE6cODGV27t3b7rmoUOHrkh27dq16WzWSy+9lM5mnze9vb3pmm323wsXLkzl2jx+\n2/ysJ0+eTGdnzJiRyr311lvpmlw+OowAAEBX0WHsHH/DCAAAQCMLRgAAABoZSQUAALpGKcVIagfp\nMAIAANBIhxEAAOgqOoydo8MIAABAIwtGAAAAGhlJBQAAuoqR1M7RYQQAAKCRDiMAANBVdBg7R4cR\nAACARhaMAAAANDKSCgAAdBUjqZ0zogvGs2fPxo4dO1LZ2bNnp3I9PT2pXESktzUi4vz586nctm3b\n0jVPnTqVzk6ZMiWdnTx5ciq3ZcuWdM01a9aks7NmzUrljh07lq7Z29ubzu7bty+d3b59eyrX5v59\n4YUX0tnrr78+lRs/fny65tmzZ9PZrDFj8sMdEydOTGfPnDmTzmbvp6NHj6ZrTpgwIZ3N3k+HDx9O\n19y0aVM6O3/+/FSuzXM1+3yLiBg3btyIZ/fu3ZuumX1NbpNtU7PNscvSpUvT2bFjR76PMH369HQ2\n+7rcZl84d+7cdDa7f1m0aFG6Zq01nW1z3LN79+5Urr+/P12Ty8dIKgAA0DVKKaP6Y5g/w4OllNdL\nKZtLKZ9suL6UUv7d4PUvlVJuHXLdtlLKy6WUF0spG9ren0ZSAQAARolSSk9E/EFEPBAROyPi2VLK\nY7XWV4fc7CcjYsXgx50R8YeD//7IB2utBzqxPTqMAAAAo8cdEbG51rql1tofEV+MiIcvuM3DEfG5\n+o7vRsS0Usq8y7ExOowAAEBXGeUnvZl1wajop2utnx7y9YKIGHoylZ3xv3YP3+02CyJiT0TUiPh6\nKWUgIv7DBd/7klkwAgAAjJwDtdZ1l/H7v7/WuquUMiciniilbKy1Pp39ZhaMAABAVxnlHcaL2RUR\nQ0+Pu3DwsmHdptb6o3/3lVK+FO+MuKYXjP6GEQAAYPR4NiJWlFKWlVLGR8QvR8RjF9zmsYj4yODZ\nUtdHxNFa655SyqRSyjUREaWUSRHxExHxSpuN0WEEAAAYJWqt50opH4+Ir0VET0R8ptb6g1LKbw5e\n/0hEPB4RD0XE5oh4OyL+zmB8bkR8abDDOjYi/nOt9atttseCEQAA6CpX+Uhq1Fofj3cWhUMve2TI\n5zUi/l5DbktEvLeT22IkFQAAgEY6jAAAQFe52juMo4kOIwAAAI10GAEAgK5RStFh7CAdRgAAABqN\naIdx0qRJcffdd6ey3/nOd1K5CRMmpHIREcePH09n+/r6RrzmsmXL0tljx46ls/v27Uvlzp8/n67Z\nxtSpU1O5lStXpmuePHkyne3v709nZ8+enco9++yz6ZpttnfOnDmp3J49e9I1Z8yYkc5mLViwIJ0d\nGBhIZ1988cV0duzY3MtFNhcRsW7dunT2wIEDqdzEiRPTNefOnZvOvv322+ls1ubNm9PZyZMnp7PZ\n382sWbPSNc+ePZvOfutb30rlsscBEe2OXd5444109vrrr09ns44cOZLO9vb2jmguot3jMPta1eb4\nY/fu3ense9+bP9Hmpk2bUrmenp50TS4fI6kAAEBXMZLaOUZSAQAAaKTDCAAAdBUdxs7RYQQAAKCR\nBSMAAACNjKQCAABdxUhq5+gwAgAA0EiHEQAA6Co6jJ2jwwgAAEAjC0YAAAAaGUkFAAC6RinFSGoH\n6TACAADQSIcRAADoKjqMnTOiC8Zz587F3r17U9mbbroplTt+/Hgq19b48eNTuRkzZqRr9vX1pbOb\nNm1KZ6dNm5bKtdneNp588slU7tChQ+maq1evTmdPnTqVzu7fvz+Va/O7GRgYSGdffPHFVG7Hjh3p\nmosWLUpnH3zwwVSuzfYuW7Ysnb3hhhvS2SNHjqRybV6wx4zJD8HMnDkznc16++2309mFCxd2cEuG\np7e3N53t7+9PZydMmJDKbdy4MV1z8uTJ6eyUKVNSubVr16ZrfvWrX01na63p7LFjx9LZrDbP8+wx\n07lz59I1v/vd76az73vf+1K573//++maN998czqbPYaIiJg/f34ql90/cHkZSQUAAKCRkVQAAKCr\nGEntHB1GAAAAGukwAgAAXUWHsXMu2mEspXymlLKvlPLKkMv+WSllVynlxcGPhy7vZgIAADDShjOS\n+p8ioulUgP+21nrz4Mfjnd0sAAAArrSLjqTWWp8upSy9/JsCAADQTinFSGoHtTnpzW+XUl4aHFmd\n/m43KqV8rJSyoZSy4fDhwy3KAQAAMJKyC8Y/jIjrIuLmiNgTEb//bjestX661rqu1rpu+vR3XVcC\nAAB0xI+6jKPx42qTWjDWWt+qtQ7UWs9HxH+MiDs6u1kAAABcaakFYyll3pAvfzYiXnm32wIAAHB1\nuuhJb0opX4iIeyNiVillZ0T804i4t5Ryc0TUiNgWEX/3Mm4jAADAsF2No5+j1XDOkvorDRc/ehm2\nBQAAgFHkogtGAACAq4kOY+eM6IJxYGAgTpw4kcqeOXMmlZs1a1YqFxFx9uzZdHb+/Pmp3Ne//vV0\nzTvuyJ97aNWqVenswMBAKpe9j9qaN2/exW/UYOnSpemaJ0+eTGf7+/vT2b6+vlSup6cnXfO2225L\nZ7dt25bKzZ49O11z4sSJ6WzWpk2b0tnsPjQi/1yNiPj2t7+dyi1fvjxd8xvf+EY6u3jx4lRu2rRp\n6ZqnT59OZ7P7iDbPt927d6ezCxYsSGfnzp2byk2YMCFd89ixY+lsdh/81FNPpWu2eT3P7kcjIlas\nWJHOZr3ySv40GM8880wq12a/tH///nT285//fCrX29ubrtlm0dTmZ124cGEqd+TIkXRNLp8278MI\nAABAFzOSCgAAdBUjqZ2jwwgAAEAjHUYAAKBrlFJ0GDtIhxEAAIBGFowAAAA0MpIKAAB0FSOpnaPD\nCAAAQCMdRgAAoKvoMHaODiMAAACNdBgBAICuosPYOTqMAAAANLJgBAAAoJGRVAAAoKsYSe2cEV0w\nllKip6cnlZ0zZ04q981vfjOVi4i455570tkXXnghlbvtttvSNXfv3p3OXn/99ens2bNnU7k33ngj\nXXPlypXp7LJly1K5H/7wh+maEydOTGcPHTqUzs6aNSuV6+vrS9fctGlTOjtp0qRUbuPGjemay5cv\nT2ez2jx+s/vQiIgpU6aks3Pnzk3ltmzZkq551113pbPZx+H48ePTNdtkly5dms5mHTt2LJ09ceJE\nOvvWW2+lcm32o2vXrk1nX3nllVSuzX00e/bsdHbnzp3p7JV4HGZfkyPy93Gb/f7MmTPT2ePHj6dy\nY8fmD9fbvGa0OTbMLtbavE5x+egwAgAAXaOUosPYQf6GEQAAgEYWjAAAADQykgoAAHQVI6mdo8MI\nAABAIx1GAACgq+gwdo4OIwAAAI0sGAEAAGhkJBUAAOgqRlI7R4cRAACARjqMAABAV9Fh7BwdRgAA\nABpZMAIAANDISCoAANA1SilGUjtoRBeM/f398eabb6ayJ0+eTOWOHDmSykVE/NEf/VE6e88996Ry\n3/zmN9M1169fn84+9dRT6WxfX18qt3379nTNv/W3/lY6++yzz6Zy06dPT9fctWtXOnvNNdeks9u2\nbUvl7rrrrnTNzZs3p7MzZsxI5ZYvX56uuXDhwnQ26+DBg+nssWPH0tnsfiki4o//+I9TuSVLlqRr\njh2bf4m65ZZbUrlvfOMb6Zrz589PZ8+dO5fOZk2ePDmd7enpSWez+7RDhw6lax49ejSdXbNmTSr3\n9ttvp2u2yWb3oxERzzzzTCr3/ve/P11z//796ezZs2dTuR07dqRrfvvb305nb7311lSuv78/XbPN\nounAgQPpbHb/MmnSpHRNLh8dRgAAoKvoMHaOv2EEAACgkQUjAAAAjYykAgAAXcVIaufoMAIAANBI\nhxEAAOgqOoydo8MIAABAIwtGAAAAGhlJBQAAuoqR1M7RYQQAAKCRDiMAANA1Sik6jB2kwwgAAEAj\nC0YAAAAajehI6rlz5+Lw4cOpbG9vbyq3evXqVC4iYtu2belstg1+0003pWvu3bs3nf3ABz6Qzp44\ncSKVu+aaa9I125g+fXoqNzAwkK75sz/7s+nsn/3Zn6WztdZUbsKECemaS5cuTWe3bNmSyp0+fTpd\ns032b/yNv5HKTZ06NV3z7rvvTmfPnTuXzv79v//3U7k33ngjXbPN9k6cODGV+7mf+7l0zQMHDqSz\nbR6HWTNnzkxnd+3alc6OHZs79LjtttvSNdtsb39/fyo3bdq0dM2tW7ems9dff306O2vWrHQ26+ab\nb05nJ0+enMq9+eab6Zof+tCH0tnssWybx1Kbscz9+/ens9ljgddffz1d80JGUjtHhxEAAIBGFowA\nAEBX+dGJb0bjxzC3/8FSyuullM2llE82XF9KKf9u8PqXSim3Djd7qSwYAQAARolSSk9E/EFE/GRE\nrImIXymlrLngZj8ZESsGPz4WEX94CdlL4m01AACArnKV/w3jHRGxuda6JSKilPLFiHg4Il4dcpuH\nI+Jz9Z0TVny3lDKtlDIvIpYOI3tJdBgBAABGzqxSyoYhHx+74PoFEbFjyNc7By8bzm2Gk70kOowA\nAAAj50Ctdd2V3ojhsmAEAAC6ylU+krorIhYN+Xrh4GXDuc24YWQviZFUAACA0ePZiFhRSllWShkf\nEb8cEY9dcJvHIuIjg2dLXR8RR2ute4aZvSQ6jAAAQNe4lLevGI1qredKKR+PiK9FRE9EfKbW+oNS\nym8OXv9IRDweEQ9FxOaIeDsi/s5fl22zPRaMAAAAo0it9fF4Z1E49LJHhnxeI+LvDTfbhpFUAAAA\nGukwAgAAXeVqHkkdbXQYAQAAaKTDCAAAdBUdxs4p7/y95MhYt25d3bBhw4jVAwAAul8p5bla67qI\niJUrV9ZHHnnkYpEr5r777vurbb0aGEkFAACgkZFUAACgqxhJ7RwdRgAAABpddMFYSvlMKWVfKeWV\nIZfNKKU8UUrZNPjv9Mu7mQAAAMNTShm1H1eb4XQY/1NEPHjBZZ+MiCdrrSsi4snBrwEAAOgiF10w\n1lqfjohDF1z8cER8dvDzz0bEhzu8XQAAAP9fe/ceW+V933H888UYDA415uYYbGxzC9CwAEUEJQ2F\npEkJiZZMaqs2ypJmjTKpS5pJnaZsq7RsU6Vo1S7/VJFYFy3V1kaRtqxpFDXNpSqJmpI4gYSboVbC\nxWCwuRhwCRfDb3/4pHPZQ4DP82Cbs/dLQj63D9/H9u+c5/z8/Z3nwRBzD3pTl1LqLF3eJ6nufA+M\niIckPSRJ06dPN8sBAAAAwIVdqUs/h6vcB71J/SdyPO/JHFNKa1JKS1JKSyZPnpy3HAAAAABgkLgd\nxv0RUZ9S6oyIekldRW4UAAAAALjoMBbH7TA+L+n+0uX7Jf24mM0BAAAAAAwXF3NajR9JelPSNRHR\nERFfl/SEpFsj4teSPl+6DgAAAAAoIxdckppS+up57rql4G0BAAAAgNxYklqc3Ae9AQAAAACUJ/eg\nNwAAAAAwLNFhLM6gThgPHTqkZ555xsoeOXLEyo0ePdrKSVJNTY2draqqsnKvvfaaXfPWW2+1s6+8\n8oqdXbBggZXL80S+99577eyjjz5q5fKcR7S9vd3OTps2zc7OmjXLynV3dw96TUl6//33rdy+ffvs\nmi0tLXb2m9/8ppX7wQ9+YNecO3eunX3xxRft7LXXXmvl8jxvKioq7OzWrVut3Ouvv27XvP766+3s\n8ePHrdzDDz9s13z88cft7LJly+zs3r17rdyHH35o18yzv3Ffg1evXm3X3Lx5s51du3atnR07dqyV\n+/a3v23X/MY3vmFnZ86caeVqa2vtmtu2bbOz7nvD6upqu2ZlZaWdzfOca2pqsnIjR9LLGo5YkgoA\nAAAAyMQ0HgAAAEBZYUlqcegwAgAAAAAy0WEEAAAAUDYigg5jgegwAgAAAAAyMWEEAAAAAGRiSSoA\nAACAssKS1OLQYQQAAAAAZKLDCAAAAKCs0GEsDh1GAAAAAEAmJowAAAAAgEwsSQUAAABQVliSWhw6\njAAAAACATHQYAQAAAJQVOozFGdQJ48iRIzVhwgQrW1lZaeXcepI0ceJEOztihNe8veeee+yaPT09\ndnbWrFl2durUqVZuypQpds087rvvPiu3detWu2ZjY6OdXbx4sZ09cOCAlZs3b96g15SkG2+80cpV\nVe+P+W4AABO8SURBVFXZNT/1qU/ZWddtt91mZ3fv3m1nlyxZYmfnzp1r5dra2uya48ePt7Pu9s6e\nPduuWVtba2ePHDliZ10333yznf3FL35hZ5uamqzc8uXL7ZodHR121n3/8eSTT9o1r732WjubZ38+\nFObMmWNn3fdaeTQ0NNjZkSO9t91vvvmmXXPBggV2dsWKFXa2r6/PyuV5D4HLhw4jAAAAgLIREXQY\nC8RnGAEAAAAAmZgwAgAAAAAysSQVAAAAQFlhSWpx6DACAAAAADLRYQQAAABQVugwFocOIwAAAAAg\nExNGAAAAAEAmlqQCAAAAKCssSS0OHUYAAAAAQCY6jAAAAADKCh3G4tBhBAAAAABkYsIIAAAAAMg0\nqEtSKyoqNH78eCvb2dlp5T766CMrJ0m7d++2s01NTVbuyJEjds26ujo7W1NTY2fd382ZM2fsmgsW\nLLCz3d3dVm706NF2zZEj/afa8ePH7eyuXbus3MmTJ+2aO3futLPu68PSpUvtmm+88YadnTNnjpVr\nb2+3aw7Va5o7lpqbm+2ae/futbNjx461cjt27LBrnj592s4uXrzYzroOHjxoZxcuXGhn6+vrrVxv\nb69dM88+w90vT5gwwa559uxZO3vixAk7m+f36rrjjjvs7LvvvmvlVq5cadfs6emxs1u2bLFyjzzy\niF1z3LhxdjbPe4G+vj4rN2nSJLvmQBHBktQC0WEEAAAAAGTioDcAAAAAygodxuLQYQQAAAAAZGLC\nCAAAAADIxJJUAAAAAGWFJanFocMIAAAAAMhEhxEAAABAWaHDWBw6jAAAAACATEwYAQAAAACZWJIK\nAAAAoKywJLU4dBgBAAAAAJnoMAIAAAAoGxFBh7FAdBgBAAAAAJmYMAIAAAAAMg3qktTKykrV1dVZ\n2Y6ODit36tQpKydJo0aNsrM7d+60cpMnT7Zrnj592s5ec801dnbTpk1Wrqmpya6Zx7Fjx6xcX1+f\nXXPWrFl2Ng/399rW1mbXvPPOO+3syZMnrdz7779v16ysrLSzrhEj/L/V1dfX29kzZ87Y2aNHj1q5\nPNub53fT09Nj5ZYvX27X3L59u50diqVTnZ2ddra2ttbOrl+/3sq5v1NJ+vSnP21nT5w4YeWmT59u\n12xvb7ezLS0tdtYdw4sXL7Zrvvbaa3Z2xYoVVu5nP/uZXfP48eN2dsaMGVYuzz4jz1g6fPiwna2p\nqbFyvb29ds1zsSS1OHQYAQAAAACZOOgNAAAAgLJCh7E4dBgBAAAAAJmYMAIAAAAAMrEkFQAAAEBZ\nYUlqcegwAgAAAAAy0WEEAAAAUFboMBaHDiMAAAAAIBMdRgAAAABlIyLoMBaIDiMAAAAAIBMTRgAA\nAABAJpakAgAAACgrLEktDh1GAAAAAEAmOowAAAAAygodxuIM6oTx+PHj2rBhg5VtbGy0crt27bJy\nUv/2uqZNm2blKisr7ZqbNm2ys0ePHrWz06dPt3L79++3a15zzTV2dtSoUVZu3rx5ds2NGzfa2ZaW\nFjt74sQJK1dTU2PXfOONN+zs8uXLrVx1dbVds6Ghwc668rwu5fle29vb7WxKycotWLDArnny5Ek7\nu2/fPivn7qOkfN/r22+/beXc54wkzZkzx86OHOm/fejs7LRyFRUVds29e/fa2dmzZ1u5Dz/80K6Z\n53vN8xpx6tQpO+uaPHmyne3u7rZyM2fOtGvW19fb2a6uLis3evRou2ae8XD48GE7e/bsWSs3f/58\nuyYuH5akAgAAAMAVICImRMTLEfHr0tfa8zxuVURsi4j2iHhswO2PR8SeiNhQ+rf6QjWZMAIAAAAo\nKx+fi3E4/svpMUmvppRmS3q1dP3c771C0vck3S5pvqSvRsTA9u0/pZQWlv69eKGCTBgBAAAA4Mpw\nl6SnS5eflnR3xmOWSmpPKX2QUjol6ZlSzpLrM4wRsUPSMUlnJPWllJbk+f8AAAAAIK9hftCbSRHR\nOuD6mpTSmovM1qWUPv4w+D5JdRmPmSZp94DrHZKuH3D9kYi4T1KrpG+llD7xA6tFHPRmZUrpQAH/\nDwAAAACUuwOf1GiLiFckXZ1x118NvJJSShFxqUele1LS30lKpa//IOmPPinAaTUAAAAAYJhIKX3+\nfPdFxP6IqE8pdUZEvaSsw+/ukTTwFBMNpduUUvrtaQoi4l8kvXCh7cn7GcYk6ZWIeCciHsp6QEQ8\nFBGtEdGa59QNAAAAAHAhQ31Qm8t80JvnJd1funy/pB9nPOZtSbMjoiUiRkn6Simn0iTzY38g6YLn\n5cvbYfxsSmlPREyR9HJEtKWU1g58QGk97hpJmjVrlnciLwAAAADAE5KejYivS9op6cuSFBFTJX0/\npbQ6pdQXEQ9LeklShaSnUkqbS/m/j4iF6m/87ZD0xxcqmGvCmFL6uLXZFRHPqf+IPGs/OQUAAAAA\nl88wP+iNLaV0UNItGbfvlbR6wPUXJf2fU2aklP7wUmvaS1Ijojoixn18WdJtuoiWJgAAAADgypCn\nw1gn6bnS7H2kpB+mlH5ayFYBAAAAAIacPWFMKX0g6boCtwUAAAAAcivXJalDIe9RUgEAAAAAZWpQ\nz8N4+vRp7du3z8q2trZaObeeJN1444129qWXXrJyK1eutGtu27bNzu7cudPOXnXVVVbuuuuGpkF9\n6NAhK7d79267Zltbm53du3evnW1vb7dyixYtsmuOGTPGzq5fv97K9fX12TWPHTtmZ13PPvusnc3z\nF9OZM2fa2ZS8g1zn+fmeOHHCzn7pS1+ycp/73Ofsmnleg6uqquysq6Ojw86uXr36wg8quO7SpUvt\nmnleIyZNmmTlrr4665zbF2ftWv/4gQ0NDXb2hhtusLOusWPH2tnm5mYrt27dOrum+1ooSd3d3VZu\nyZLznt/9gtz3aJL/85X853ltba1d81x0GItDhxEAAAAAkIkJIwAAAAAg06AuSQUAAACAy40lqcWh\nwwgAAAAAyESHEQAAAEDZiAg6jAWiwwgAAAAAyMSEEQAAAACQiSWpAAAAAMoKS1KLQ4cRAAAAAJCJ\nDiMAAACAskKHsTh0GAEAAAAAmZgwAgAAAAAysSQVAAAAQFlhSWpx6DACAAAAADINaodxzJgxmjdv\nnpWtqKiwcjfddJOVk6TDhw/b2VWrVlm5X/3qV3bNadOm2dlFixbZ2b6+Piu3bt06u6Y7jiTpzTff\ntHJf+MIX7JonTpywsx0dHXa2ubnZyj311FN2zaamJjt7++23W7kDBw7YNWfMmGFnXQ8++KCdPX78\nuJ29+uqr7WxVVZWVyzP2t2/fbmd/8pOfWLkzZ87YNd39lCRNnTrVzroaGhrs7FtvvWVnly9fbuU2\nbNhg18zzGjF//nwrt2XLFrvm7Nmz7Wye5437fJ01a5Zdc82aNXb2gQcesHJ5fjfua4sk1dTUWLnv\nfve7ds2lS5fa2Tz7DPe1dOLEiXbNc9FhLA4dRgAAAABAJiaMAAAAAIBMHPQGAAAAQNmICJakFogO\nIwAAAAAgEx1GAAAAAGWFDmNx6DACAAAAADLRYQQAAABQVugwFocOIwAAAAAgExNGAAAAAEAmlqQC\nAAAAKCssSS0OHUYAAAAAQCY6jAAAAADKCh3G4tBhBAAAAABkYsIIAAAAAMg0qEtST548qZ07d1rZ\nyZMnW7mzZ89aOUl677337OxHH31k5W655Ra75q5du+xsdXW1nV2/fr2Vmz59ul0zj6997WtWrr6+\n3q7pjl9J9nNGkvbv32/lnnjiCbtmb2+vnZ05c6aVW7dunV3Tfa7mcfDgQTub5zXt2LFjdratrc3K\n5VkSVFNTY2crKiqsnPt9SlJdXZ2d/c1vfmPlFi9ebNccOdJ/C9DY2GhnDxw4YOXyjIdDhw7Z2fHj\nx1u5GTNm2DVbWlrsbErJzo4ZM8bOuh544AE729PTY+UWLVpk17z77rvtrLu9N910k11z7NixdjbP\n/mbSpElWLs9+aqCIYElqgegwAgAAAAAycdAbAAAAAGWFDmNx6DACAAAAADIxYQQAAAAAZGJJKgAA\nAICywpLU4tBhBAAAAABkosMIAAAAoKzQYSwOHUYAAAAAQCYmjAAAAACATCxJBQAAAFA2IoIlqQWi\nwwgAAAAAyESHEQAAAEBZocNYHDqMAAAAAIBMTBgBAAAAAJkGdUnq6dOn1dnZaWcdU6ZMsXKSVFVV\nZWenTp1q5bZs2WLXnDlzpp2dOHGinV22bJmV27Fjh10zjxEjvL+T7Nmzx675zjvv2Nk8v5vp06db\nud7eXrtmT0+Pne3q6rJyeX5GjY2NdtZ16NAhO3vXXXfZ2aNHj9rZtrY2K9fc3GzXHDdunJ119zUT\nJkywa9bV1dnZPPsbV57t3bVrl5194YUXrFye/XlFRYWd3b59u5XbsGGDXfPgwYN2Ns/PafPmzVbO\nfR8gSWPGjLGzHR0dVs79PiWpu7vbzlZXV1u5yspKu2aecbho0SI729raauXy7DPOxZLU4tBhBAAA\nAABk4qA3AAAAAMoKHcbi0GEEAAAAAGRiwggAAAAAyMSSVAAAAABlhSWpxaHDCAAAAADIRIcRAAAA\nQNmICDqMBaLDCAAAAADIxIQRAAAAAJCJJakAAAAAygpLUotDhxEAAAAAkIkOIwAAAICyQoexOHQY\nAQAAAACZBrXDeNVVV+mGG26wsnV1dVbul7/8pZWTpLlz59rZs2fP2llXQ0ODnT19+rSdbW5utnJj\nx461a+bR2dlp5fL8jObNm2dna2tr7WxjY6OV27Fjh12zqqrKzo4Y4f0Ny319kKTW1lY7u2DBAiu3\nfPlyu+bGjRvtbG9vr539zGc+Y+UqKyvtmrt377azbt3rrrvOrtne3m5nW1pa7Kxr/fr1dnbq1Kl2\n9otf/KKVmzJlil1z69atdrarq8vKzZgxw66Z57l68uRJO5tnX+XK83Pat2+flXvwwQftmps2bbKz\n48ePt3J59quHDx+2s+72StL1119v5aqrq+2a56LDWBw6jAAAAACATEwYAQAAAACZOOgNAAAAgLLC\nktTi5OowRsSqiNgWEe0R8VhRGwUAAAAAGHp2hzEiKiR9T9KtkjokvR0Rz6eUthS1cQAAAABwKSKC\nDmOB8nQYl0pqTyl9kFI6JekZSXcVs1kAAAAAgKGWZ8I4TdLAY553lG77HRHxUES0RkRrT09PjnIA\nAAAAgMF02Q96k1JaI2mNJM2dOzdd7noAAAAA/n9jSWpx8nQY90gaeFbwhtJtAAAAAIAykKfD+Lak\n2RHRov6J4lck3VPIVgEAAACAiQ5jcewJY0qpLyIelvSSpApJT6WUNhe2ZQAAAACAIZXrM4wppRcl\nvVjQtgAAAAAAhpHLftAbAAAAABhMLEktTp6D3gAAAAAAylikNHhnuoiIbkk7z3P3JEkHBm1jUM4Y\nSygKYwlFYSyhKIwlFKXcxlJTSmmyJEXET9X//Q1XB1JKq4Z6Iy7WoE4YP0lEtKaUlgz1duDKx1hC\nURhLKApjCUVhLKEojCVcLJakAgAAAAAyMWEEAAAAAGQaThPGNUO9ASgbjCUUhbGEojCWUBTGEorC\nWMJFGTafYQQAAAAADC/DqcMIAAAAABhGmDACAAAAADINiwljRKyKiG0R0R4Rjw319uDKERFPRURX\nRGwacNuEiHg5In5d+lo7lNuIK0NENEbEzyNiS0RsjohHS7cznnBJIqIqIt6KiPdKY+lvSrczlnDJ\nIqIiItZHxAul64wjWCJiR0RsjIgNEdFauo3xhAsa8gljRFRI+p6k2yXNl/TViJg/tFuFK8i/STr3\nxKePSXo1pTRb0qul68CF9En6VkppvqRlkv6k9FrEeMKlOinp5pTSdZIWSloVEcvEWILnUUlbB1xn\nHCGPlSmlhQPOv8h4wgUN+YRR0lJJ7SmlD1JKpyQ9I+muId4mXCFSSmslHTrn5rskPV26/LSkuwd1\no3BFSil1ppTeLV0+pv43aNPEeMIlSv16S1crS/+SGEu4RBHRIOkOSd8fcDPjCEViPOGChsOEcZqk\n3QOud5RuA1x1KaXO0uV9kuqGcmNw5YmIZkmLJK0T4wmG0jLCDZK6JL2cUmIswfHPkv5c0tkBtzGO\n4EqSXomIdyLiodJtjCdc0Mih3gDgckoppYjg3DG4aBFxlaT/lPSnKaWjEfHb+xhPuFgppTOSFkbE\neEnPRcS159zPWMIniog7JXWllN6JiBVZj2Ec4RJ9NqW0JyKmSHo5ItoG3sl4wvkMhw7jHkmNA643\nlG4DXPsjol6SSl+7hnh7cIWIiEr1Txb/I6X0X6WbGU+wpZR6JP1c/Z+1ZizhUtwo6fcjYof6P65z\nc0T8uxhHMKWU9pS+dkl6Tv0fC2M84YKGw4TxbUmzI6IlIkZJ+oqk54d4m3Ble17S/aXL90v68RBu\nC64Q0d9K/FdJW1NK/zjgLsYTLklETC51FhURYyTdKqlNjCVcgpTSX6SUGlJKzep/b/RaSuleMY5g\niIjqiBj38WVJt0naJMYTLkKkNPSd54hYrf51+hWSnkopfWeINwlXiIj4kaQVkiZJ2i/pryX9t6Rn\nJU2XtFPSl1NK5x4YB/gdEfFZSa9L2qj//bzQX6r/c4yMJ1y0iPg99R88okL9f5h9NqX0txExUYwl\nGEpLUv8spXQn4wiOiJih/q6i1P+RtB+mlL7DeMLFGBYTRgAAAADA8DMclqQCAAAAAIYhJowAAAAA\ngExMGAEAAAAAmZgwAgAAAAAyMWEEAAAAAGRiwggAAAAAyMSEEQAAAACQ6X8AcpyjF9vkMzQAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAKhCAYAAAC1lfQ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmU3XWZ4P+nUmuWSipkD5AQQqIQ1oQlLCJbBxBZFBxA\nnWaOnp4eYWjasRnt0SY22o4NynFcRkBoHHVa1AaUQVGBZk+AALIkIARIIBtLSGWpVKVSldTvD+eP\nX7f26VvP8+ujv3Ner78/7/NU3fu933ufuhzSNDQ0FAAAAAzPiN/3DwAAAPD/R5YpAACABMsUAABA\ngmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJLcM5PGbMmKEJEyakhw0MDKTbiIgR\nI/K7X1tbW2l2c3NzqX/99ddL/bRp00r9hg0b0u348eNLsys2bdoUPT09TY2cbW9vHxo1alR61siR\nI9NtRMT27dvTbUdHR2n26NGjS31/f//vdf62bdvS7Y4dO0qzK9fM5s2bY/v27Q1dn2PHjh2aPHly\nelb1+ty8eXO6rTxGEfX7b1NTQw/xv6ivr6/Ub926Nd12dnaWZu/atSvdbty4MbZt29bQg9fc3DzU\n2tqanjVlypR0GxHR29ubbivPz/8XxowZU+pnzJhR6jdt2pRuK58NIiJaWob1MfK39PX1bRwaGprU\nyNm2trahyntl9X2q8vro6ekpza58/o2oP0/Ve3Dl9V1976s8dps3b47e3t5/9Zcf1qM7YcKE+G//\n7b+lf6j169en24jaC2GvvfYqzR47dmyp/9u//dtS/1d/9Vel/m/+5m/S7fvf//7S7MqL8Etf+lLD\nZ0eNGhUnnHBCetZBBx2UbiMiHn/88XT7jne8ozT7iCOOKPWrV68u9UceeWSpv+eee9Ltiy++WJp9\n2GGHpdtvfvObDZ+dPHlyXHPNNelZ1evz1ltvTbeVxygiYtasWaW++ses5cuXl/q777473R533HGl\n2ZU/0lxxxRUNn21tbY2ZM2emZ33iE59ItxERy5YtS7eV+0dE/YPiUUcdVeqvvfbaUn/zzTen2yuv\nvLI0e9Kkhvagf9FTTz31aqNnOzo6YuHChelZCxYsSLcRtT9qP/zww6XZ1YW9q6ur1FcXmieffDLd\nVt/7Kgv4t771rYbO+c/8AAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwB\nAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACChZTiH29vbY9asWelhI0eOTLcRUZo9e/bs\n0uzm5uZS/73vfa/Uv/rqq6X+xBNPTLeHHHJIafbcuXPT7Y033tjw2b322iuuvvrq9KyHH3443UZE\nzJs3L92efvrppdmvvfZaqT/uuON+r/PPP//8dDtq1KjS7EmTJqXbW265peGzXV1dcdZZZ6VnrV69\nOt1GRBxzzDHp9sADDyzNXr58eanfY489Sn3ltRkR8c53vjPdVn/2zZs3p9vOzs6Gz+61117xxS9+\nMT3rs5/9bLqNiDj++OPT7eLFi0uzlyxZUurHjBlT6ivXV0TEhz70oXT7nve8pzR7aGio1D/11FMN\nnx0zZkwcddRR6VkjRvz+vj844IADSn1bW1up/9GPflTqTz755FL/x3/8x+l2YGCgNLvy+bmpqamh\nc76ZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwB\nAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACChZTiH29raYu+9904Pe/bZZ9NtRMSWLVvS\n7bJly0qzFy5cWOrXrVtX6ufNm1fq99prr3Rbfd527tyZbvv6+oY157XXXkvP6ujoSLcRv3l9ZFWu\n7YiIFStWlPre3t5S//TTT5f6adOmpduzzjqrNPvmm29Ot5s2bWr47I4dO+KFF15Iz6o+R6tXr063\nL7/8cmn2nDlzSv2aNWtK/ejRo0v9Sy+9lG4HBgZKs4888sh0u2vXrobPVq/Pj3zkI+k2ImL+/Pnp\n9o033ijN/vCHP1zqq9fn7NmzS/1wnud/7plnninNrj7vN9xwQ8NnJ0+eHH/2Z3+WnvWzn/0s3UZE\nXHTRRem2eo0++OCDpf473/lOqZ8wYUKp7+npSbfVe2hlb/nud7/b0DnfTAEAACRYpgAAABIsUwAA\nAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsU\nAABAgmUKAAAgoWU4hzs6OmL//fdPD3viiSfSbUREb29vuh0/fnxp9iOPPFLq586dW+orv3tExKJF\ni9Ltj3/849Lso446Kt2OHj264bODg4OxcePG9KyBgYF0GxFx5JFHlvqKo48+utQ//PDDpf6yyy4r\n9X19fen2nnvuKc1ub29Pt01NTf+m5//f9t5773Qb8ZvXR9aWLVtKs/faa69S39raWuo3b95c6mfN\nmpVuV6xYUZo9YkT+b57Dud56e3tL79GzZ89OtxER3/rWt9Ltq6++Wpp9wQUXlPrq9fWud72r1P/0\npz9Nt6ecckpp9v/5P/+n1A/Hxo0b46abbkr3f/zHf1yaf/3116fb6j10/vz5pb5yH4mIWLZsWalf\nv359up0yZUpp9qZNm9Jtf39/Q+d8MwUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATL\nFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAQstwDnd3\nd8cPf/jD9LDDDz883UZEPPbYY+m2u7u7NHv+/PmlvqOjo9T/+Mc/LvXr169PtwsXLizNfv7559Pt\njh07Gj47YsSIGDlyZHrWsccem24jIu699950e+ihh5Zm9/T0lPopU6aU+h/84Ael/oMf/GC6HTdu\nXGn2AQcckG5HjRrV8NmdO3fG6tWr07M2btyYbiMifv3rX6fboaGh0uzq/XM494HfZe3ataW+cv+s\nvrYffvjhdDuc+8K4cePizDPPTM8azmvhd3niiSfSbXt7e2n2o48+WurPOuusUn/33XeX+srvP3ny\n5NLs6nvPcLS1tcWMGTPS/Zo1a0rzK59h58yZU5q9atWqUj9mzJhS39XVVeo3bNiQbnft2lWaffzx\nx6fbzs7Ohs75ZgoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJl\nCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACAhJbhHO7r64vly5enh337299O\ntxERzz33XLq95JJLSrMXL15c6i+//PJS/8tf/rLUL1u2LN1OmTKlNPu8885Lt+3t7Q2f3blzZ6xb\nty49a8WKFek2ImLJkiXpduXKlaXZlec3IuLUU08t9WPHji31v/jFL9Jtf39/afbbb7+dbgcHB4c1\np3IPbG5uTrcREXPmzEm3Q0NDpdlbtmwp9X19faX+5JNPLvWLFi1Kt5X3zIiIkSNHptudO3c2fHb7\n9u2xdOnS9KxvfvOb6TYi4uGHH063l112WWl29fraf//9S/2hhx5a6q+88sp0u3DhwtLsT37yk6X+\na1/7WsNnm5ubY9y4celZBx10ULqNiLjtttvS7e7du0uzX3vttVL/3ve+t9R3dXWV+oMPPjjdPv/8\n86XZU6dOTbetra0NnfPNFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYp\nAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJLcM5PG7cuDjjjDPS\nw9ra2tJtRMTHP/7xdLt69erS7L/+678u9TfccEOpP/TQQ0v9hRdemG537NhRmn3jjTem240bNzZ8\ntru7O370ox+lZ33sYx9LtxER27dvT7fLly8vzT744INL/Z//+Z+X+oMOOqjUX3LJJel27dq1pdkL\nFixIt83NzQ2fnTx5clx22WXpWZXrKyJir732SrcdHR2l2X19faX+ueeeK/VLly4t9QMDA+m2tbW1\nNHvPPfdMt7fcckvDZ0ePHh1HH310etbXv/71dBsRsXjx4nRbeY+JiHjhhRdK/b/7d/+u1P/gBz8o\n9e95z3vS7e23316avXnz5lI/HK+99lrpveKaa64pzX/wwQd/b7OnTJlS6s8999xSf/bZZ5f6fffd\nN93u3r27NPuhhx5Kt2+++WZD53wzBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsU\nAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAEBCy3AO9/T0\nxNKlS9PD5s6dm24jIgYHB9PtLbfcUpr99ttvl/pPf/rTpf7RRx8t9RMmTEi3N998c2n2UUcdlW53\n797d8Nm99947rrnmmvSsOXPmpNuIiH322ef30kZErFq1qtQ/8sgjpb67u7vUz58/P93edtttpdk9\nPT3pdteuXQ2fHRwcjLfeeis9azivhd+l8hytWbOmNHvEiNrf7bq6un6v859//vl0O3369NLsrVu3\nptsdO3Y0fHbEiBExatSo9Kx58+al24jaYzxz5szS7JdeeqnUz5o1q9QvWrSo1J988snpdmhoqDS7\n8tliuPbee+/40pe+lO7feOON0vxTTz013V5++eWl2a+//nqp/+AHP1jqx44dW+or9txzz1K/cePG\ndNvoPdE3UwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAA\nCZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIaBnO4b6+vnjmmWfSw3bs2JFuIyL233//dDt6\n9OjS7IMPPrjU33777aX+hBNOKPX77rtvuv2TP/mT0uxHHnkk3e7evXtY55ubm9OzXnjhhXQbEfHT\nn/403e65556l2QceeGCp7+7uLvUbNmwo9atWrUq31ceucl/p6Oho+Ozg4GBs3LgxPeuCCy5ItxER\nmzdvTrcrVqwozZ49e3apHzduXKlfs2ZNqZ80aVK6nT59emn2cK6xf66tra3hsyNHjiy9zz3wwAPp\nNqL2PnPQQQeVZre3t5f6n/zkJ6X+hhtuKPWV967qe8ff//3fl/rhaG5ujs7OznT//PPPl+bff//9\n6fbVV18tze7q6ir1lftIRMQvf/nLUn/aaael2zvuuKM0+5BDDkm3jX4G9c0UAABAgmUKAAAgwTIF\nAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiw\nTAEAACRYpgAAABIsUwAAAAktwzk8efLkuOSSS9LD3vnOd6bbiIhrr7023Z5++uml2bt27Sr1s2fP\nLvXz588v9f39/en2uOOOK83eY4890u2Pf/zjhs/29/fHSy+9lJ5VeYwiao/TtGnTSrMPOOCAUv/M\nM8+U+tGjR5f6lpZh3Yr+iepr64477ki3W7Zsafjs2LFj44/+6I/Ssx5//PF0GxGxffv2dLtw4cLS\n7NbW1lL/6quvlvr29vZSf8QRR6TbF154oTR7v/32S7fDedw3btwYN9xwQ3rW4Ycfnm4jIv7hH/4h\n3R544IGl2bfeemupr94/TzvttFK/fv36dLtt27bS7A984AOl/qabbmr47KhRo2LBggXpWa+88kq6\njYj46le/mm7vu+++0uypU6eW+jFjxpT6119/vdRXfv73ve99pdnjxo1Lt6NGjWronG+mAAAAEixT\nAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAE\nyxQAAECCZQoAACDBMgUAAJBgmQIAAEhoGhoaavxwU9NbEfHqv92PA79l5tDQ0KRGDro++T1wffKH\nzPXJHzrXKH/IGro+h7VMAQAA8Bv+Mz8AAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACS0\nDOfw2LFjhyZPnpwetnXr1nT7f+en2127dpVmjxhR2zs3bNhQ6qdOnVrq+/v70231f5+/c+fOdNvT\n0xM7duxoauRsU1NT6QetXF8Rtd+zubm5NLuzs7PUDwwMlPpRo0aV+o0bN5b6iq6urnS7efPm6O3t\nbej6HDly5FDleaq+DmfOnJluq/fPpqaGHqJ/0e7du0v9tm3bSn1fX1+6rd5Xenp60m13d3ds3769\noQe/s7NzaMKECelZ1XtI5XW4adOm0uxp06aV+u7u7lJfedwjavfP6meb3t7eUv/GG29sbPTfmRo9\nevRQ5TqpvhYr19no0aNLs6v3wMrnk4iIlpZhrQu/ZcyYMem2eo1Vnve1a9fGpk2b/tV76LAencmT\nJ8fVV1+d/qHuuuuudBsRcdppp6XbLVu2lGa3tbWV+i984Qul/lOf+lSpX7VqVbqtvkm++mr+39i7\n/fbbS7OHY+HChaV+/fr16ba6DL373e8u9W+88UapP/TQQ0v9TTfdlG6rH9TPPvvsdHvdddc1fLaz\nszPOP//89KzKH0Qihvez/nPVP4RV34i3b99e6h944IFSv2LFinR70kknlWY//PDD6fbrX/96w2cn\nTJgQV1xxRXrWunXr0m1ExPve9750e/PNN5dm/+Vf/mWp/4d/+IdSf9FFF5X6v/u7v0u3HR0dpdlP\nPfVUqb/66qsb/oDQ1dUVH/vYx9KzTj311HQbEfH9738/3c6fP780u/IHnYiINWvWlPpJkxrad/9F\nxx13XLr91a9+VZp98sknp9szzzyzoXP+Mz8AAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEA\nACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASGgZzuHdu3fHjh070sOO\nP/74dBsRMXfu3HT7zne+szR76dKlpf6RRx4p9XfddVepP/HEE9PtjBkzSrO//OUvp9vm5uaGz+63\n337x1a9+NT1r8+bN6TYiYty4cel2OL/n7/Kud72r1P/sZz8r9VVPPvlkuv3Vr35Vmr1kyZJ029LS\n+C108uTJ8Z//839Oz7rhhhvSbUTEr3/963S7bNmy0uxzzz231Hd2dpb6Aw88sNRPnz493XZ1dZVm\nn3POOen2e9/7XsNnOzo6Ys6cOelZ1d/zpptuSrdTpkwpzX7sscdK/aJFi0r9LbfcUuqPPPLIdNve\n3l6aPXXq1FJ/9dVXN3x22rRp8ZnPfCY9a+3atek2IuKiiy5Kt9X3+LFjx5b6r3zlK6V+1qxZpX7N\nmjXptnJ9R0S8+eab6XZgYKChc76ZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUK\nAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACChZTiHm5ub\no6urKz1sn332SbcREY8//ni6bW9vL81+4oknSn1HR0epP/bYY0v9nXfemW6XLl1amn3ZZZel27vv\nvntY5wcHB9Oznn322XQbETEwMJBux40bV5r91ltvlfqDDz641K9bt67UX3rppen2Pe95T2n2IYcc\nkm5HjRrV8Nnt27fHo48+mp41Y8aMdBsRsWvXrnRbvXd/+ctfLvWrV68u9RdeeGGpnzZtWrrdtm1b\nafb06dPT7YgRjf+9tK+vL55//vn0rIULF6bbiIjW1tZ0W7nvRwzvcfpdpkyZUuoffPDBUr98+fJ0\nu2LFitLsiy++uNQPx1tvvRXXXXddut97771L8zs7O9PtY489Vpr97ne/u9S3tAzr4/5vqX5GeeON\nN9Lt/vvvX5r95JNPptsdO3Y0dM43UwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBM\nAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIaBnO4e3bt8fSpUvT\nww444IB0GxHR1taWbh988MHS7IGBgVJ/3333lfru7u5Sv+eee6bbqVOnlmbfc8896Xbr1q0Nn21r\na4uZM2emZ7311lvpNiJi1KhR6Xb16tWl2c8++2ypf/e7313qf/7zn5f6ww8/PN1WHveIiP7+/nS7\ne/fuhs82NTVFa2tretaECRPSbUTE5s2b021PT09pdvX6Hj9+fKmvPnYvvfRSur311ltLs4899th0\nu2XLlobP7rHHHnH++eenZ40dOzbdRkSMGTMm3S5ZsqQ0u/r+Pjg4WOp37dpV6tvb29PtWWedVZpd\nvf8OR0dHR8ydOzfdr1u3rjR/06ZN6Xb+/Pml2S+++GKpP+GEE0p99RpftWpVuu3o6CjNHs7nyH+u\n0demb6YAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIs\nUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASGgZzuGpU6fG5Zdfnh725S9/Od1GRHR1\ndaXb9evXl2ZPnDix1K9bt67Un3LKKaV+7dq16Xb58uWl2YODg+l2x44dDZ9taWmJSZMmpWcdc8wx\n6TYiYuvWrel2OL/n7zJz5sxS/5Of/KTUV3/+WbNmpduVK1eWZk+fPj3dDg0NNXx2zJgxceyxx6Zn\n7dy5M91GRPzP//k/021HR0dpdrX/i7/4i1K/YsWKUj9hwoR0u2DBgtLsDRs2pNuBgYGGz27atClu\nvvnm9KwZM2ak24iIX/3qV+n20EMPLc3u6ekp9Zdeemmpnzp1aqmvXJ833XRTafYFF1xQ6oejv78/\nXn755XQ/fvz40vyxY8em24MOOqg0+7HHHiv15513XqlfunRpqb/44ovT7a233lqa3dbWlm6bmpoa\nOuebKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsU\nAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASWoZzuLe3N5566qn0sH//7/99uo2I2LBh\nQ7pdtmxZafbYsWNL/X777VfqJ06cWOrvuOOOdDtr1qzS7EmTJqXbjo6Ohs9u3LgxbrzxxvSs9evX\np9uIiOOOOy7dbtu2rTT71VdfLfXjxo0r9QMDA6X+5z//ebp97rnnSrPnzZuXbnt6eho+u23btrj/\n/vvTs0477bR0GxHxH/7Df0i3L730Umn2iBG1v9u1traW+v3337/UV7z55pul/vjjj0+3P/zhDxs+\n29LSEuPHj0/P2rJlS7qNiJgwYUK6/fa3v12aveeee5b62bNnl/pLL7201J911lnpdmhoqDT7lVde\nKfXD0dTUFC0tw/rY+k/MnTu3NL+vry/dfv7zny/N/uxnP1vqr7rqqlJ/ySWXlPrK7nD00UeXZlfu\na9/4xjcaOuebKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYp\nAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASWoZzeGBgIF5//fX0sC1btqTb\niIgDDjgg3e6///6l2UceeWSp/4u/+ItS/+d//uel/n3ve1+63blzZ2l25bH76le/2vDZjo6OmDNn\nTnrWoYcemm4jIrq7u9NtX19faXZXV1epb25uLvVnnHFGqX/66afT7b777luaPXr06HQ7cuTIhs9u\n3rw5brvttvSstWvXptuI39y/sxYvXlyaXbn/RERcdtllpf6kk04q9XPnzk23lftCRMSGDRvSbU9P\nT8Nnt23bFvfee2961imnnJJuIyKOPvrodDtx4sTS7FdeeaXUb9u2rdR/5CMfKfV/8zd/k27vuOOO\n0uwLLrig1H/xi19s+OzGjRvj29/+dnrWZz7zmXQbEXHOOeek22eeeaY0e+HChaW++hlhxIjady/P\nPvtsuj3++ONLs1euXJlu33zzzYbO+WYKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJ\nlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgISW4Rxu\namqK1tbW9LCDDjoo3UZEfPazn023n/70p0uzv/Wtb5X6j33sY6X+8ccfL/WLFi1Kt729vaXZt99+\ne7rdvHlzw2dHjhwZhx12WHpW9TEeO3Zsul2/fn1p9l577VXqu7q6Sv2jjz76e5u/ZMmS0uwjjjgi\n3e7evbvhs+PHj4/zzjsvPaujoyPdRkTMnDkz3VZeVxERP/3pT0v94sWLS/1tt91W6iuv7UobEXHa\naael2+uuu67hs/39/fHKK6+kZ910003pNqL2Op4yZUpp9qWXXlrq/8f/+B+lft26daV+wYIF6fYX\nv/hFafYZZ5xR6odj3LhxpddD9X327LPPTrfz5s0rzX7ttddK/ciRI0t9W1tbqT/zzDPT7YgRte99\nKu997e3tDZ3zzRQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATL\nFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAElqGc3jbtm3xwAMPpIe98cYb6TYiYtWq\nVen2iCOOKM3+q7/6q1K/ePHiUv+JT3yi1F9xxRXpdsKECaXZlWtm48aNDZ/dsmVL3H777elZU6dO\nTbcREc8//3y6nThxYmn2M888U+rPO++8Ut/b21vq99xzz3RbfW0fcMAB6bajo6Phs319ffHcc8+l\nZ7322mvpNiLiv//3/55uDz/88NLsU045pdSPGjWq1F966aWl/s/+7M/S7THHHFOaXXlt7d69u+Gz\nbW1tMXPmzPSstra2dBsRMWvWrHT77LPPlmavXLmy1P+n//SfSn31s9GGDRvS7bx580qzK6+N4err\n6yu91223fEsbAAAgAElEQVTfvr00//7770+3n/vc50qzL7nkklLf09NT6keMqH33smLFinRb+XwQ\nETFlypRS3wjfTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBM\nAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQ0DKcwzt37oxVq1alh3V1daXb\niIjzzjsv3d5///2l2U1NTaX+oosuKvVPPfVUqV+8eHG6feONN0qzp0+fnm6vueaahs+2trbG1KlT\n07MGBwfTbUTEpz71qXT7+c9/vjR79+7dpX706NGl/pBDDin1Tz75ZLrt6ekpzd6+fXu67e3tbfhs\ne3t77LvvvulZ1Wukr68v3VZfGz/60Y9KfX9/f6nfY489Sv3PfvazdPvss8+WZnd3d6fb4TxvI0eO\njIMPPjg965577km3EbV70BVXXFGafffdd5f6rVu3lvp3vOMdpf6WW25JtxdeeGFp9vz580v9Y489\n1vDZSZMmxcUXX5yeteeee6bbiIh//Md/TLfXX399afa4ceNK/X777Vfqq5+BK/fBRYsWlWZX338a\n4ZspAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQA\nAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABKahoaGGj/c1PRWRLz6b/fjwG+ZOTQ0NKmR\ng65Pfg9cn/whc33yh841yh+yhq7PYS1TAAAA/Ib/zA8AACDBMgUAAJBgmQIAAEiwTAEAACRYpgAA\nABIsUwAAAAktwznc2dk5NHHixPSwgYGBdBsRsXPnznT71ltvlWbPmjWr1L/55pulfvr06aW+ubk5\n3fb09JRmjxw5Mt2+8cYbsWXLlqZGzo4dO3Zo0qSG/rmK32nEiNrfFnbv3p1u+/v7S7Or/8RB9Xev\nzm9pGdat6A9m9ltvvRVbt25t6Prs7OwsXZ+jRo1KtxERvb296bajo6M0u9pX70HV63vHjh3ptr29\nvTS7cu9ev359bN68uaHrs6OjY6izszM9q9JGRGzfvj3dVj4bRNTeoyIitm3bVuqr18jbb7+dbqvP\n29SpU0v9ypUrNzb670x1dnYOTZgwIT3r9/k+OWbMmNLs1tbWUt/X11fqq5/fK/fwynMeUft89eab\nbzb0Hj+sTxETJ06MxYsXl36oilWrVqXba6+9tjT7yiuvLPXV+ZXHPaL2Ql6yZElp9sEHH5xuL7nk\nkobPTpo0Ka666qr0rLa2tnQbUfvA9fLLL5dmVxa5iPqHieqNtrJkVB73iN/c17I+9alPNXx20qRJ\n8fnPfz49a/78+ek2IuLxxx9Pt/PmzSvNfuc731nq77///lJfXURfeOGFdLvvvvuWZu+xxx7p9kMf\n+lDDZzs7O+Occ85Jz3r3u9+dbiMinnzyyXS7evXq0uxDDjmk1N93332lfsaMGaX+O9/5Tro94ogj\nSrMvv/zyUn/66ac3/I/wTpgwofRZqPo+VfmMUH19TJkypdQvX7681L/++uul/qGHHkq3H/7wh0uz\nK/eH//Jf/ktD5/xnfgAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAA\nEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQ0DKcw6NGjYoFCxbkh7UMa9xvWbt2bbq96qqr\nSrPXrFlT6r///e+X+mXLlpX6J598Mt2eddZZpdkjRuR39ra2tobPtrS0xIQJE9KzRo0alW4jIm6/\n/fZ0e9BBB5Vmd3d3l/o333yz1FcNDQ2l21mzZpVmT548Od22t7c3fHZoaCh27tyZnrVly5Z0GxHR\n0dGRblesWFGa/fLLL5f65557rtRv37691F900UXptvrYDece+M/t3r274bPjxo2LM888Mz1rxowZ\n6TYioqurK92eeOKJpdmvvPJKqV+0aFGpf+mll0r9Bz7wgXQ7MDBQml25dw/X7t27S6/lwcHB0vz9\n998/3VY/Q1Y+w0VEHHzwwaX+F7/4Ral/73vfm26rP/vy5cvTbaP3UN9MAQAAJFimAAAAEixTAAAA\nCZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQA\nAECCZQoAACDBMgUAAJDQMpzDmzZtiu9///vpYUcddVS6jYj4yEc+km4/+tGPlma//PLLpf78888v\n9V1dXaV+7Nix6Xb79u2l2RMmTEi3TU1NDZ/dtWtXdHd3p2etXbs23UZE9Pb2ptuBgYHS7FGjRpX6\nD3/4w6X+hRdeKPW7du1KtytXrizN3nPPPdPtcK7PPfbYIz74wQ+mZ7344ovpNiLilFNOSbdbtmwp\nzV62bFmpnz9/fqmfPXt2qX/sscfS7Y4dO0qzzzjjjHQ7nPvC0NBQ9PX1pWd94xvfSLcRtfeo//gf\n/2Np9syZM0v9YYcdVuqffPLJUv/pT3863W7cuLE0e9asWaV+OEaPHh0LFixI92vWrCnNX7x4cbqt\n/NwREXPmzCn11d993Lhxpf5zn/tcuv34xz9emn3vvfem223btjV0zjdTAAAACZYpAACABMsUAABA\ngmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUA\nAJBgmQIAAEhoGdbhlpaYMGFCetjkyZPTbUTEQw89lG57enpKs9evX1/qN2/eXOoXLlxY6qdPn55u\n77vvvtLsBQsWpNvBwcGGz/b29sYzzzyTnrVly5Z0GxHR19eXbquvjW984xul/h3veEepr74+1qxZ\nk24POOCA0uzRo0en2xEjGv971NatW+Oee+5Jz5ozZ066jYhYvXp1ul2+fHlp9rRp00r9vffeW+pb\nWob1VvdbzjvvvHS7atWq0uxdu3aV+kaNGTMmjjvuuHS/Y8eO0vzKe1T1/nnJJZeU+h/96Eel/swz\nzyz1lffo7du3l2b/yZ/8Sakfjup7fOXza0TEokWL0u2pp55amv29732v1D/77LOlfsqUKaX+u9/9\nbrptb28vzX799dfT7V133dXQOd9MAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIF\nAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJDQMpzD7e3t\nMWfOnPSwrVu3ptuIiKOPPjrdXn/99aXZRxxxRKnv7u4u9Q8//HCpX7RoUbrduHFjafYDDzyQbrdt\n29bw2e7u7vjBD36QnnXooYem24iITZs2pdsPfehDpdnveMc7Sv19991X6tetW1fqK4/dqFGjSrPb\n2trSbV9fX8NnW1paYuLEielZLS3Dul3/lnHjxqXbk046qTT7+eefL/XnnntuqX/ppZdKfVNTU7qt\nvjZmzJiRboeGhho+u3379nj00UfTs6rvkU8//XS6Pfnkk0uzly5dWuqrr48VK1aU+spj//LLL5dm\nL1++vNQPx+7du2P79u3pftWqVaX548ePT7fVx/m1114r9V/84hdL/auvvlrqf/3rX6fbr3zlK6XZ\nV199dbrt7Oxs6JxvpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAA\nJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIaBluMDQ0lB62evXqdBsR\n8corr6Tbpqam0uwDDjig1B944IGl/m//9m9L/eLFi9Pt2WefXZo9ZsyYdPvtb3+74bNdXV1xzjnn\npGfNmTMn3UZEzJgxI91OmzatNHvcuHGlvvr6qLw2IyJWrVqVbl9++eXS7I0bN6bbwcHBhs92d3fH\nD3/4w/Ss/fffP91GRNx8883p9uKLLy7NXr9+fanftGlTqZ83b16p/8IXvpBuDz744NLsO++8M91u\n3bq14bP9/f2l13Fvb2+6jYj4x3/8x3R76KGHlmY//fTTpX7z5s2l/jOf+Uyp/9KXvpRuR48eXZo9\nderUUj8c27Zti3vvvTfdVz/L/OVf/mW6rX6GW7lyZalva2sr9RdddFGpnzhxYrq98MILS7Nnz56d\nbtvb2xs655spAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikA\nAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABJahnO4ra0tZsyYkR7W2tqabiMi\nVq9enW7HjBlTmv3xj3+81O+1116lfmBgoNSfccYZ6fbOO+8szd5vv/3SbW9vb8Nn+/r6Yvny5elZ\nzzzzTLqNiOjp6Um3Dz74YGn2hz/84VL/ne98p9TPmzev1O+zzz7pdvbs2aXZ69evT7fbt29v+Gxz\nc3OMGzcuPevnP/95uo2IOOyww9LtLbfcUpr92muvlfoHHnig1J933nmlftasWen29ttvL80+4YQT\n0u2uXbsaPtvX1xfPPfdcetbFF1+cbiMi9t5773Tb3t5emn3OOeeU+rvvvrvU/+///b9LfeWz0YgR\ntb+pV+9Lw9HX1xfPPvtsum9ubi7N/9rXvpZuR40aVZr9oQ99qNRff/31pb76Hl957+vs7CzNXrJk\nSbpt9HOdb6YAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAA\nABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASGgZzuHW1taYOnVqetjLL7+cbiMi\nvv71r6fbiy66qDR769atpf6oo44q9d/4xjdKfXd3d7odP358afaYMWPS7YgRje/7kydPjksvvTQ9\na9WqVek2IqKvry/dfvazny3NPuGEE0r9Jz7xiVK/ZMmSUj9v3rx0u2LFitLsymvzoYceavjs2LFj\n49RTT03PWrBgQbqNqF2f1fvfxIkTS/2tt95a6teuXVvqp02blm7vvvvu0uzTTz893Q7nfWP69Olx\n5ZVXpmfdeOON6TYi4oUXXki31fvf9OnTS317e3up37hxY6l/+OGH0+3RRx9dml29NwzH1KlT45Of\n/GS6X7lyZWn+pz71qXT76quvlmb/0R/9UamvfgZtamoq9Ycffni63bx5c2n2Sy+9lG77+/sbOueb\nKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABA\ngmUKAAAgwTIFAACQYJkCAABIsEwBAAAktAzn8Ouvvx5XXXVVethRRx2VbiMiLr300nQ7atSo0uzd\nu3eX+qq2trZS39PTk24/8IEPlGbfeuut6ba3t7fhs4ODg/HWW2+lZ/X19aXbiIitW7em28HBwdLs\nK664otTPmDGj1A8MDJT6hx56KN3usccepdnXXnttuh3O9dbW1hZ77rlnetb27dvTbUTEokWL0u1P\nfvKT0uzqz/7YY4+V+mnTppX6ys9/xBFHlGY/8cQT6XY4P/fatWvj8ssvT886+uij021ExK5du9Lt\n//pf/6s0e/HixaW+8v4aETF79uxSP2JE/u/ikyZNKs2uvraHa2hoKN1edNFFpdknnXRSun3++edL\ns8eOHVvqn3766VJ/4YUXlvrKNXr//feXZleu8UavN99MAQAAJFimAAAAEixTAAAACZYpAACABMsU\nAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDB\nMgUAAJDQMpzDbW1tsddee6WH7bPPPuk2IuLee+9Nt9OmTSvNvuCCC0r9LbfcUup7enpK/cDAQLod\nPXp0afbJJ5+cbu+4446Gz+7atSu2bduWnnXkkUem24iIoaGhdLtkyZLS7Pe///2l/s033yz13/rW\nt0r9ggUL0u3LL79cmn3IIYek25///OcNn21ubo7Ozs70rL333jvdRkS8/vrr6bZ6fb344oulvq2t\nrdQ/99xzpX727NnptnJfqGpvb2/47MyZM+Paa69Nz/rud7+bbiMiPvKRj6Tb4fyev0tXV1epr7y/\nRkQsX7681H/0ox9Ntz/5yU9Ks88+++xSPxwtLS0xceLEdH/PPfeU5r/yyivpdvz48aXZlc9RERFz\n584t9dV7+Hvf+950+/jjj5dmV563/v7+hs75ZgoAACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIs\nUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEyBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACA\nhKahoaHGDzc1vRURr/7b/TjwW2YODQ1NauSg65PfA9cnf8hcn/yhc43yh6yh63NYyxQAAAC/4T/z\nAwAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAQstwDo8cOXKos7MzPWzs2LHpNiJi06ZN\n6XbEiNreOGbMmFK/a9euUr9ly5ZSPzg4mG7HjRtXmr1169Z029/fH4ODg02NnB0xYsRQ5XlubW1N\nt/93frrdvXt3afaOHTtKfVX1Gmlqaugp/p16e3tLsyuv7Z6enujv72/oh+/s7ByaMGFCelZV5foc\nGBgoza48vxH1+2/1Gqm8viZNauif0PkXVd47NmzYEN3d3Q09+M3NzUOVe2D196y8xzU3N5dmV+/9\nlffXiIiOjo5SX/ls1N/fX5pd+UwYEbFt27aNjf47Ux0dHaXPoNXnuaenJ91W72HV56mqco1FRLS0\nDGvd+Ceqny/a2trS7ebNm6O3t/dfvYcO67fr7OyMc889N/1DnXrqqek2IuLv//7v0231BX/ssceW\n+uqF+Itf/KLUb9y4Md1Wn7e77ror3f76179u+OyIESNKL7rJkyen24jazbKvr680e8WKFaW+6vjj\njy/1lQ9DTz31VGn20UcfnW6H87qcMGFCXHHFFelZ1X8TsL29Pd2+8cYbv7fZERHHHHNMqX/iiSdK\n/XDuQ//cxRdfXJq9bdu2dPvBD36w4bOtra0xY8aM9Kw//dM/TbcRtfe46gfVKVOmlPru7u5Sv//+\n+5f6ymejF198sTT78MMPL/X33ntvw/8Ib/UzaPU9/uGHH0631c+Qq1evLvXV94/vfe97pX7ixInp\n9vTTTy/NnjlzZrq97rrrGjrnP/MDAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoA\nACDBMgUAAJBgmQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgISW4RyePn16fO5zn0sPW7p0abqN\niDjzzDPTbVdXV2l2c3NzqV+1alWpP/vss0v9M888k24PO+yw0uwDDzww3V5xxRUNn509e3Zcd911\n6VktLcN6OfyWcePGpdvZs2eXZvf09JT66vXd1NRU6vfYY490+/jjj5dmb9iwId0uW7as4bMjRoyI\ntra29Kxdu3al24iI+++/P92efvrppdlr1qwp9Vu2bCn1lXtQRMQrr7ySbnfu3Fmaffvtt6fb4Txu\ne++9d1xzzTXpWW+99Va6jYi47bbb0u2SJUtKsx988MFS/81vfrPUVx+7I488Mt0ecsghpdl/93d/\nV+rvvffehs/OmDEjvva1r6Vnvf322+k2IuKII45It8ccc0xpdvUeWPkMGBHx9a9/vdSvX78+3Q4M\nDJRm9/f3p9ubb765oXO+mQIAAEiwTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQIJlCgAAIMEy\nBQAAkGCZAgAASLBMAQAAJFimAAAAEixTAAAACZYpAACABMsUAABAgmUKAAAgoWU4h7du3Rp33313\netgjjzySbiMiFi5cmG7POuus0uzDDjus1G/YsKHUX3nllaX+pZdeSrfTp08vze7v70+3fX19DZ8d\nHByMt99+Oz2rvb093UZE7N69O93eeeedpdkDAwOlvqqpqanUH3744el2ONfI71K5ZgYHBxs+29bW\nFjNmzEjP+spXvpJuIyJOPPHEdLt69erS7Or989Zbby315557bqlvbW1Nt/fee29p9sEHH5xuR44c\n2fDZXbt2RU9PT3rWunXr0m1ExMknn5xuq+/vlddGRMQnP/nJUt/d3V3q99hjj3R7/vnnl2b/6Z/+\naakfjp07d5buRR0dHaX5lfeav/7rvy7NPumkk0r90UcfXeqvv/76Ur9gwYJ0+8QTT5RmX3TRRem2\n0c+FvpkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQAAECCZQoAACDBMgUAAJBgmQIAAEiw\nTAEAACRYpgAAABIsUwAAAAmWKQAAgATLFAAAQELLcA5v3bo17rrrrvSw1tbWdBsRsWzZsnR77LHH\nlmb/1//6X0t95XGLiDjppJNKfVNTU7q99dZbS7PPPvvsdNvW1tbw2Y6Ojthvv/3Ss7Zt25ZuIyJ6\nenrSbXd3d2n2hg0bSv2sWbNK/YgRtb/L3Hnnnel2n332Kc2uXDPt7e0Nn92yZUv87Gc/S89atGhR\nuo2IOOCAA9Lt+PHjS7OXLFlS6t/1rneV+qVLl5b6SZMmpdvq+97rr7+ebgcGBho+29raWvo9BwcH\n021E7fo+5ZRTSrPvv//+Ur9y5cpSP3fu3FL//ve/P92++eabpdmV+8pwNTU1lV5P1ftYS8uwPjL/\nE5dddllp9q5du0p99T700Y9+tNTfd9996fbII48szX777bfTbaP3Nd9MAQAAJFimAAAAEixTAAAA\nCZYpAACABMsUAABAgmUKAAAgwTIFAACQYJkCAABIsEwBAAAkWKYAAAASLFMAAAAJlikAAIAEyxQA\nAECCZQoAACDBMgUAAJDQMpzD++yzT9x4443pYV/4whfSbUTECSeckG6HhoZKs3/5y1+W+hNPPLHU\nX3LJJaX+qquuSrdPPfVUafa6devS7cDAQMNnd+zYEStXrkzPWrVqVbqNiBg7dmyprzj11FNL/YgR\ntb+r7Ny58/fWV66viIgVK1ak256enobPDg4ORnd3d3rWWWedlW4jInbv3p1u165dW5q93377lfrn\nnnuu1J955pml/oc//GG6rTznERFz585Nt8N539u8efP/0679g8Zd/3Ec/1wvf0xDGiNpCZoY/6BF\n1P6hYls3lYIRhQyGIohTWlwcBMFN6OAiUtDBsV3aUvxXRKVjq1JBdGjFSmOLJe1gk7SmSXs0f+5y\nDj9+k8vd+82Pn8PjMX+fvFtzueTVs3zzzTfhW8PDw+G2lFLGxsbCbeb3klLyvx9MTEyk+sXFxVR/\n4cKFcDs4OJi6nXlfaVelUimdnZ3hPvtzauPGjeH2+vXrqds9PT2pfmBgINVnX6MLCwvhtq+vL3X7\nscceC7d33XVXS8/5ZAoAACDAmAIAAAgwpgAAAAKMKQAAgABjCgAAIMCYAgAACDCmAAAAAowpAACA\nAGMKAAAgwJgCAAAIMKYAAAACjCkAAIAAYwoAACDAmAIAAAgwpgAAAAI62nl4fn6+fP755+Fjp06d\nCrellPLRRx+F2yeffDJ1O9uvra2l+vHx8VR/8ODBcFur1VK3b926FW5XVlZafrZer5cbN26Eb23e\nvDncllJKf39/uL106VLq9n333Zfqs9+bv/zyS6ofGRkJtzMzM6nbXV1d4bbZbLb8bE9PT+p95Jln\nngm3pZTyxhtvhNvl5eXU7cHBwVSf/d58+eWXU33m65b9s3d3d4fbSqXS8rPVarX09fWFb83NzYXb\nUkpZXV0Nt9u3b0/dzr5/nTlzJtU3Go1Uf/PmzXD75ptvpm4PDQ2l+nbUarXy008/hfupqanU/d7e\n3nCbfQ99/fXXU/3p06dT/eTkZKrfu3dvuH388cdTtzNf96WlpZae88kUAABAgDEFAAAQYEwBAAAE\nGFMAAAABxhQAAECAMQUAABBgTAEAAAQYUwAAAAHGFAAAQIAxBQAAEGBMAQAABBhTAAAAAcYUAABA\ngDEFAAAQYEwBAAAEdLTz8MLCQvn666/Dx+69995wW0opL730Urg9cuRI6nbWqVOnUv13332X6j/4\n4INwe+DAgdTtDRs2hNvV1dWWn+3v7y8vvvhi+Fa1Wg23pZSyuLgYbkdHR1O3a7Vaqn/22WdTfUdH\nW28l/7Bt27Zw29vbm7o9Ozsbbo8fP97ys/Pz8+Wzzz4L38q8vkopZffu3eG2Uqmkbp89ezbV79u3\nL9W//fbbqf7hhx8OtwsLC6nbO3bsCLftfG8MDAyUV155JXzrxIkT4baUUj799NNwOz4+nrpdr9dT\n/R9//JHqH3jggVT/1FNPhdu5ubnU7TNnzqT6dq1bF/8M4K233krdnpqaCrfZ3wGzP+MvXryY6t99\n991U/9xzz4Xb+fn51O2hoaFw29nZ2dJzPpkCAAAIMKYAAAACjCkAAIAAYwoAACDAmAIAAAgwpgAA\nAAKMKQAAgABjCgAAIMCYAgAACDCmAAAAAowpAACAAGMKAAAgwJgCAAAIMKYAAAACjCkAAICAjnYe\nXl1dLX/++Wf42Pr168NtKaWcPXs23P7666+p2w8++GCqHxsbS/UvvPBCqj927Fi47e/vT92enJwM\nt5cuXWr52UajUf7666/wrUajEW5LKeXKlSvhdtOmTanb1Wo11TebzVS/uLiY6s+fPx9uM1/zUkrZ\nvXt3uK1UKi0/29vbW3bu3Bm+NTIyEm5LKeXjjz8Ot5cvX07d3r9/f6ofHx9P9V988UWqHxwcDLeb\nN29O3T537ly4nZmZaevZgwcPhm+Njo6G21JKefrpp8Pta6+9lro9MTGR6mu1Wqq/5557Uv3JkyfD\nbV9fX+r21NRUqm9HV1dXuf/++8P9J598krq/vLwcbnft2pW6/eWXX6b6tbW1VJ/9HeX27dvhNvu7\n2eQLa6UAAAO8SURBVNWrV8PtyspKS8/5ZAoAACDAmAIAAAgwpgAAAAKMKQAAgABjCgAAIMCYAgAA\nCDCmAAAAAowpAACAAGMKAAAgwJgCAAAIMKYAAAACjCkAAIAAYwoAACDAmAIAAAjoaOfhoaGh8s47\n74SPXb9+PdyWUsr3338fbj/88MPU7eHh4VR/5cqVVH/gwIFUf/To0XB74cKF1O1HH3003Pb09LT8\n7J07d8pvv/0WvjUzMxNu/3s/6tatW6nb2T97s9lM9bdv3071s7Oz4bZaraZu//jjj+G2Vqu1/Oyd\nO3fKuXPnwreWlpbCbSmlTE5OhtvM+0cppWzZsiXVf/vtt6n+vffeS/W///57uP3qq69St/fu3Rtu\n2/mZ2d3dXR555JHwrayTJ0+G2/3796dunz59OtWPj4+n+nXrcv+uPT09HW737NmTur1hw4ZUf+jQ\noZafbTQaZWFhIXxr27Zt4baUUq5duxZu6/V66vbzzz+f6qemplJ9d3d3qm80GuE2+zP+oYceCret\n/r19MgUAABBgTAEAAAQYUwAAAAHGFAAAQIAxBQAAEGBMAQAABBhTAAAAAcYUAABAgDEFAAAQYEwB\nAAAEGFMAAAABxhQAAECAMQUAABBgTAEAAAQYUwAAAAEd7TzcbDbL8vJy+NgTTzwRbkspZevWreG2\nWq2mbp84cSLVz8zMpPotW7ak+pWVlXA7PDycur22thZum81my8/W6/UyOzsbvrVr165wW0oply9f\nDrddXV2p2yMjI6l+cXEx1ff29qb6mzdvhtudO3embt+4cSPctvO+Mjw8XN5///3wrXXrcv/2lfl7\n7tu3L3X72rVrqX7Hjh2p/ocffkj1ExMT4XZsbCx1u6enJ9wePny45WdXVlbK9PR0+Narr74abksp\nZf369eF2aWkpdXvPnj2pPvv66uzsTPU///xzuO3u7k7dvnr1aqpvR/Z30P7+/tT9zNcp+zvoxYsX\nU/3AwECq37RpU6o/f/58uM3+t7v77rvDbb1eb+k5n0wBAAAEGFMAAAABxhQAAECAMQUAABBgTAEA\nAAQYUwAAAAHGFAAAQIAxBQAAEGBMAQAABBhTAAAAAcYUAABAgDEFAAAQYEwBAAAEGFMAAAABxhQA\nAEBApdlstv5wpTJXSpn+3/1x4B9Gm83mxlYe9Prk/8Drk38zr0/+7bxG+Tdr6fXZ1pgCAADgP/xv\nfgAAAAHGFAAAQIAxBQAAEGBMAQAABBhTAAAAAcYUAABAgDEFAAAQYEwBAAAEGFMAAAABfwMauMvS\nwHgscwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPsAAAN7CAYAAAAz859hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuQnXV9+PHPk+smm91s2NxIIDFcotwxBAyCQIUiaEWt\nVNFa6difjIqIrTLVegGptlMvTOtoRURx7EzFqoCI1AuoiBAgARUIiCAJlyRcQq6bbO7P7w/T8ZSK\nyZ79POewz75eM4yQ5Lz9bLLPOWe/+X6fLcqyDAAAAABg6BvR7gEAAAAAgBwW+wAAAACgJiz2AQAA\nAEBNWOwDAAAAgJqw2AcAAAAANWGxDwAAAABqwmIfAAAAANSExT4AAAAAqAmLfQAAAABQExb7AAAA\nAKAmRg3kF0+YMKHs7e1NHWDbtm2pvYiIESPy1zDHjBmT3hw5cmR684knnkhv7r333unNlStXpjcn\nTZqU3sy2evXq6OvrK5p57NixY8vx48enzjNu3LjUXkTExo0b05sdHR3pzc7OzvTmli1b0ptVzLlh\nw4b05ubNm9Ob2Z/vERErVqxYVZbllIE+rru7u5w6dWrqLFVcf2vXrk1vVvHnUMVralE09dT6R/X3\n96c3169fn97s6upKb+7YsSO9uWzZsqauv4iIkSNHlqNHj06dZ9q0aam9iIhNmzalN6v4nKnChAkT\n0puzZs1Kb65evTq9WcX72lGjBvRl2m5t3bo1tm/f3tQT5ZgxY8rs92JVvL/Jfo6IiOjr60tvVvG1\navbnS0Q1r6tVPEdW8X4q+89o7dq1sWnTpvzf0CGuKIqy3TMM0A/Ksjyt3UPsqQE9K/T29sY//MM/\npA6wYsWK1F5ENS8e++yzT3qzu7s7vfkv//Iv6c2PfOQj6c1PfOIT6c0///M/T29mv8h9+tOfbvqx\n48ePj5NOOilvmIg47LDDUnsREYsXL05vvvCFL0xvHn300enNZcuWpTePOeaY9OaNN96Y3vzNb36T\n3nzxi1+c3vzIRz7ySDOPmzp1alxyySWps1Rx/V111VXpzSr+HObMmZPerOIv0O6999705g033JDe\nPP7449ObVfzFzVvf+tamrr+I330RP3v27Mxx4n3ve19qLyJi0aJF6c0qnrOr+CL+JS95SXrz0ksv\nTW9eeeWV6c2LL744vTllSlPr4s/pgQceaPqxHR0dsWDBgsRpIo466qjUXkQ1GxRuueWW9GYVC+M9\nPT3pzSoW0e666670ZhXvp7IXt7/0pS+l9mibye0eYCAc4wUAAACAmsjf7wsAAAAAf0QVO82rUpZD\n69SxnX0AAAAAUBMW+wAAAACgJiz2AQAAAEBNuGcfAAAAAC3lnn3VsbMPAAAAAGrCYh8AAAAA1IRj\nvAAAAAC01FA6xjvU2NkHAAAAADVhsQ8AAAAAasJiHwAAAADUhHv2AQAAANBS7tlXHTv7AAAAAKAm\nLPYBAAAAQE04xgsAAABAyxRF4RhvhezsAwAAAICasNgHAAAAADVRlGW5x7947ty55ec+97nUAZ54\n4onUXkTEnDlz0pv7779/enPkyJHpzc2bN6c3H3nkkfTmj3/84/TmSSedlN6cO3duau/000+PX/3q\nV03tVT7ssMPKq6++OnWeW265JbUXEdHR0ZHePP3009Objz76aHqzu7s7vVnFnBMmTEhvjh8/Pr05\nZcqU9OZee+11Z1mW8wf6uPnz55eLFy9OnWXZsmWpvYiIlStXpjcPPfTQ9Oa9996b3txrr73Sm1U8\nn+3YsSO9WcXHvnbt2vTmnDlzmrr+IiIOOOCA8lOf+lTqPBdddFFqLyLihBNOSG/On9/Ub9kfdeut\nt6Y3q3ht+frXv57e/Mu//Mv05rp169KbA/kabU9cc8018fTTTzf1HnTGjBnl3/zN36TOM2JE/p6T\n3t7e9OaaNWvSm2PGjElvfvOb30xvnnzyyenNo446Kr25bdu29Gb2179f+MIXYvny5c6rPsuIESPK\n0aNHt3uMPbZ169am38e0g519AAAAAFATFvsAAAAAoCYs9gEAAABATYxq9wAAAAAADC9F4VaGVbGz\nDwAAAABqwmIfAAAAANSEY7wAAAAAtJRjvNWxsw8AAAAAasJiHwAAAADUhMU+AAAAAKiJ3d6zryiK\ncyLinIiIqVOnVj4Q8HuN19+MGTPaPA0ML43X36xZs9o8DQw/jdfglClT2jwNDC+N1193d3ebpwHq\nyj37qrPbnX1lWV5WluX8siznT5w4sRUzAbs0Xn977bVXu8eBYaXx+rPQAK3XeA1abIDWarz+Ojs7\n2z0OAAPkGC8AAAAA1MRuj/ECAAAAQJaiKBzjrZCdfQAAAABQExb7AAAAAKAmHOMFAAAAoKUc462O\nnX0AAAAAUBMW+wAAAACgJiz2AQAAAEBNDOiefWPGjIl99903dYB77rkntRcRsW7duvTmokWL0psL\nFixIby5fvjy9ecghh6Q399lnn/RmFZ9LW7duTe319/c3/ditW7fGo48+mjhNREdHR2ov4nfPE9mq\nuKaXLFmS3ty0aVN681e/+lV6c++9905vnnHGGenNK6+8Mr3ZrM2bN8cDDzyQ2qzi82XZsmXpzd/+\n9rfpzQMPPDC9+dhjj6U3Ozs705sPPfRQenPbtm3pzWOOOSa9ORhVXINve9vbUnsREfPmzUtvPvnk\nk+nNt7zlLenNKq7B/fffP725Y8eO9Obdd9+d3sz+/Pz5z3/e9GOnTp0a73nPexKnibj++utTexER\nZ599dnqziuvv5ptvTm9+7WtfS2/29vamN/v6+tKbVbwGZq95/Md//Edqr07cs686dvYBAAAAQE1Y\n7AMAAACAmhjQMV4AAAAAGCzHeKtjZx8AAAAA1ITFPgAAAACoCYt9AAAAAFAT7tkHAAAAQEu5Z191\n7OwDAAAAgCYVRXFaURQPFEXxUFEUH/gDP/+XRVHcXRTFPUVR3FoUxRF7+thmWOwDAAAAgCYURTEy\nIj4fEadHxMER8aaiKA5+1i9bGhEnlmV5WET8Y0RcNoDHDphjvAAAAAC0TFEUdTrGe0xEPFSW5cMR\nEUVRXBkRr4mI+/7nF5RleWvDr78tIvbZ08c2w84+AAAAAGjOzIh4rOG/H9/1Y8/lbyLiv5t87B6x\nsw8AAAAAntvkoigWN/z3ZWVZXjbQSFEUfxK/W+w7Pm2yP8BiHwAAAAAtNcSO8a4qy3L+c/zc8ojY\nt+G/99n1Y/9LURSHR8TlEXF6WZbPDOSxA+UYLwAAAAA0Z1FEHFgUxZyiKMZExFkRcW3jLyiKYlZE\nXBURf1WW5W8G8thm2NkHAAAAAE0oy3J7URTvjogfRMTIiPhKWZZLiqJ4x66fvzQiPhoRvRHx77t2\nNG4vy3L+cz12sDNZ7AMAAACAJpVleX1EXP+sH7u04d//X0T8vz197GBZ7AMAAACgpYbYPfuGFPfs\nAwAAAICasNgHAAAAADXhGC8AAAAALeUYb3UGtNjX0dERBx10UOoAd955Z2ovImLTpk3pzUmTJqU3\nb7vttvTm3Llz05tV/H6eeuqp6c1rrrkmvfmSl7wktdfZ2dn0Y7dv3x6rVq1KnCZi27Ztqb2IiGOO\nOSa9WYVjjz02vXnLLbekN88///z0Zn9/f3rzxhtvTG+OHTs2vTkY2W9G9t1339RexO+eJ7KtW7cu\nvbnPPvukN0ePHp3eXLt2bXpzzpw56c0lSwb9Ddv+jxEjnl+HPzZt2pT+nnH//fdP7UVEfOlLX0pv\nPvLII+nNs846K71ZxfXyspe9LL35ve99L715yimnpDe/+93vpvYG8+ezatWquOKKKxKniXjrW9+a\n2ouIuOyyy9KbVbwGzps3L71ZxXP2okWL0psrVqxIb06bNi29uXr16tTeli1bUnuwJ55f7+QAAAAA\ngKZZ7AMAAACAmnDPPgAAAABayj37qmNnHwAAAADUhMU+AAAAAKgJx3gBAAAAaJmiKBzjrZCdfQAA\nAABQExb7AAAAAKAmHOMFAAAAoKUc462OnX0AAAAAUBO7XewriuKcoigWF0Wx+Omnn27FTMAujdff\n+vXr2z0ODCuN19+aNWvaPQ4MO43X4JYtW9o9Dgwrjdffxo0b2z0OAAO028W+siwvK8tyflmW86dM\nmdKKmYBdGq+/7u7udo8Dw0rj9Tdp0qR2jwPDTuM1OHbs2HaPA8NK4/XX2dnZ7nEAGCD37AMAAACg\npdyzrzru2QcAAAAANWGxDwAAAABqwjFeAAAAAFrKMd7q2NkHAAAAADVhsQ8AAAAAasJiHwAAAADU\nhHv2AQAAANBS7tlXnQEt9q1Zsyb+67/+K3WA+fPnp/YiIu6444705po1a9Kb8+bNS292dHSkN6+5\n5pr05ooVK9KbCxYsSG/ef//9qb3Nmzc3/dgRI0bEuHHjEqeJOO6441J7ERE/+clP0ptHHnlkerOv\nry+9OW3atPTmN77xjfTmm9/85vTmxIkT05sHH3xwerNZW7dujWXLlqU2V61aldqLiPj1r3+d3izL\nMr1ZxevfYJ5fn8vjjz+e3qzi9a+K58hbbrklvTkYEydOjFe/+tWpzfHjx6f2IiLuvPPO9ObYsWPT\nm7fffnt684wzzkhv3nDDDenNKn4/p06dmt7Mfp+yc+fOph87ZsyYmDVrVuI0EY899lhqL6KarysP\nPPDA9ObSpUvTmxMmTEhv9vT0pDdXrlyZ3tyxY0d684QTTkjtdXV1pfZgTzjGCwAAAAA14RgvAAAA\nAC1TFIVjvBWysw8AAAAAasJiHwAAAADUhGO8AAAAALSUY7zVsbMPAAAAAGrCYh8AAAAA1ITFPgAA\nAACoCffsAwAAAKCl3LOvOnb2AQAAAEBNWOwDAAAAgJpwjBcAAACAlnKMtzp29gEAAABATVjsAwAA\nAICasNgHAAAAADXhnn0AAAAAtJR79lXHzj4AAAAAqAmLfQAAAABQE47xAgAAANAyRVE4xlshO/sA\nAAAAoCYGtLOvv78/7r333tQBvvrVr6b2IiLuu+++9Oa5556b3rzwwgvTmxdccEF684c//GF6c9Gi\nRenNadOmpTfPPPPM1N7YsWObfuzWrVtj+fLlidNELFmyJLUXEXHrrbemNx988MH0ZhWfg694xSvS\nm93d3enNH/zgB+nNLVu2pDefeeaZ9GaznnnmmfTXq5EjR6b2IiIOPPDA9GZZlunNdevWpTf7+/vT\nmyeffHJ689RTT01vZr83i4gYN25cenMwNm7cGAsXLkxtfuELX0jtRUTccsst6c3zzz8/vVnF9XLQ\nQQelN4888sj05sUXX5zeXLBgQXrz7//+71N7N910U9OPHTlyZEycODFxmojDDjsstRcRcfXVV6c3\nd+7cmd589NFH05t/9md/lt7s6elJbx5++OHpzfvvvz+9OX369NTe6NGjU3uwJxzjBQAAAKClHOOt\njmO8AAAAAFATFvsAAAAAoCYs9gEAAABATbhnHwAAAAAt5Z591bGzDwAAAABqwmIfAAAAANSEY7wA\nAAAAtJRjvNWxsw8AAAAAasJiHwAAAADUxG4X+4qiOKcoisVFUSzetGlTK2YCdmm8/vr6+to9Dgwr\njdff5s2b2z0ODDuN12B/f3+7x4FhpfH6W79+fbvHAWCAdrvYV5blZWVZzi/Lcv748eNbMROwS+P1\nN2HChHaPA8NK4/XX0dHR7nFg2Gm8BseNG9fucWBYabz+uru72z0OUFNFUQyZf4Yax3gBAAAAoCYs\n9gEAAABATYxq9wAAAAAADB9D9XjsUGFnHwAAAADUhMU+AAAAAKgJx3gBAAAAaCnHeKtjZx8AAAAA\n1ITFPgAAAACoiQEd4504cWK86lWvSh1gzJgxqb2IiL/9279Nby5btiy9+bGPfSy9efnll6c3jzzy\nyPTmm970pvTm5s2b05tf/vKXU3urVq1q+rFr1qyJb37zm4nTRLzzne9M7UVEbNy4Mb157733pjcP\nP/zw9OZ73/ve9OZhhx2W3jz33HPTm48//nh686ijjkpvNmvq1Klx/vnnpzaruFb22Wef9GZHR0d6\ns7+/P7153333pTcXLlyY3ty2bVt6c/To0enNmTNnpjcvuuiiph/b2dkZxx57bN4wEfG5z30utRcR\nceGFF6Y3s9+LREQ88MAD6c03vOEN6c1vfOMb6c1XvvKV6c1rr702vbl27drU3oYNG5p+7KOPPpr+\n3uGSSy5J7UVE3HzzzenNKuacNm1aevP1r399evM1r3lNenO//fZLb+7cuTO9+fOf/zy199RTT6X2\nYE+4Zx8AAAAALeWefdVxjBcAAAAAasJiHwAAAADUhGO8AAAAALSUY7zVsbMPAAAAAGrCYh8AAAAA\n1ITFPgAAAACoCffsAwAAAKCl3LOvOnb2AQAAAEBNWOwDAAAAgJpwjBcAAACAlimKwjHeCtnZBwAA\nAAA1YbEPAAAAAGrCMV4AAAAAWsox3urY2QcAAAAANWGxDwAAAABqwmIfAAAAANSEe/YBAAAA0FLu\n2VcdO/sAAAAAoCYs9gEAAABATQzoGG9fX18sXLgwdYC5c+em9iIitm/fnt789re/nd585pln0psf\n+tCH0pu33357erO3tze9eeWVV6Y3X/KSl6T2du7c2fRj991337jkkksSp4k48MADU3sRES94wQuG\nRHPp0qXpzdtuuy29uWbNmvTmvHnz0ptXX311erOvry+92azt27fH008/ndoczPPBc6ni8+Wxxx5L\nb44Ykf93jT09PenNKua8//7705szZsxIb65fvz69ORgjRoyI8ePHpzYPOeSQ1F5ENX++s2fPTm8+\n9NBD6c05c+akN0899dT05sknn5zeLMsyvZn9XnnUqObv3rTvvvvGpz/96cRpIp588snUXkTEK17x\nivTmBRdckN584okn0ptvfvOb05vd3d3pzSrMnDkzvblq1arUXvbrV504xlsdO/sAAAAAoCYs9gEA\nAABATVjsAwAAAICaaP7mDQAAAADQBPfsq46dfQAAAABQExb7AAAAAKAmHOMFAAAAoGWKonCMt0J2\n9gEAAABATVjsAwAAAICacIwXAAAAgJZyjLc6u93ZVxTFOUVRLC6KYvHGjRtbMROwS+P1t2bNmnaP\nA8NK4/W3bt26do8Dw07jNbh+/fp2jwPDiusPYGjb7WJfWZaXlWU5vyzL+Z2dna2YCdil8fqbNGlS\nu8eBYaXx+ps4cWK7x4Fhp/Ea7O7ubvc4MKy4/gCGNvfsAwAAAICacM8+AAAAAFrKPfuqY2cfAAAA\nANSExT4AAAAAqAnHeAEAAABoKcd4q2NnHwAAAADUhMU+AAAAAKgJi30AAAAAUBMDumdff39/3H33\n3akDbN68ObUXEXHQQQelNzs7O9Obhx9+eHrz2muvTW+edNJJ6c399tsvvfn2t789vXnbbbel9nbu\n3Dmox48cOTJpkt954IEHUnsREd/73vfSmzNnzkxvHnrooenNNWvWpDdXrlyZ3ly6dGl6s4o/oyqe\ny5u1ffv2WLVqVWrzrLPOSu1FRKxduza9uWTJkvTm/vvvn96cOHFievOxxx5Lb06ZMiW9OWPGjPRm\nR0dHenMwxo0bl/6+6Wc/+1lqL6Ka9yKHHXZYenPs2LHpze985zvpzcsvvzy9WcV7nyreU/znf/5n\nam/16tVNP3bkyJHR1dWVOE3E/fffn9qLiLjpppvSm4888kh6s6enJ71ZxXP2D3/4w/Tmaaedlt68\n7rrr0ptHHHFEam+wXwPWmXv2VcfOPgAAAACoCYt9AAAAAFATAzrGCwAAAACDURSFY7wVsrMPAAAA\nAGrCYh8AAAAA1IRjvAAAAAC0lGO81bGzDwAAAABqwmIfAAAAANSExT4AAAAAqAn37AMAAACgpdyz\nrzp29gEAAABATVjsAwAAAICacIwXAAAAgJZyjLc6dvYBAAAAQE1Y7AMAAACAmrDYBwAAAAA14Z59\nAAAAALSUe/ZVx84+AAAAAKgJi30AAAAAUBOO8QIAAADQMkVROMZboQEt9k2dOjXOPffc1AFe9KIX\npfYiIi699NL05umnn57e3LFjR3pz//33T2/Omzcvvblly5b05vHHH5/e3GuvvVJ711xzTdOP3bJl\nSzz00EOJ0wydP4e99947vXnwwQenN+++++70ZmdnZ3pz1Kj8v+ep4rnnuuuuS282q7u7O/70T/80\ntbl48eLUXkTExo0b05sLFixIb44ePTq9+cgjj6Q3x44dm948+uij05sPPPBAevOAAw5Ibw7GqlWr\n4vLLL09tzp8/P7UXEfGtb30rvXnooYemN6+66qr0ZhWvgaeddlp6c8WKFenNDRs2pDf/4i/+IrV3\n8803N/3Y8ePHx1FHHZU4TcTDDz+c2ouI+OxnP5ve/OlPf5renD59enpzwoQJ6c0nnngivVnFx/66\n170uvTlx4sTU3vjx41N7sCcc4wUAAACAmnCMFwAAAICWcoy3Onb2AQAAAEBNWOwDAAAAgJqw2AcA\nAAAANeGefQAAAAC0lHv2VcfOPgAAAACoCYt9AAAAAFATjvECAAAA0FKO8VbHzj4AAAAAqIndLvYV\nRXFOURSLi6JYvGbNmlbMBOzSeP2tX7++3ePAsNJ4/T3zzDPtHgeGncZrsL+/v93jwLDSeP2tWrWq\n3eMAMEC7Xewry/Kysiznl2U5f9KkSa2YCdil8frr7u5u9zgwrDRef729ve0eB4adxmtw3Lhx7R4H\nhpXG62/y5MntHgeoqaIohsw/Q41jvAAAAABQExb7AAAAAKAmLPYBAAAAQE2MavcAAAAAAAwfQ/Ve\neEOFnX0AAAAAUBMW+wAAAACgJhzjBQAAAKClHOOtjp19AAAAAFATRVmWe/6Li+LpiHhkD37p5IhY\n1exQLWTOXObcvdllWU5p5oGuv7YxZ652z9nUNTiA6y+i/R/jnjJnrqEwZ7tn9Br4e+bMZc7dc/39\nnjlzmXP3mr7+6qyrq6t88Ytf3O4x9tjNN998Z1mW89s9x54a0DHePf0ELYpi8VD4TTBnLnNWy/XX\nHubMNVTmfLaBvEEbKh+jOXMNhTmHwozPxWtge5gz11CZ89lcf+1hzlxDZU7I4p59AAAAALSUe/ZV\nxz37AAAAAKBJRVGcVhTFA0VRPFQUxQf+wM+/qCiKhUVRbCmK4v3P+rllRVHcUxTFL4uiWJwxT1U7\n+y6rqJvNnLnM+fwwVD4+c+Yy5/PHUPkYzZlrKMw5FGYcrKHyMZozlzmfH4bKx2fOXOZk2CuKYmRE\nfD4i/jQiHo+IRUVRXFuW5X0Nv2x1RLwnIl77HJk/Kcsy7b6SA/oGHQAAAAAwGF1dXeVRRx3V7jH2\n2E033fSc36CjKIpjI+Kisixfseu/PxgRUZblP/+BX3tRRPSVZfnphh9bFhHzMxf7HOMFAAAAgOc2\nuSiKxQ3/nNPwczMj4rGG/35814/tqTIibiiK4s5ndZvmG3QAAAAAwHNbVeF3dD6+LMvlRVFMjYgf\nFUXx67IsfzaYoMU+AAAAAFqqRt+Nd3lE7Nvw3/vs+rE9Upbl8l3/+1RRFFdHxDERMajFPsd4AQAA\nAKA5iyLiwKIo5hRFMSYizoqIa/fkgUVRdBZF0fU//x4Rp0bEvYMdyM4+AAAAAGhCWZbbi6J4d0T8\nICJGRsRXyrJcUhTFO3b9/KVFUUyPiMUR0R0RO4uieG9EHBwRkyPi6l27HEdFxH+WZfn9wc40oMW+\n7u7ucurUqYP9//xf1q9fn9qLiOju7k5v7tixI705YkT+xsqVK1emN6dPn57e3LJlS3qziu8svXXr\n1tReX19fbN68uam9ykVRpH+AVVwr2b9nEREjR45Mb3Z1daU3t23blt4cP358enPVqrRv8lSpnp6e\n9ObKlStXlWU5ZaCPGzduXJn9OVPFc9bs2bPTm1W8/lVxZGPnzp3pzQ0bNqQ3+/v705tVPJf39fWl\nN5cvX97U9Rfxu+/Y19vbmzpPFc/ZVTxvrV69Or259957pzfXrFmT3sz+M4+o5jWwivf0mzZtSu2t\nW7cu+vv7m3ry7ezsLLM/t6t43qriWuns7ExvVvF6VcX771Gj8vcFTZgwIb2Zfa1E5H9+Pv7447F6\n9eranFflDyvL8vqIuP5ZP3Zpw78/Eb873vts6yPiiOx5BnQFT506NT71qU+lDvCjH/0otRcRcdpp\np6U3161bl94cM2ZMevOf/umf0psf+MAH0ptLly5Nb1bxpv2RRx5J7V177R7t5G2ZBQsWpDdXrFiR\n3qxiYe7EE09Mbz755JPpzSOPPDK9ecUVV6Q3q1i8ec1rXpPevOiii5q6qLu6uuKNb3xj6ixV/KXH\nF7/4xfRmFX8pV8UXEBs3bkxv/uxng7pVyh+0ZMmS9ObLX/7y9OYtt9yS3vzgBz/Y9Itqb29vfPSj\nH80cJ5Yv3+Nb6eyx173udenNK6+8Mr35wQ9+ML35rW99K7159tlnpze/8pWvpDc7OjrSm7/85S9T\ne1/72teafmxPT0+8853vTJwm4hWveEVqLyLi61//enpz3rx56c0q/tLnscce2/0vGqApU5r6u5k/\n6vjjj09v/uIXv0hvnnzyyam9V7/61am9uiiKok737Hvecc8+AAAAAKgJi30AAAAAUBO+QQcAAAAA\nLeUYb3Xs7AMAAACAmrDYBwAAAAA1YbEPAAAAAGrCPfsAAAAAaCn37KuOnX0AAAAAUBMW+wAAAACg\nJhzjBQAAAKClHOOtjp19AAAAAFATFvsAAAAAoCYc4wUAAACgpRzjrY6dfQAAAABQExb7AAAAAKAm\nLPYBAAAAQE24Zx8AAAAALVMUhXv2VcjOPgAAAACoiQHt7Nu5c2ds3rw5dYATTjghtRcRMXfu3PTm\ni170ovTmwoUL05u33XZbevNHP/pRevNP/uRP0puzZs1Kb37mM59J7Y0cObLpxx5wwAHx2c9+NnGa\niLVr16b2IiImTpyY3hzM79tzednLXpbevP7669ObVbjrrrvSm7/4xS/Sm7feemt6s1lTp06Nd7/7\n3anNyy+/PLUXEfHrX/86vblo0aL05utf//r0ZldXV3rz0EMPTW/OmDEjvdnT05PefO1rX5ve/OAH\nP9j0YztNYF3tAAAgAElEQVQ6OuLAAw9MnKaa37crrrgivTlt2rT05h133JHePPXUU9Ob3/72t9Ob\nxxxzTHpz7Nix6c3p06en9r7zne80/di99947PvzhDydOE/H444+n9iIizj777PRmFe9Bu7u705v/\n+q//mt6cM2dOevOxxx5Lb1ZxTT/11FOpvW3btqX2YE84xgsAAABASznGWx3HeAEAAACgJiz2AQAA\nAEBNWOwDAAAAgJpwzz4AAAAAWso9+6pjZx8AAAAA1ITFPgAAAACoCcd4AQAAAGgpx3irY2cfAAAA\nANSExT4AAAAAqIndHuMtiuKciDgnImLy5MmVDwT8XuP1N3Xq1DZPA8NL4/U3Y8aMNk8Dw0/jNTht\n2rQ2TwPDS+P1N2vWrDZPA9SVY7zV2e3OvrIsLyvLcn5ZlvO7urpaMROwS+P1193d3e5xYFhpvP4m\nTZrU7nFg2Gm8Bnt6eto9DgwrjdfflClT2j0OAAPkGC8AAAAA1ITFPgAAAACoid3esw8AAAAAshRF\n4Z59FbKzDwAAAABqwmIfAAAAANSEY7wAAAAAtJRjvNWxsw8AAAAAasJiHwAAAADUxICO8Y4cOTJ6\nenpSB3jBC16Q2ouIWLx4cXpz7Nix6c0777wzvdnR0ZHePO6449Kb//3f/53eXLhwYXrz/PPPT+3d\ncMMNg3r89u3bkyb5nXvuuSe1FxGxbdu29ObEiRPTm08//XR68/DDD09vLl++PL153nnnpTdf+cpX\npjePOOKI9GazNm7cGLfffntqc9asWam9iIgdO3akN6t4nf7MZz6T3ly2bFl6801velN6c++9905v\nbtiwIb05Y8aM9OZg9Pf3x/3335/aXLBgQWovImL06NHpzezX/oiIESPy/75/2rRp6c2bb745vXnv\nvfemN5csWZLefNe73pXebNbTTz8dX/ziF1Ob++67b2ovIqKrqyu9eccdd6Q3TzzxxPTmqFH5d+eq\n4v33k08+md486KCD0pt33XVXam/z5s2pPdgT7tkHAAAAQEu5Z191HOMFAAAAgJqw2AcAAAAANeEY\nLwAAAAAt5RhvdezsAwAAAICasNgHAAAAADXhGC8AAAAALeUYb3Xs7AMAAACAmrDYBwAAAAA1YbEP\nAAAAAGrCPfsAAAAAaJmiKNyzr0J29gEAAABATVjsAwAAAICacIwXAAAAgJZyjLc6dvYBAAAAQE1Y\n7AMAAACAmrDYBwAAAAA14Z59AAAAALSUe/ZVx84+AAAAAKgJi30AAAAAUBMDOsa7cePGWLhwYeoA\nBx98cGovImLMmDHpzZtvvjm9uW3btvTmT3/60/TmmjVr0pszZ85Mb06fPj29eeONN6b21q9f3/Rj\nx4wZE7Nnz06cJuLpp59O7UVEjB8/Pr25bNmy9OY999yT3jzxxBPTm9///vfTm/Pnz09vVvHnvmXL\nlvRms4qiiNGjR6c2e3t7U3sREWvXrk1v9vX1pTeruKYnTZqU3qziz+ihhx5Kb1511VXpzeOOOy69\nORh77bVXvPGNb0xtdnd3p/YiIiZMmJDevPXWW9ObVbwH3b59e3pzx44d6c2xY8emN88444z0Zvbr\n6ogRze/x6OjoiLlz5yZOE7F8+fLUXkTE6tWr05vz5s1Lb/7mN79Jb5500knpzSqu6aVLl6Y3Ozo6\n0puD+ZrtD6niuawuHOOtjp19AAAAAFATFvsAAAAAoCZ8N14AAAAAWqYoCsd4K2RnHwAAAADUhMU+\nAAAAAKgJi30AAAAAUBPu2QcAAABAS7lnX3Xs7AMAAACAmrDYBwAAAAA14RgvAAAAAC3lGG91druz\nryiKc4qiWFwUxeJNmza1YiZgl8brb82aNe0eB4aVxutvw4YN7R4Hhp3Ga/CZZ55p9zgwrDRef+vW\nrWv3OAAM0G4X+8qyvKwsy/llWc4fP358K2YCdmm8/iZNmtTucWBYabz+urq62j0ODDuN12Bvb2+7\nx4FhpfH6mzhxYrvHAWCA3LMPAAAAAGrCPfsAAAAAaCn37KuOnX0AAAAAUBMW+wAAAACgJhzjBQAA\nAKClHOOtjp19AAAAAFATFvsAAAAAoCYc4wUAAACgZYqicIy3QgNa7Js+fXpccMEFqQN85jOfSe1F\nRPT09KQ3V6xYkd6cPHlyenP58uXpzVNOOSW9+fjjj6c377333vTm9u3bU3ubN29u+rGjRo2KKVOm\nJE4T8dKXvjS1FxGxfv369OZgft+ey+zZs9Ob3/nOd9KbVXzsc+bMSW8++OCD6c0ZM2akN5s1YcKE\nOO6441KbW7duTe1FRPz7v/97erOjo2NINN///venN5csWZLe7O3tTW8eddRR6c2VK1emNwdj9erV\nceWVV6Y2Z82aldqLiPjFL36R3jzyyCPTm319fenN8847L705ffr09GYV1+AVV1yR3jzrrLNSe/39\n/U0/dsuWLfHb3/42cZqISZMmpfYiIrq7u9Obhx12WHrzjjvuSG+eeeaZ6c2FCxemN9/1rnelN6+6\n6qr05pgxY1J7FrRoB8d4AQAAAKAmLPYBAAAAQE24Zx8AAAAALeWIc3Xs7AMAAACAmrDYBwAAAAA1\n4RgvAAAAAC3lGG917OwDAAAAgJqw2AcAAAAANWGxDwAAAABqwj37AAAAAGgp9+yrjp19AAAAAFAT\nFvsAAAAAoCYc4wUAAACgpRzjrY6dfQAAAABQExb7AAAAAKAmHOMFAAAAoGWKonCMt0J29gEAAABA\nTVjsAwAAAICasNgHAAAAADXhnn0AAAAAtJR79lVnQIt9mzZtil/+8pepA/zVX/1Vai8iYuXKlenN\nRYsWpTe7u7vTmwcccEB6c/LkyenN6667Lr05Z86c9OaUKVNSex0dHU0/dtWqVfHlL385cZqIFStW\npPYiIo4//vj05oYNG9KbjzzySHpz4sSJ6c1t27alN7///e+nN++777705iGHHJLebNaGDRvipptu\nSm2edtppqb2IiL/+679Obz700EPpzREj8g8WjB49Or150EEHpTer8NRTT6U3TzjhhPTmxz72saYf\nO2rUqJg0aVLiNBHr1q1L7UVE9Pb2pje/+tWvpjdnzpyZ3tx///3Tm+edd15684wzzkhvlmWZ3nz4\n4YdTe1u2bGn6sUVRxKhRuXtE5s6dm9qLiOjv709vfvzjH09vXnTRRenNT37yk+nNc889N72ZvZYQ\nEXHsscemN7Nfbz7/+c+n9mBPOMYLAAAAADXhGC8AAAAALeUYb3Xs7AMAAACAmrDYBwAAAAA1YbEP\nAAAAAGrCPfsAAAAAaCn37KuOnX0AAAAAUBMW+wAAAACgJhzjBQAAAKClHOOtjp19AAAAAFATu13s\nK4rinKIoFhdFsXjt2rWtmAnYpfH627hxY7vHgWGl8frbsGFDu8eBYafxGly/fn27x4FhxWsgwNC2\n28W+siwvK8tyflmW83t6eloxE7BL4/XX2dnZ7nFgWGm8/rq6uto9Dgw7jddgd3d3u8eBYcVrIFC1\noiiG1D9DjWO8AAAAAFATFvsAAAAAoCYs9gEAAABATYxq9wAAAAAADC9D8V54Q4WdfQAAAABQExb7\nAAAAAKAmHOMFAAAAoKUc462OnX0AAAAAUBMD2tm3bdu2eOKJJ1IHWLduXWovIuLggw9Obx500EHp\nzWOOOSa9+f73vz+9+d73vje9+brXvS69uXXr1vRm9p/RZz/72aYf29HREQceeGDiNBFHHnlkai8i\nYs2aNenN/v7+9GZPT096c+TIkenNV73qVenNX/3qV+nN/fbbL73Z2dmZ3mzW2rVr4+qrr05tPv74\n46m9iN+9Tme78MIL05tVvAacf/756c2Xv/zl6c25c+emN6t43l25cmV6czA2bNgQP/nJT1Kbp5xy\nSmovIuLYY49Nb06ePDm9+fDDD6c3N2zYkN5829velt78xCc+kd687rrr0ptnnXVWau+73/1u049d\ntWpVfPWrX80bJiI+/OEPp/YiIl772temN+++++705oIFC9KbVbyvHTEif1/QPffck9484YQT0psP\nPvhgau+pp55K7cGesLMPAAAAAGrCPfsAAAAAaCn37KuOnX0AAAAAUBMW+wAAAACgJhzjBQAAAKCl\nHOOtjp19AAAAAFATFvsAAAAAoCYc4wUAAACgZYqicIy3Qnb2AQAAAEBNWOwDAAAAgJqw2AcAAAAA\nNeGefQAAAAC0lHv2VcfOPgAAAACoCYt9AAAAAFATjvECAAAA0FKO8VbHzj4AAAAAqAmLfQAAAABQ\nExb7AAAAAKAm3LMPAAAAgJZyz77q2NkHAAAAADUxoJ19RVHE6NGjUwc47LDDUnsRERdddFF680Mf\n+lB680tf+lJ6853vfGd6c/HixenNU089Nb25adOm9Oa1116b2lu7dm3Tjx03bly8+MUvTpymmj/b\n7u7u9OaKFSvSm/vss096s6enJ715++23pzermPPWW29Nbx599NHpzWZNmjQpzjzzzNRmR0dHai8i\nYvbs2enN7OediIjvfe976c0LL7wwvXn11VenN6t4jqyiedppp6U3B2PLli3x8MMPpzavuOKK1F5E\nNc+F06ZNS2+ed9556c1/+7d/S28uX748vXnUUUelN3/wgx+kN1/1qlel9nbs2NH0YydOnJj+nFDF\ne7vXvOY16c1DDjkkvfnoo4+mN8eNG5feHDNmTHrz1a9+dXpzxIj8/UvZ76fGjh2b2oM94RgvAAAA\nAC3lGG91HOMFAAAAgJqw2AcAAAAANeEYLwAAAAAtUxSFY7wVsrMPAAAAAGrCYh8AAAAA1ITFPgAA\nAACoCYt9AAAAALTU/9y3byj8swcfy2lFUTxQFMVDRVF84A/8/IuKolhYFMWWoijeP5DHNsNiHwAA\nAAA0oSiKkRHx+Yg4PSIOjog3FUVx8LN+2eqIeE9EfLqJxw6YxT4AAAAAaM4xEfFQWZYPl2W5NSKu\njIjXNP6CsiyfKstyUURsG+hjmzFqd7+gKIpzIuKciIgpU6YM9v8PGIDG62/GjBltngaGl8brb/Lk\nyW2eBoafxmuwo6OjzdPA8NJ4/fX09LR5GqCu9uR47BAxMyIea/jvxyPiJS147HPa7c6+siwvK8ty\nflmW87u7uwf7/wcMQOP1N2nSpHaPA8NK4/XX1dXV7nFg2Gm8BseMGdPucWBYabz+Ojs72z0OwPPB\n5KIoFjf8c067B/pjdruzDwAAAACGsVVlWc5/jp9bHhH7Nvz3Prt+bE8M5rHPyT37AAAAAKA5iyLi\nwKIo5hRFMSYizoqIa1vw2OdkZx8AAAAALVWXe/aVZbm9KIp3R8QPImJkRHylLMslRVG8Y9fPX1oU\nxfSIWBwR3RGxsyiK90bEwWVZrv9Djx3sTBb7AAAAAKBJZVleHxHXP+vHLm349yfid0d09+ixg+UY\nLwAAAADUhJ19AAAAALRUXY7xPh/Z2QcAAAAANWGxDwAAAABqYkDHeDds2BA/+9nPUgd48sknU3sR\nEUuXLk1vHn300enNj3zkI+nNCy+8ML35vve9L7350Y9+NL3Z29ub3sz+fF+1alXTj123bl1ce+2g\nvwP3/zJ9+vTUXkTE/fffn96cPHlyevPuu+9Ob5555pnpzU2bNqU3Z86cmd6s4jny4IMPTm82q7+/\nP+67777U5qOPPprai4j453/+5/Tm/Pnz05unnHJKenP8+PHpzfPOOy+9+Z73vCe9+dKXvjS9WcVz\nz2CMGTMmZs+end7MNmfOnPTmPffck9588MEH05vveMc70ptVfJ2wcuXK9OYhhxyS3sx+rhjMa05/\nf3/6+6aNGzem9iIibrrppvTmP/7jP6Y3zz333PRmX19fenPEiPx9QUuWDPobjP4fVbyvnTZtWnqT\n/6soCsd4K2RnHwAAAADUhMU+AAAAAKgJi30AAAAAUBMDumcfAAAAAAyWe/ZVx84+AAAAAKgJi30A\nAAAAUBOO8QIAAADQUo7xVsfOPgAAAACoCYt9AAAAAFATFvsAAAAAoCbcsw8AAACAlnLPvurY2QcA\nAAAANWGxDwAAAABqwjFeAAAAAFrKMd7q2NkHAAAAADVhsQ8AAAAAasIxXgAAAABapigKx3grZGcf\nAAAAANSExT4AAAAAqAmLfQAAAABQEwO6Z9/WrVtj6dKlqQP09PSk9iIizjzzzPTmTTfdlN6s4nz6\n2Wefnd785S9/md688MIL05tPPvlkenPGjBmpvUsuuaTpx44ePTqmT5+eOE3E9u3bU3sRER/4wAfS\nmx//+MfTmzt37kxvdnZ2pjePOOKI9OZdd92V3uzr60tvbty4Mb3ZrLFjx8Z+++2X2qzi87q/vz+9\nWcXzxDe/+c305pYtW9Kbe+21V3rz+uuvT2/ec8896c01a9akNwdj3Lhxcfjhh6c2b7zxxtReRDWv\nAx/96EfTmzfccEN6c/369enNF77whenNb3/72+nNN73pTenNefPmpfY++clPNv3YKVOmxLve9a7E\naSJmzpyZ2ouI+PGPf5zevOyyy9KbEydOTG8ecMAB6c0qvlat4vXq1FNPTW9W8T6FP8w9+6pjZx8A\nAAAA1ITFPgAAAACoiQEd4wUAAACAwXKMtzp29gEAAABATVjsAwAAAICasNgHAAAAADXhnn0AAAAA\ntJR79lXHzj4AAAAAqAmLfQAAAABQE47xAgAAANBSjvFWZ7c7+4qiOKcoisVFUSzesmVLK2YCdmm8\n/tavX9/ucWBYabz++vr62j0ODDuuQWifxutv7dq17R4HgAHa7WJfWZaXlWU5vyzL+WPHjm3FTMAu\njddfd3d3u8eBYaXx+pswYUK7x4FhxzUI7dN4/fX09LR7HAAGyDFeAAAAAFqmKArHeCvkG3QAAAAA\nQE1Y7AMAAACAmrDYBwAAAAA14Z59AAAAALSUe/ZVx84+AAAAAKgJi30AAAAAUBOO8QIAAADQUo7x\nVqcoy3LPf3FRPB0Rj+zBL50cEauaHaqFzJnLnLs3uyzLKc080PXXNubM1e45m7oGB3D9RbT/Y9xT\n5sw1FOZs94xeA3/PnLnMuXuuv98zZy5z7l7T11+dzZgxo3z729/e7jH22MUXX3xnWZbz2z3HnhrQ\nzr49/QQtimLxUPhNMGcuc1bL9dce5sw1VOZ8toG8QRsqH6M5cw2FOYfCjM/Fa2B7mDPXUJnz2Vx/\n7WHOXENlTsjinn0AAAAAUBPu2QcAAABAS7lnX3Wq2tl3WUXdbObMZc7nh6Hy8ZkzlzmfP4bKx2jO\nXENhzqEw42ANlY/RnLnM+fwwVD4+c+YyJzwPDegbdAAAAADAYMyYMaM855xz2j3GHvvYxz5W32/Q\nAQAAAACD5RhvdXyDDgAAAACoCYt9AAAAAFATjvECAAAA0DJFUTjGWyE7+wAAAACgJga0s6+rq6uc\nPHly6gDbtm1L7UVEbN26Nb359NNPpzfnzJmT3nzqqafSmzNmzEhvjhw5Mr3Z19eX3hw3blxq78kn\nn4x169Y19dcX3d3d5ZQpU1LnGTEif71/586d6c0tW7akN6v4TuRV/H5WMeeoUfmbuofKnA8//PCq\nsiwHfCF1dXWlX3/jx49P7UVEbNq0Kb3Z0dExJJpVvAZUcU1v3rw5vTl27Nj0ZhWv0/fff39T119E\nREdHR9nV1ZU6T3YvImLjxo3pzSre12a/v4mI2LBhQ3qzis/tZ555Jr1ZxefS9OnTU3uDeQ/a1dVV\n9vb2ps4zVN6HTZgwIb05evTo9GZ/f396s4qv06t4rc7+3IzI/9rjqaeeivXr19vCRksN6CupyZMn\nx4UXXpg6QBWLU0uXLk1vXnrppenNiy++OL1ZxZzZf+YR1bxw3nrrrenNww8/PLV37rnnNv3YKVOm\nxCc/+cnEaSLGjBmT2ouo5gvZ3/72t+nNKhYlq/jiqYo3WtmLVhHV/Lln/+VSRMQb3vCGR5p53JQp\nU+LjH/946izz5s1L7UVELF68OL15yCGHpDdf9KIXpTdvuumm9GYVC7IPPPBAenO//fZLb+61117p\nzXnz5jV1/UX8bjHlta99beY4ceKJJ6b2IiLuuuuu9OayZcvSm0cccUR686c//Wl6c9asWenNr33t\na+nNo48+Or15wQUXpPbe8573NP3Y3t7e9K8Hqnh/U8X72iqeJ6ZNm5bevPfee9ObTzzxRHrz5z//\neXrzLW95S3oz+3n37/7u71J7sCfcsw8AAACAlnLPvuq4Zx8AAAAA1ITFPgAAAACoCcd4AQAAAGgp\nx3irY2cfAAAAANSExT4AAAAAqAmLfQAAAABQE+7ZBwAAAEBLuWdfdezsAwAAAP5/e/cepGddH37/\n881hE3LYzYnIIQnQGBhAEZoIRNsOBwGjIjwqD1odmZ9K7GidjtNa7bQDVadOS/352CpV46PT1gNW\nK4zUihZsQAWrBAcwQUICAcKZJJvdbM67uZ4/WMf75yMmu/lc981e+3rNZCDJ3u98luy1971fvt9r\ngYaw2AcAAAAADeEYLwAAAABt5RhvfezsAwAAAICGsNgHAAAAAA3hGC8AAAAAbVNKcYy3Rnb2AQAA\nAEBDWOwDAAAAgIaw2AcAAAAADeGefQAAAAC0lXv21WdEi33Tpk2LpUuX5g4wKX+98bHHHktvXnPN\nNenNzZs3pzevu+669Oadd96Z3vzZz36W3nz961+f3pwwIXfza1dX16gfO2nSpJg7d27iNM9d09lu\nvPHG9OZLX/rS9GZvb29685lnnklv1qGqqvTmCSeckN6cP39+enO0qqqKffv2pTb7+vpSexERU6dO\nTW+uW7cuvfnggw+mN++777705s6dO9ObV1xxRXqzjr+jw3m+qkNPT09cfPHFqc1Fixal9iIiZs2a\nld4899xz05sPPfRQevPCCy9Mb27cuDG9edlll6U39+/fn97Mfq4+nN6BAwfSPx8ODg6m9iIiTj75\n5PRmHV+v1fF10GmnnZbe/N73vpfefN3rXpferON9X7t2bWrvwIEDqT04FI7xAgAAAEBDOMYLAAAA\nQFs5xlsfO/sAAAAAoCEs9gEAAABAQzjGCwAAAEBbOcZbHzv7AAAAAKAhLPYBAAAAQENY7AMAAACA\nhnDPPgAAAADayj376mNnHwAAAAA0xEEX+0opK0spa0opa3p7e9sxEzCs9frr6+vr9DgwrrRefzt2\n7Oj0ODDutF6D/f39nR4HxpXW629gYKDT4wAwQgdd7KuqalVVVcuqqlo2e/bsdswEDGu9/np6ejo9\nDowrrdffzJkzOz0OjDut12B3d3enx4FxpfX6mzFjRqfHARqolDKmfow1jvECAAAAQENY7AMAAACA\nhrDYBwAAAAANManTAwAAAAAwvozFe+GNFXb2AQAAAEBDWOwDAAAAgIZwjBcAAACAtnKMtz529gEA\nAABAQ4xoZ9+2bdviuuuuSx3grLPOSu1FRLzjHe9Ib77zne9Mbz744IPpzcsvvzy9OWvWrPRmd3d3\nenPnzp3pzblz56b2Duf/XAwNDUVvb2/iNBGPPfZYai8iYteuXenN/fv3pzenTZuW3nzb296W3ly/\nfn16c2hoKL25YcOG9Oaxxx6b3hytOXPmxB/+4R+mNh944IHUXkTEq171qvRmX19fevPOO+9Mb/7u\n7/5uenPx4sXpzZ/+9KfpzT179qQ3X/va16Y3D0dVVbF79+7U5rXXXpvai6jn9c3KlSvTm8cdd1x6\n84wzzkhv/uxnP0tv/uVf/mV6c8uWLenNE044IbV3OK9Bp0+fHkuXLk2cJmLz5s2pvYiIq6++Or2Z\n/X5HRCxZsiS9Wcd/z56envTmRz/60fTm+9///vTm6tWrU3s7duxI7cGhcIwXAAAAgLZyjLc+jvEC\nAAAAQENY7AMAAACAhrDYBwAAAAAN4Z59AAAAALSVe/bVx84+AAAAAGgIi30AAAAA0BCO8QIAAADQ\nNqUUx3hrZGcfAAAAADSExT4AAAAAaAiLfQAAAADQEO7ZBwAAAEBbuWdffezsAwAAAICGsNgHAAAA\nAA3hGC8AAAAAbeUYb33s7AMAAACAhrDYBwAAAAAN4RgvAAAAAG3lGG997OwDAAAAgIaw2AcAAAAA\nDTGiY7yTJk2KuXPnpg4wf/781F5ExI9+9KP05sDAQHrziSeeSG9u3749vXn22WenN4855pj05q23\n3preXLp0aWpvcHBw1I/dtWtX3HvvvYnTRPT19aX2IiJ2796d3qzj88S1116b3jzppJPSm3V8nti8\neXN685RTTklvTp8+Pb05Wv39/fH9738/tblkyZLUXkTEww8/nN5cu3ZtevPoo49Ob65evTq9OWlS\n/t1O3vSmN6U3N23alN4cGhpKbx6OGTNmxO/93u+lNvfs2ZPai6jn9U0dz4Hvfe9705vf+MY30psX\nX3xxerOO14s7d+5Mb1555ZWpve7u7lE/to7XoNlfU0ZEXHjhhenNiy66KL355S9/Ob3585//PL35\nohe9KL35pS99Kb05ZcqU9OZTTz2V2rv55ptTe3Ao3LMPAAAAgLZyz776OMYLAAAAAA1hsQ8AAAAA\nGsIxXgAAAADappTiGG+N7OwDAAAAgIaw2AcAAAAADWGxDwAAAAAawj37AAAAAGgr9+yrj519AAAA\nANAQFvsAAAAAoCEOeoy3lLIyIlZGRMyePbv2gYBfab3+enp6OjwNjC+t19/8+fM7PA2MP63X4LHH\nHtvhaWB8ab3+5syZ0+FpgKZyjLc+B93ZV1XVqqqqllVVtWz69OntmAkY1nr9TZs2rdPjwLjSev11\nd3d3ehwYd1qvwblz53Z6HBhXWq+/GTNmdHocAEbIMV4AAAAAaAjfjRcAAACAtnKMtz529gEAAABA\nQ1jsAwAAAICGsNgHAAAAAA3hnn0AAAAAtJV79tXHzj4AAAAAaAiLfQAAAADQECM6xjtlypRYsmRJ\n6gD9/f2pvYiI5cuXpzdXrVqV3nz5y1+e3uzt7U1v3n777enNCy+8ML25ZcuW9OYPfvCD1N6OHTtG\n/YHwg4cAACAASURBVNje3t74t3/7t8RpIk4//fTUXkTEtm3b0ptvfetb05snnXRSevPWW29Nbz7+\n+OPpzTr+jqZNm5be7OrqSm+O1qRJk2LevHnpzWw9PT3pzfPOOy+9+Ytf/CK9+cY3vjG9uXHjxvRm\nHcdV6vg8sWjRovTm4di5c2f85Cc/SW3W8TrsnnvuSW+ef/756c0f//jH6c06PlesW7cuvVnH3/uD\nDz6Y3ly7dm1qb/fu3aN+7IEDB2Lnzp2J00Rs2rQptRcRMXv27PRmHX+3jz76aHrzb//2b9Objzzy\nSHrz/vvvT29+8pOfTG/+/d//fWpv5syZqb2mKKU4xlsjO/sAAAAAoCEs9gEAAABAQ1jsAwAAAICG\nyL9hEAAAAAD8Fu7ZVx87+wAAAACgISz2AQAAAEBDOMYLAAAAQFs5xlsfO/sAAAAAoCEs9gEAAABA\nQzjGCwAAAEBbOcZbHzv7AAAAAKAhLPYBAAAAQENY7AMAAACAUSqlvLqUsr6UsrGU8qHf8PullPKP\nw79/bynld1t+7+FSys9LKXeXUtZkzOOefQAAAAC0VVPu2VdKmRgR10bEBRHxWETcWUq5saqq+1re\nbEVELBn+cVZEfGb4n790blVVW7JmsrMPAAAAAEbnzIjYWFXVQ1VV7YuIr0XEJb/2NpdExL9Wz/mf\niJhVSjm6roEs9gEAAADA6BwbEZtbfv7Y8K8d6ttUEXFLKeWuUsrKjIEc4wUAAACgbUopY+0Y77xf\nu5/eqqqqViW1f6+qqsdLKfMj4uZSyv1VVf3gcIIW+wAAAADg+W2pqmrZ8/ze4xGxsOXnC4Z/7ZDe\npqqqX/7zmVLKDfHcseDDWuxzjBcAAAAARufOiFhSSjmhlNIVEW+OiBt/7W1ujIi3D39X3rMjoq+q\nqidLKdNLKTMjIkop0yPiwohYe7gD2dkHAAAAAKNQVdVgKeWPI+J7ETExIr5YVdW6UsofDf/+ZyPi\nOxHxmojYGBG7IuJ/DT/8RRFxw/CR5kkR8dWqqr57uDONeLGvqqrD/TP/Dw8//HBqLyLioYceSm/W\ncZb8lFNOSW++5CUvSW/+3d/9XXrz6quvTm9ecsmvf7ObwzdjxozU3j//8z+P+rGzZs2KSy+9NG+Y\niFiyZElqLyJi0aJF6c2jj87/JkU9PT3pzTo+T9Tx+WzTpk3pzQcffDC9uWVL2neeP2y9vb3x9a9/\nPbV58sknp/YiIr72ta+lN9/znvekN5944on05rZt29Kbp556anrzYx/7WHrztNNOS2/edNNN6c3D\nsXfv3vTPh7t27UrtRUT893//d3rz9NNPT2/ec8896c3t27enN//qr/4qvfnxj388vTl9+vT05lFH\nHZXamzx58qgfu2PHjli9enXiNPW8bv+Lv/iL9GYdXwdt2LAhvdnV1ZXevOKKK9Kb8+bNS2++5S1v\nSW8uXrw4tTdlypTUXpOMsXv2/VZVVX0nnlvQa/21z7b8exUR7/0Nj3soIl6WPY9jvAAAAADQEBb7\nAAAAAKAh3LMPAAAAgLZq0jHeFxo7+wAAAACgISz2AQAAAEBDOMYLAAAAQFs5xlsfO/sAAAAAoCEs\n9gEAAABAQ1jsAwAAAICGcM8+AAAAANqmlOKefTU66M6+UsrKUsqaUsqa/v7+dswEDGu9/nbt2tXp\ncWBccf1BZ7VegwMDA50eB8aV1utv3759nR4HgBE66GJfVVWrqqpaVlXVsu7u7nbMBAxrvf6mTZvW\n6XFgXHH9QWe1XoMzZszo9DgwrrRef11dXZ0eB4ARcowXAAAAgLZyjLc+vkEHAAAAADSExT4AAAAA\naAiLfQAAAADQEO7ZBwAAAEBbuWdffezsAwAAAICGsNgHAAAAAA3hGC8AAAAAbeUYb31GtNjX1dUV\nixYtSh1g8uTJqb2IiIcffji9OWPGjPTm+9///vTmggUL0pv79+9Pb772ta9Nb950003pzRe/+MWp\nvV27do36sbt37461a9cmThNx7733pvYiIgYGBtKbP/zhD9Obb3vb29Kb//qv/5rePPXUU9Obxx9/\nfHpz8eLF6c0nnngivTlaEydOjJ6entTmd7/73dReRMQZZ5yR3vzmN7+Z3nz00UfTmz/4wQ/Sm296\n05vSmyeccEJ688Ybb0xvnnPOOenNw7F79+647777Upvvec97UnsREQsXLkxvTpkyJb156aWXpjdv\nueWW9OZXvvKV9GYdXydMmJB/WCr7OaK/v3/Uj929e3f8/Oc/T5zmuefVbJ/61KfSm9OmTUtvvvWt\nb01vrlq1Kr1Zx2vQ7NdSEREzZ85Mb95xxx2pvTq+PoKDcYwXAAAAABrCMV4AAAAA2sox3vrY2QcA\nAAAADWGxDwAAAAAawmIfAAAAADSEe/YBAAAA0DalFPfsq5GdfQAAAADQEBb7AAAAAKAhHOMFAAAA\noK0c462PnX0AAAAA0BAW+wAAAACgISz2AQAAAEBDuGcfAAAAAG3lnn31sbMPAAAAABrCYh8AAAAA\nNIRjvAAAAAC0lWO89bGzDwAAAAAawmIfAAAAADSEY7wAAAAAtJVjvPWxsw8AAAAAGmJEO/smT54c\nRx11VOoADz74YGovIuLTn/50evOKK65Ib/b396c3zzrrrPTmtddem97s7e1Nb86ePTu9OWPGjNTe\nhAmjX1+fP39+vO9970ucJmLTpk2pvYiI3bt3pzf/+q//Or15zjnnpDf/9E//NL15xx13pDdPPfXU\n9Oa6devSm3V8Pvv85z8/qsd1d3fHRRddlDrL0qVLU3sR9Vx/dTxXzZs3L715/fXXpzcfe+yx9ObR\nRx+d3rzlllvSmytWrEhvXnnllaN+7DHHHBMf+chHEqeJ+MIXvpDai4hYv359erOO56tjjjkmvTll\nypT05pYtW9Kbt99+e3pz+fLl6c3sz70HDhwY9WOPOuqo+OAHP5g4TcSGDRtSexERH/rQh9Kbjzzy\nSHrzggsuSG/W8Zqpjh1Xy5YtS29u3749vblx48bU3t69e1N7cCjs7AMAAACAhnDPPgAAAADappTi\nnn01srMPAAAAABrCYh8AAAAANIRjvAAAAAC0lWO89bGzDwAAAAAawmIfAAAAADSExT4AAAAAaAj3\n7AMAAACgrdyzrz529gEAAABAQxx0sa+UsrKUsqaUsmbr1q3tmAkY1nr99fX1dXocGFdar7/t27d3\nehwYd1qvwW3btnV6HBhXWq+/gYGBTo8DwAgddLGvqqpVVVUtq6pq2dy5c9sxEzCs9frr6enp9Dgw\nrrRef7Nmzer0ODDutF6Dc+bM6fQ4MK60Xn8zZszo9DhAQ5VSxsyPscYxXgAAAABoCIt9AAAAANAQ\nvhsvAAAAAG01Fo/HjhV29gEAAABAQ1jsAwAAAICGsNgHAAAAAA3hnn0AAAAAtE0pxT37amRnHwAA\nAAA0xIh29j311FNxzTXXpA5w1llnpfYiIt73vvelN6dNm5bePHDgQHqzDl1dXenNgYGB9OZll12W\n3rz++utTe7t27Rr1YwcHB+PZZ59NnCZi9+7dqb2IiP7+/vTm4OBgevOqq65Kby5atCi9uX///vTm\nj370o/TmnDlz0puf/exn05uj1dXVFccee2xqc+fOnam9iIgLL7wwvfmtb30rvVnH+/7Tn/40vXn0\n0UenN+t431/+8penN++666705uF47LHH4gMf+EBqc/ny5am9iIihoaH05r/8y7+kN6+++ur0Zh2v\n7RYvXpzenDAhf6/DkUcemd6s43PF4aiqKrV3xRVXpPYiIs4777z05i9+8Yv0Znd3d3rznnvuSW++\n5S1vSW/Wcf3ddttt6c3sazr7+oFD4RgvAAAAAG3lGG99HOMFAAAAgIaw2AcAAAAADWGxDwAAAAAa\nwj37AAAAAGgr9+yrj519AAAAANAQFvsAAAAAoCEc4wUAAACgrRzjrY+dfQAAAADQEBb7AAAAAKAh\nHOMFAAAAoK0c462PnX0AAAAA0BAW+wAAAACgISz2AQAAAEBDuGcfAAAAAG1TSnHPvhrZ2QcAAAAA\nDWGxDwAAAAAawjFeAAAAANrKMd762NkHAAAAAA1hsQ8AAAAAGmJEx3i7urpiwYIFqQMcf/zxqb2I\niNWrV6c3jz766PTmm9/85vTmN7/5zfTmwMBAenP//v3pzenTp6c3zz///NTet7/97VE/dmhoKHbs\n2JE4TcSZZ56Z2ouIqKoqvXnHHXekN9/whjekN5955pn05uc///n05tKlS9ObDz74YHrzZS97WXpz\ntCZOnBgzZ85MbS5cuDC1FxHx1FNPpTfruFYeeOCB9GZXV1d687777ktvLl68OL1Zx+fdF5rjjjsu\nPvvZz6Y2v/SlL6X2IiLe8Y53pDenTJmS3pw1a1Z6s47XdmvXrk1vvvOd70xvfutb30pvXnLJJam9\nGTNmjPqxkyZNinnz5iVOE/H9738/tRcR8dBDD6U3Z8+end7M/voiIuLEE09Mb9bxXP26170uvblm\nzZr0ZvbH0t69e1N7cCjcsw8AAACAtnLPvvo4xgsAAAAADWGxDwAAAAAawjFeAAAAANrKMd762NkH\nAAAAAA1hsQ8AAAAAGsIxXgAAAADayjHe+tjZBwAAAAANYbEPAAAAABrCYh8AAAAANMRB79lXSlkZ\nESsjImbPnl37QMCvtF5/c+bM6fA0ML60Xn8LFy7s8DQw/rgGoXNar7958+Z1eBqgiUop7tlXo4Pu\n7KuqalVVVcuqqlo2ffr0dswEDGu9/mbMmNHpcWBcab3+fKED7dd6Dc6dO7fT48C40nr9dXd3d3oc\nAEbIMV4AAAAAaIiDHuMFAAAAgEyO8dbHzj4AAAAAaAiLfQAAAADQEBb7AAAAAKAh3LMPAAAAgLZy\nz7762NkHAAAAAA1hsQ8AAAAAGqJUVXXob1zKsxHxyCG86byI2DLaodrInLnMeXDHVVV15Gge6Prr\nGHPm6vSco7oGR3D9RXT+fTxU5sw1Fubs9IyeA3/FnLnMeXCuv18xZy5zHtyor78mO+mkk6rPfe5z\nnR7jkJ177rl3VVW1rNNzHKoR3bPvUD9ASylrxsJ/BHPmMme9XH+dYc5cY2XOXzeSF2hj5X00Z66x\nMOdYmPH5eA7sDHPmGitz/jrXX2eYM9dYmROyOMYLAAAAAA3hu/ECAAAA0Fa+G2996trZt6qmbjZz\n5jLnC8NYef/MmcucLxxj5X00Z66xMOdYmPFwjZX30Zy5zPnCMFbeP3PmMie8AI3oG3QAAAAAwOE4\n6aSTqlWrxs4a7DnnnDOmvkGHe/YBAAAAQEO4Zx8AAAAAbVNKcc++GtnZBwAAAAANYbEPAAAAABrC\nMV4AAAAA2sox3vqMaLHviCOOqGbOnJk6QHd3d2ovImLbtm3pzQkT8jdBzpgxI705NDSU3uzr60tv\nDg4Opjd7enrSm/39/am9vXv3xuDg4Kg+o02YMKHK/jicPHlyai+inmvlwIED6c09e/akN+tQx8d1\nHU+qu3btSm/W8Tly27ZtW6qqOnKkj5s5c2Y1d+7c9Hmy1XH97d+/P71Zx8dgHR8vdXxc1/G558gj\nR/whfVB1vJ74xS9+MarrLyJi4sSJVfZzVh3/3ep4zTRx4sT0Zh3P/3W8tps6dWp6s46vE/bu3Zve\nzP6aa8+ePbFv375RffKdOnVq+teAdXwMDgwMpDfreG6p4+OlDnVcK5Mm5e81quO1cldXV2pv+/bt\nsWvXLqtatNWIrraZM2fGG9/4xtQBLrrootReRMRXv/rV9Gb2E1xExCtf+cr0Zh2flL/3ve+lN7ds\n2ZLerONj6eabb07t3X///aN+7IQJE9KfzObPn5/ai6jnRdHu3bvTm+vWrUtv1uEP/uAP0pt1fOF4\n9913pzeXL1+e3rzuuuseGc3j5s6dG1dddVXqLFVVpfYiIqZMmZLefPrpp9Obdcz5ile8Ir151113\npTcP53ng+bznPe9Jb+7YsSO9ecYZZ4zq+ot4bmFg0aJFmePEu9/97tReRD2vmep4Xn3Ri16U3uzt\n7U1vnnzyyenNOr5OeOCBB9Kby5YtS+2tWbNm1I+t42vAOl6D3n777enNOr5ee/jhh9Obdbym+PKX\nv5zenDdvXnpzxYoV6c3jjjsutfe5z30utQeHwj37AAAAAKAh3LMPAAAAgLZyz7762NkHAAAAAA1h\nsQ8AAAAAGsIxXgAAAADayjHe+tjZBwAAAAANYbEPAAAAABrCMV4AAAAA2sox3vrY2QcAAAAADWGx\nDwAAAAAawmIfAAAAADSEe/YBAAAA0DalFPfsq5GdfQAAAADQEBb7AAAAAKAhHOMFAAAAoK0c462P\nnX0AAAAA0BAW+wAAAACgISz2AQAAAEBDjOiefcccc0x89KMfTR3gxz/+cWovIuLiiy9Ob86aNSu9\nOXHixPTmpk2b0puXXHJJevPee+9Nb55xxhnpzZe85CWpvauuumrUj128eHF87nOfS5wmYtKk/Nt2\n9vT0pDcXL16c3hwYGEhv1nFN13Efizlz5qQ316xZk9588skn05vXXXfdqB43YcKE6OrqSp1laGgo\ntRcRcdttt6U3V6xYkd7cvHlzerOvry+9mf0cEBHx0EMPpTf37duX3rzxxhvTm4dj4cKF8YlPfCK1\n+eyzz6b2IiJuuOGG9OYdd9yR3vzhD3+Y3vzMZz6T3qzj7+jMM89Mb77sZS9Lb37xi19M7a1fv37U\nj120aFF86lOfSpwmYuvWram9iIiXv/zl6c1XvOIV6c06nq/q+Nrq05/+dHrziSeeSG/u378/vbl3\n797U3te+9rXUXpO4Z1997OwDAAAAgIaw2AcAAAAADZF/hg8AAAAAfgvHeOtjZx8AAAAANITFPgAA\nAABoCMd4AQAAAGgrx3jrY2cfAAAAADSExT4AAAAAaAiLfQAAAADQEO7ZBwAAAEDblFLcs69GB93Z\nV0pZWUpZU0pZs3Xr1nbMBAxrvf76+vo6PQ6MK63XX39/f6fHgXHHcyB0Tuv1t2XLlk6PA8AIHXSx\nr6qqVVVVLauqatncuXPbMRMwrPX66+np6fQ4MK60Xn/d3d2dHgfGHc+B0Dmt19+8efM6PQ4AI+QY\nLwAAAABt5RhvfXyDDgAAAABoCIt9AAAAANAQFvsAAAAAoCHcsw8AAACAtnLPvvrY2QcAAAAADWGx\nDwAAAABGqZTy6lLK+lLKxlLKh37D75dSyj8O//69pZTfPdTHjoZjvAAAAAC0VVOO8ZZSJkbEtRFx\nQUQ8FhF3llJurKrqvpY3WxERS4Z/nBURn4mIsw7xsSM2osW+/v7+uOWWWw7nz/v/+Z//+Z/UXkTE\n2Wefnd58/etfn94844wz0ptPPvlkevMjH/lIenPjxo3pzWOOOSa9uXfv3tTe7t27R/3YwcHB2Lp1\na+I0EVOmTEntRUQcOHAgvXnTTTelN/fv35/erEMdT4DLli1Lbx7Ox/bzyf54PxxdXV2xaNGi1OYn\nP/nJ1F5ExLnnnpvefPjhh9ObdTz/XX/99enNN77xjenNyZMnpzdXr16d3jzttNPSm4djaGgoBgYG\nUpuPP/54ai8i4vzzz09v1vEatI7PFR/84AfTm729venNOXPmpDcvv/zy9Oa73/3u1N7Q0NCoH7tv\n377054KpU6em9iLqeS3y4Q9/OL153nnnpTeXL1+e3ly1alV6c+nSpenNu+66K715xRVXpPbq+JqL\nF5wzI2JjVVUPRUSUUr4WEZdEROuC3SUR8a9VVVUR8T+llFmllKMj4vhDeOyIOcYLAAAAAKNzbERs\nbvn5Y8O/dihvcyiPHTHHeAEAAABoqzF2jHdeKWVNy89XVVWVvwU2icU+AAAAAHh+W6qqer77IT0e\nEQtbfr5g+NcO5W0mH8JjR8wxXgAAAAAYnTsjYkkp5YRSSldEvDkibvy1t7kxIt4+/F15z46Ivqqq\nnjzEx46YnX0AAAAAMApVVQ2WUv44Ir4XERMj4otVVa0rpfzR8O9/NiK+ExGviYiNEbErIv7Xb3vs\n4c5ksQ8AAACAtimljLV79v1WVVV9J55b0Gv9tc+2/HsVEe891MceLsd4AQAAAKAhLPYBAAAAQEM4\nxgsAAABAWzXpGO8LjZ19AAAAANAQFvsAAAAAoCEs9gEAAABAQ7hnHwAAAABt5Z599bGzDwAAAAAa\nwmIfAAAAADSEY7wAAAAAtJVjvPWxsw8AAAAAGsJiHwAAAAA0hGO8AAAAALSVY7z1sbMPAAAAABpi\nRDv7+vv74+abb04dYPLkyam9iIg777wzvfnKV74yvfnnf/7n6c3sv5+IiPPOOy+9WccK/vXXX5/e\nvOSSS1J7XV1do37s1KlT48UvfnHiNBE7duxI7UVEDAwMpDd7e3vTm08++WR684QTTkhvTpiQ//9k\nbrrppvTm8ccfn97M/ng/HH19ffGd73wntXnhhRem9iIiTjnllPTm7Nmz05t33HFHevP3f//305s/\n/vGP05tHHnlkerOO11JPPfVUevNwTJ48Of2/3eDgYGovop7r+lWvelV687bbbktvbtiwIb154okn\npjff8IY3pDefeeaZ9Gb25/OpU6eO+rGllPTPM3U8t0yalH9o7U/+5E/Sm0NDQ+nNOp4H3vnOd6Y3\nb7311vTmmWeemd7cunVraq+O5xs4GDv7AAAAAKAh3LMPAAAAgLYppbhnX43s7AMAAACAhrDYBwAA\nAAAN4RgvAAAAAG3lGG997OwDAAAAgIaw2AcAAAAADWGxDwAAAAAawj37AAAAAGgr9+yrj519AAAA\nANAQB13sK6WsLKWsKaWs2bNnTztmAoa1Xn+9vb2dHgfGldbrb9euXZ0eB8ad1mtw+/btnR4HxpXW\n62/r1q2dHgeAETroYl9VVauqqlpWVdWyqVOntmMmYFjr9Td79uxOjwPjSuv1N23atE6PA+NO6zU4\na9asTo8D40rr9Td37txOjwM0VCllzPwYaxzjBQAAAICGsNgHAAAAAA3hu/ECAAAA0FZj8XjsWGFn\nHwAAAAA0hMU+AAAAAGgIi30AAAAA0BDu2QcAAABA25RS3LOvRnb2AQAAAEBDjGhn3/HHHx9f+MIX\nUgf42Mc+ltqLiDjnnHPSm1VVpTf/67/+K7157rnnpjff+973pjevueaa9Obdd9+d3nz88cdTe/v3\n7x/1Y/fs2RMbNmxInCZi06ZNqb2IiO7u7vRmHS666KL05oQJ+f//ZN++fWOimX2tRESsW7cuvTla\ng4OD0dvbm9p8/etfn9qLiDhw4EB687HHHktvvvjFL05v3nfffenNiy++OL359a9/Pb2Z/bEZEXHi\niSemNw/H9u3b4z//8z9TmwsWLEjtRUSsWLEivZn92juinte1l112WXqzv78/vXn//fenN+fNm5fe\nrOPz+WiVUmLy5MmpzTpeixx55JHpzS1btqQ3jzjiiPTm7Nmz05t1XH99fX3pzZkzZ6Y3Tz755NTe\n1KlTU3twKBzjBQAAAKCtHOOtj2O8AAAAANAQFvsAAAAAoCEc4wUAAACgrRzjrY+dfQAAAADQEBb7\nAAAAAKAhLPYBAAAAQEO4Zx8AAAAAbeWeffWxsw8AAAAAGsJiHwAAAAA0hGO8AAAAALSVY7z1sbMP\nAAAAABrCYh8AAAAANITFPgAAAABoCPfsAwAAAKBtSinu2VcjO/sAAAAAoCEs9gEAAABAQzjGCwAA\nAEBbOcZbHzv7AAAAAKAhLPYBAAAAQEOM6Bhvb29vfPOb30wdYPXq1am9iIh//Md/TG++9KUvHRPN\nAwcOpDcvvfTS9OYnPvGJ9ObOnTvTmzt27Ejt7du3b9SPHRwcjK1btyZOE3HSSSel9iIienp60psb\nN25Mbx577LHpzTo+n917773pzYULF6Y3n3766fRmV1dXenO0jjjiiPTP2a94xStSexERf/RHf5Te\n3Lt3b3pz3rx56c06Pp9dfPHF6c06nvvreN+nTJmS3jwcEydOjJkzZ6Y2n3322dReRMT+/fvTm2ec\ncUZ6s47nlttvvz29OTQ0lN7cvn17evN973tfevOoo45K7X3yk58c9WN37twZd955Z+I0EevXr0/t\nRURMnz49vVnHc+Db3/729Oatt96a3nzXu96V3rz88svTm6eeemp6M/vjc8+ePam9JnGMtz529gEA\nAABAQ1jsAwAAAICGsNgHAAAAAA0xonv2AQAAAMDhcs+++tjZBwAAAAANYbEPAAAAABrCMV4AAAAA\n2sox3vrY2QcAAAAADWGxDwAAAAAawmIfAAAAADTEQe/ZV0pZGRErIyLmzZtX+0DAr7Ref3PmzOnw\nNDC+tF5/s2fP7vA0MP60XoM9PT0dngbGl9br78gjj+zwNEATlVLcs69GB93ZV1XVqqqqllVVtay7\nu7sdMwHDWq+/GTNmdHocGFdcf9BZrdfgtGnTOj0OjCu+BgQY2xzjBQAAAICGOOgxXgAAAADI5Bhv\nfezsAwAAAICGsNgHAAAAAA3hGC8AAAAAbeUYb33s7AMAAACAhrDYBwAAAAANYbEPAAAAABpiRPfs\n6+vri29/+9upAxxzzDGpvYiI173udenNL3/5y+nNOqxevTq9+YMf/CC9+fGPfzy9+eEPfzi92d3d\nndrbv3//qB/b09MTr3nNaxKniZg4cWJqLyKiv78/vXncccelN3fu3JnePPfcc9Obkybl31r19NNP\nT29Onz49vfnMM8+kN6+++upRPa63tzf+/d//PXWWOq6V5cuXpzfruJfK3Xffnd688sor05t/9md/\nlt5cvHhxerOvry+9uXTp0vTm4Zg9e3a86U1vSm3ecMMNqb2IiG984xvpzUsvvTS9OTg4mN586KGH\n0pvHH398enPZsmXpzWeffTa9efvtt6f2ent7D+vxEybk7hF5//vfn9qLiFi/fn16s46vrep4Dbph\nw4b05lVXXZXePO+889Kbh/ux/ZscddRRqb3Jkyen9prEPfvqY2cfAAAAADSExT4AAAAAaIj8GQWa\nmgAACg5JREFU82EAAAAA8Fs4xlsfO/sAAAAAoCEs9gEAAABAQ1jsAwAAAICGcM8+AAAAANqmlOKe\nfTWysw8AAAAAGsJiHwAAAAA0hGO8AAAAALSVY7z1sbMPAAAAABrCYh8AAAAANIRjvAAAAAC0lWO8\n9bGzDwAAAAAawmIfAAAAADSExT4AAAAAaAj37AMAAACgrdyzrz529gEAAABAQ1jsAwAAAICGcIwX\nAAAAgLZyjLc+I1rs279/fzz55JOpA0ybNi21FxFx9913pzfXrl2b3jzhhBPSmytWrEhvvvrVr05v\nfvWrX01v9vT0pDff9a53pfY2btw46scODQ3Ftm3bEqd5rpnt0UcfTW/Onz8/vTlx4sT0ZlVV6c3+\n/v705rp169Kb2R+bERHLly9Pb47W9OnT46yzzkptLly4MLUXEfFP//RP6c1NmzalN1euXJnevPTS\nS9Ob119/fXpz3rx56c2TTjopvXnPPfekNw/H008/HZ/4xCdSm8cdd1xqLyLizDPPTG++7W1vS29e\ndtll6c2dO3emN+fMmZPevOmmm9KbM2fOTG+uX78+tbdnz55RP7arqysWLVqUOE3E17/+9dReRMTe\nvXvTm2effXZ681vf+lZ688CBA+nNOl5/DwwMpDfr+Hpm8+bNqb19+/al9uBQOMYLAAAAAA1hsQ8A\nAAAAGsI9+wAAAABom1KKe/bVyM4+AAAAAGgIi30AAAAA0BCO8QIAAADQVo7x1sfOPgAAAABoCIt9\nAAAAANAQjvECAAAA0FaO8dbHzj4AAAAAaIiDLvaVUlaWUtaUUtbs27evHTMBw1qvv97e3k6PA+NK\n6/W3e/fuTo8D407rNbhnz55OjwPjSuv1t3379k6PA8AIHXSxr6qqVVVVLauqallXV1c7ZgKGtV5/\ns2fP7vQ4MK60Xn9HHHFEp8eBcaf1Gpw6dWqnx4FxpfX6mzVrVqfHAWCE3LMPAAAAgLZyz776uGcf\nAAAAADSExT4AAAAAaAjHeAEAAABom1KKY7w1srMPAAAAABrCYh8AAAAANITFPgAAAABoCPfsAwAA\nAKCt3LOvPiNa7DvqqKPigx/8YOoAW7ZsSe1FRPzwhz9Mb/7DP/xDenPBggXpzUcffTS9+eEPfzi9\n+ZWvfCW9ef/996c3TzzxxNTeEUccMerH7t69O+67777EaSKefvrp1F7Ec3Nm27FjR3qzjve9qqr0\n5sDAQHrzmWeeSW9OnDgxvfmTn/wkvTlau3fvjnvuuSe1uWfPntReRMS73vWu9GYdn69PO+209OZt\nt92W3vybv/mb9OYDDzyQ3vyP//iP9Obll1+e3rzuuutG/dgpU6bEkiVLEqepx0033ZTeXLlyZXrz\n1ltvTW9eeuml6c0JE/IPIT3yyCPpzQsuuCC92d3dndq75ZZbRv3YoaGh6OvrS5wm4vTTT0/tRUQ8\n9dRT6c3BwcH05vnnn5/eXL9+fXpzypQp6c2hoaH0Zh2vQX/nd34ntVfHf0s4GMd4AQAAAKAhHOMF\nAAAAoK0c462PnX0AAAAA0BAW+wAAAACgIRzjBQAAAKCtHOOtj519AAAAANAQFvsAAAAAoCEs9gEA\nAABAQ7hnHwAAAABt5Z599bGzDwAAAAAawmIfAAAAADSEY7wAAAAAtE0pxTHeGtnZBwAAAAANYbEP\nAAAAABrCYh8AAAAANIR79gEAAADQVu7ZVx87+wAAAACgISz2AQAAAEBDOMYLAAAAQFs5xlsfO/sA\nAAAAoCFGtLOvqqrYu3dv6gAveclLUnsRES972cvSmxMnTkxv3nDDDenNp59+Or152mmnpTf37duX\n3lywYEF688CBA6m9qqpG/djBwcF45plnEqeJOPvss1N7ERGbNm1Kb3Z1daU3Fy5cmN7s7+9Pb06f\nPj29uX379vTmWWedld7cunVrenO0FixYENdcc01qc8KE/P/fVsd/syuvvDK9+dRTT6U3ly5dmt68\n44470puXXXZZenPFihXpzSOOOCK9+YEPfGDUj923b1888sgjidNEvOUtb0ntRURMmzYtvblnz570\n5gUXXJDerON6mTx5cnpzzZo16c0pU6akNzdv3pzaO5zn/jq+Buzp6UntRdTz8VLH14AbNmxIb86e\nPTu9OX/+/PTmunXr0pt1/B3NmjUrtTc4OJjag0PhGC8AAAAAbeUYb30c4wUAAACAhrDYBwAAAAAN\nYbEPAAAAABrCPfsAAAAAaCv37KuPnX0AAAAA0BAW+wAAAACgIRzjBQAAAKBtSimO8dbIzj4AAAAA\naAiLfQAAAADQEAdd7CulrCylrCmlrOnr62vHTMCw1utvYGCg0+PAuNJ6/fX29nZ6HBh3Wq/BPXv2\ndHocGFd8DQgwth10sa+qqlVVVS2rqmpZT09PO2YChrVefzNmzOj0ODCutF5/s2fP7vQ4MO60XoNT\np07t9DgwrvgaEGiHX963byz8GGsc4wUAAACAGpRS5pRSbi6lbBj+52/cSVBKeXUpZX0pZWMp5UMt\nv/7XpZTHSyl3D/94zcH+TIt9AAAAAFCPD0XE96uqWhIR3x/++f+hlDIxIq6NiBURcUpEvKWUckrL\nm/w/VVWdPvzjOwf7AyflzA0AAAAAh2YsHo8dpUsi4pzhf/+XiLg1Ij74a29zZkRsrKrqoYiIUsrX\nhh9332j+QDv7AAAAAKAeL6qq6snhf38qIl70G97m2IjY3PLzx4Z/7ZfeV0q5t5Tyxec7BtzKYh8A\nAAAAPL95v/wu5cM/Vrb+ZinlllLK2t/w45LWt6uqqoqIaoR/9mci4nci4vSIeDIi/vfBHuAYLwAA\nAABtNcaO8W6pqmrZ8/1mVVWver7fK6U8XUo5uqqqJ0spR0fEM7/hzR6PiIUtP18w/GtRVdXTLa3P\nR8S3DzasnX0AAAAAUI8bI+KK4X+/IiK+9Rve5s6IWFJKOaGU0hURbx5+XAwvEP7S/xURaw/2B9rZ\nBwAAAAD1+NuI+Hop5Z0R8UhE/N8REaWUYyLi/62q6jVVVQ2WUv44Ir4XERMj4otVVa0bfvw1pZTT\n47njvw9HxLsP9geW544LH5pSyrPDgx3MvIjYcsjhzjFnLnMe3HFVVR05mge6/jrGnLk6PeeorsER\nXH8RnX8fD5U5c42FOTs9o+fAXzFnLnMenOvvV8yZy5wHN+rrr8lKKd+N5/5exootVVW9utNDHKoR\nLfYdcrSUNb/tLPMLhTlzmfOFYay8f+bMZc4XjrHyPpoz11iYcyzMeLjGyvtozlzmfGEYK++fOXOZ\nE16Y3LMPAAAAABrCYh8AAAAANERdi32raupmM2cuc74wjJX3z5y5zPnCMVbeR3PmGgtzjoUZD9dY\neR/NmcucLwxj5f0zZy5zwgtQLffsAwAAAADazzFeAAAAAGgIi30AAAAA0BAW+wAAAACgISz2AQAA\nAEBDWOwDAAAAgIb4/wDTvX1FQvl0fAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize weights\n", + "W1 = model.layers[0].get_weights()[0]\n", + "W1 = np.squeeze(W1)\n", + "# W1 = np.asarray(W1)\n", + "print(\"W1 shape : \", W1.shape)\n", + "\n", + "mosaic_imshow(W1, 2, 5, cmap=cm.binary, border=1, layer_name=\"conv1_weights\")\n", + "plotNNFilter(W1, 2, 5, cmap=cm.binary, layer_name=\"conv1_weights\")\n", + "plotNNFilter2(W1, 2, 5, cmap=cm.binary, layer_name=\"conv1_weights\")\n", + "\n", + "# Visualize weights\n", + "W2 = model.layers[3].get_weights()[0][:,:,0,:]\n", + "W2 = np.asarray(W2)\n", + "print(\"W2 shape : \", W2.shape)\n", + "\n", + "mosaic_imshow(W2, 4, 5, cmap=cm.binary, border=1, layer_name=\"conv2_weights\")\n", + "plotNNFilter(W2, 4, 5, cmap=cm.binary, layer_name=\"conv2_weights\")\n", + "plotNNFilter2(W2, 4, 5, cmap=cm.binary, layer_name=\"conv2_weights\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "y_val_true, y_val_prediction\n", + "\n", + "for j in range(len(y_val_true)):\n", + " if y_val_true[j] == 0 and y_val_prediction[j] == 1:\n", + " print(j, sum(sum(sum(x_val[j]))))\n", + "# pl.figure(figsize=(10, 10))\n", + "# pl.title('input ' + str(j))\n", + "# nice_imshow(pl.gca(), np.squeeze(x_val[j]), vmin=0, vmax=1, cmap=cm.binary)\n", + "# pl.savefig(MODEL_NAME + \"_input\", bbox_inches='tight', pad_inches=1)\n", + "# pl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import test data" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1124, 1, 1500, 1500) (1124, 5)\n", + "(2464, 1, 1500, 1500) (2464, 5)\n" + ] + } + ], + "source": [ + "x_test_vpn = np.load(PATH_PREFIX + \"vpn_x_test.npy\")\n", + "y_test_vpn_true = np.load(PATH_PREFIX + \"vpn_y_test.npy\")\n", + "x_test_tor = np.load(PATH_PREFIX + \"tor_x_test.npy\")\n", + "y_test_tor_true = np.load(PATH_PREFIX + \"tor_y_test.npy\")\n", + "\n", + "y_test_vpn = np_utils.to_categorical(y_test_vpn_true, num_classes)\n", + "y_test_tor = np_utils.to_categorical(y_test_tor_true, num_classes)\n", + "\n", + "print(x_test_vpn.shape, y_test_vpn.shape)\n", + "print(x_test_tor.shape, y_test_tor.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate model on test data" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "314/314 [==============================] - 29s \n", + "Validation loss: 0.336662959066\n", + "Validaion accuracy: 0.847133757962\n", + "Validaion top_2_categorical_accuracy: 0.993630573248\n", + "1124/1124 [==============================] - 102s \n", + "VPN_Test loss: 4.94784528505\n", + "VPN_Test accuracy: 0.556939501779\n", + "VPN_Test top_2_categorical_accuracy: 0.965302491103\n", + "2464/2464 [==============================] - 224s \n", + "TOR_Test loss: 5.39122196528\n", + "TOR_Test accuracy: 0.387581168831\n", + "TOR_Test top_2_categorical_accuracy: 0.735795454545\n" + ] + } + ], + "source": [ + "# model.load_weights(MODEL_NAME + '.hdf5')\n", + "\n", + "score_val = model.evaluate(x_val, y_val, verbose=1)\n", + "print('Validation loss:', score_val[0])\n", + "print('Validaion accuracy:', score_val[1])\n", + "print('Validaion top_2_categorical_accuracy:', score_val[2])\n", + "\n", + "score_vpn = model.evaluate(x_test_vpn, y_test_vpn, verbose=1)\n", + "print('VPN_Test loss:', score_vpn[0])\n", + "print('VPN_Test accuracy:', score_vpn[1])\n", + "print('VPN_Test top_2_categorical_accuracy:', score_vpn[2])\n", + "\n", + "score_tor = model.evaluate(x_test_tor, y_test_tor, verbose=1)\n", + "print('TOR_Test loss:', score_tor[0])\n", + "print('TOR_Test accuracy:', score_tor[1])\n", + "print('TOR_Test top_2_categorical_accuracy:', score_tor[2])" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1124/1124 [==============================] - 104s \n", + "2464/2464 [==============================] - 242s \n" + ] + } + ], + "source": [ + "y_test_vpn_prediction = model.predict_classes(x_test_vpn, verbose=1)\n", + "y_test_tor_prediction = model.predict_classes(x_test_tor, verbose=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized confusion matrix\n", + "[[ 0.97 0. 0.03 0. 0. ]\n", + " [ 0. 0.99 0. 0. 0.01]\n", + " [ 0. 0. 1. 0. 0. ]\n", + " [ 0. 0. 0. 0.26 0.74]\n", + " [ 0. 0. 0. 0.08 0.92]]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:14: RuntimeWarning: invalid value encountered in true_divide\n", + " \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized confusion matrix\n", + "[[ 0.99 0. 0.01 0. 0. ]\n", + " [ 0. 0.01 0. 0. 0.99]\n", + " [ 0.01 0.01 0.57 0.27 0.14]\n", + " [ 0.02 0. 0.1 0.65 0.22]\n", + " [ nan nan nan nan nan]]\n", + "Normalized confusion matrix\n", + "[[ 0. 0.26 0.05 0.52 0.16]\n", + " [ 0. 0.73 0.03 0.03 0.2 ]\n", + " [ 0.1 0.48 0.38 0.01 0.03]\n", + " [ 0. 0.02 0. 0.31 0.67]\n", + " [ 0.01 0.09 0.1 0.24 0.55]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAAEmCAYAAABYlZoAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmcTfX/x5/vWSwTRkVlZshORozsSygpsib7TlmKJElK\nRaSUNhKiFF9lLY0ZRMtPpOyJEDO2zAxZQmnGMuP9++OcGXfGzNw7485yx+fpcR7u+Wzndbb3+cz7\nfM7nLaqKwWAwGHIOr5wWYDAYDDc6xhAbDAZDDmMMscFgMOQwxhAbDAZDDmMMscFgMOQwxhAbDAZD\nDnPDGmIRGSci8+3fpUTkvIh4u3kbh0XkAXe26cI2nxCRv+z9ufU62jkvImXdqS2nEJHdItI0E/VE\nRD4VkTMisjkLpGUpjtd4DusoLSIqIj72+ioR6eNK2Uxs60UR+fh69OYEmdpZVxCRw4AfUEZV/7PT\nHgd6qmrTrNpuZlDVP4FCOa3jehERX+BdoJ6q/nY9balqrj8eIvIZEKWqL6VXTlWDM7mJRkBzICjx\nGjZcP6ra0h3t2A/X+aoa5ND26+5o2124eo1mdY/YG3j6ehuxeyY3bO89A9wOFAB257SQ3EBme1UO\n3AkczowRdmXbbtCXZbj7r0ODE1Q1SxbgMDAa+Bsoaqc9Dqx1KNMA2AKcs/9v4JC3FpgIbADigPJ2\n2mvAz8B5IAy4Ffgc+Mduo7RDG1OAo3beNuBeh7xxWE9TgNKAYv2FUN9uO3G5gHUzgvXgGg0cAE4D\ni4FbHNrsBRyx88bYx+CBNI5PQeAdu/w54CegoJ3XFsuYnrX3+a4Ux3UksNOutwjL+FYE/rP34zzw\ng+N+pTiuj9u/ywM/2u2cAhY5lFOgvP3bH5gHnLT1vgR42Xl9be1vA2eAQ0BLJ9fFc7b+/4BPsB4g\nq4B/ge+Amx3KLwGO2xrXAcF2+kDgMnAp8VpwaP95u/2L9jlNOg/ASuAdh/YXAnNS0fmYfe4T7PZf\ntdMHAJFY1/VyICDFMRsCRACHUmkz8Xw8BvwJrLPT62Fd02eB34CmDnXK2PudeGw+5Op12xSrt5Xy\n+Cbu67jEsukdSzvvM2CGfXz+I8V1C3QBtqZIewZYbv9uBfyKda8dBcalst8+qVyD3ljXzingoH38\nHMv2A/ba+38QGGSn34RlF65w9V4NSGWfM3wvpXHdpnevVAa+ta+JfUDn9K7RVNvPYkP8APAV8FpK\nQwzcgnXj9sK6WbrZ67c6nKw/gWA739dOiwTKYRmHPcB+ezs+WMbiUwcNPbEMtQ/wLNZFWCA9Q5xi\nH3ztg/+Gvf40sBEIAvIDHwEL7Lwq9sFubOe9C8STtiH+0N6fQKyLsYFdL9GgNre3P8re53wOx3Wz\nfdHdgnWRDk7jgr9mv0h+EyzAemB4YRnzRmkY4nlAKFDYbnM/8JiDIb6MZaC8gSeAGEDSuS42Yhnf\nQOAEsB2oYWv4ARjrUL6/vd38wPvAjhTG47VU2t8BlOTqg+0wV43THfY27wd6YN3chdPQ2hf4yWH9\nfqyb8B5bzwfYxtThmH1rn5eC6RjieViGpKB9DE4DD9vnobm9Xtyu8wuWocqH5Sr5h8wbYmfH8hzQ\nMPF6SNGuH5YxrOCQtgXo6qDlbrtuNeAvoL0Lhngw8Id9vm4B/i9F2VZY97sATYBY4J509j9pn7mO\neymVc5fqvWKfx6NYDwwfrOv4FFAlrWs0pwxxVfsEFye5Ie4FbE5R5xegr8PJGp8ify0wxmH9HWCV\nw3obx4srFU1ngOqpnLBkF4pD+RlAOFd7f3uBZg75JbCMkA/wCrDQIe8mrCfhNYbYPplxiVpS5L0M\nLE5RNhq7l2Qf154O+W8BM9O44K/ZL5LfBPOAWVg+0JQ6FKsX4G3vRxWHvEEO57EvEJnihlXgjnSu\nix4O618CMxzWnwK+TqNuUbtt/7Qucrv9/qldiw7rj2LdPKdwePiksr2+JDfEnwBvOawXss9/aYdj\ndn867SWej7IOac8D/0tRbjXQByiF9TD3c8ibTyYNsQvHcp6Te3o+8Ir9uwKWYfZLo+z7wHtpXJeO\n1+APOBg/4EFSuRcd8r8Gnk5n/5P2meu4l1LZbqr3CtZfCutTpH2E3ZnARUOc5X5XVf0dy5iNTpEV\ngPVnriNHsHoIiRxNpcm/HH7HpbKe9JJJREaKyF4ROSciZ7F60cVc0S0ig7BOdHdVvWIn3wksE5Gz\ndnt7sf50vd3enyS9avkVT6fRfDGsp+qBVPKSHRd720dJflyOO/yOJfMvGkdh9TQ22yML+qeh1Zfk\n5yrleUrSo6qx9s/0NLl0DkXEW0QmicgBEfkH68ZJ1JQeqV03joRhPWD2qepPTso6kvLcnMc6x86u\n2fT03Ql0Srym7OuqEdZDPgD42+GYutr+Nbh4LJ21/QXWX64A3bEemLF2+3VF5P9E5KSInMPq6bpy\nryW7b0hhE0SkpYhsFJG/7WPzsIvtJrbtrnsprXvlTqBuivPXA+svL5fJrhdgY7H+dHU8ADFYO+FI\nKawnViKa2Q2KyL1YB68zls+xKFbPXFysOwFop6r/OGQdxfJ/FnVYCqhqNHAM68+rxDb8sNwiqXEK\ny/9YLpW8ZMdFRMRuNzqVss5IfMnk55CWdIGo6nFVHaCqAVi93OkiUj4VrZdJfq5SnqesojvQDusv\nK3+snhVcPYdpXR/OrpuJWA/REiLSzUlZR1Kem5uwznFGr1nHMkexesSO19RNqjoJ65q6xb6WEinp\n8Ps/HM6t/YKteBrbdHYsXdH+LVBcREKwDPIXDnlfYPnMS6qqPzATF+41Utw3WNeWJUwkP9ZfTG8D\nt9v38Eqcn/9E3HYvpXOvHAV+THH+CqnqEy5qBLLJEKtqJJYjfJhD8kqgooh0FxEfEemC5WcNd9Nm\nC2P9WXcS8BGRV4AiziqJSEmsl3C9VXV/iuyZwEQRudMuW1xE2tl5S4HWItJIRPIB40nj+NpP5jnA\nuyISYPdW6tsX3mKglYg0s4ejPYv10unnDO29tZ2TWBddT3sb/XEw/iLSSUQSh/6cwbporqRoI8HW\nNFFECtv7PgLrz9SspjDWvp/GMjgphyb9BWRorLOINMby5/XG+vP/AxEJTL9WEguAfiISYp+r14FN\nqno4IxpSMB9oIyIP2eeogIg0FZEgVT0CbAXGiUg+EamP5X5LZD9QQERa2dfKS1j+39RwdiydoqqX\nsV74TcbyqX6bov2/VfWCiNTBMvyusBgYJiJBInIzyf9yzoe1PyeBeBFpieW6SOQv4FYR8U+nbbfc\nS+ncK+FYdqyXiPjaS20RuctBo9NrNDuHhI3H8psCoKqngdZYB+c0Vu+1taqectP2VgPfYF2sR7B6\noK78WdcMy9WwVKyPGs6LSOJwsClYT/01IvIv1kunuvb+7MZ64/sF1lP+DBCVznZGAruwXnj8DbyJ\n5Yveh/WS8QOs3mgboI2qXnJxv1MyAGuUwmmsF5+OF2FtYJOInLf362lVPZhKG09h9b4OYo2Q+ALr\nQZLVzMM6d9FYL2Y3psj/BKhi/0n4tbPGRKSI3eZQVY1W1fV2G5/avaV0UdXvsPyOX2Kd43JA1wzs\nT2ptHsXqqb6IZXCOYp2vxHuzB9ZIntNYI4YWYRkTVPUc8CTwMdYx+o+0rzlnx9JVvsDqVS9R1XiH\n9CeB8fZ98QqWEXSF2Vj36m9YL22/SsxQ1X+xOm+Lse6n7ljXaWL+H1gPx4P2NRDg2LCb76VU7xVb\n44NY10EMlqvjTa4+EF26RsV2KBsMBg9ARBYBf6jq2JzWYnAf5iMJgyEXY/+ZW05EvESkBVbv2Wnv\n3+BZGENsMORu7sAa7nUemAo8oaq/5qiiPIKIzBGREyLyexr5IiJTRSRSRHaKyD1ZpsW4JgwGw42I\n/eL2PNb46aqp5D+M9X7kYax3QVNUtW5WaDE9YoPBcEOiquuwXpSnRTssI62quhEoKiIlskJLrp10\nxNMRXz+V/GmNqslZalRydbRW9nMll/+B5uXKyFjDNWzfvu2UqqY1xjlDeBe5UzU+zmk5jTu5G2u0\nVCKzVHVWBjYVSPKRVlF22rEMtOESxhBnEZLfn/x398lpGamyYf2knJaQJhcvJ+S0hHTJ72smJcsM\nBX0l5Ve0mUbj48hfqbPTchd2fHhBVWu5a7tZiTHEBoPBsxABr2x5IEaT/Ku/ILLoi1LjIzYYDJ6H\neDlfrp/lQG979EQ94Jyqut0tAaZHbDAYPBHnH0K60IQswJrYq5iIRGHNieMLoKozsaZheBhr6sxY\nrE/jswRjiA0Gg4fhHteEqqY74ZNaY3uHXPeGXMAYYoPB4FkI7nI95BqMITYYDB6GuMU1kZswhthg\nMHgepkdsMBgMOUm2DV/LNowhNhgMnoVgXBMGg8GQ4xjXhMFgMOQkAt55yzWRtx4rHsCQzg3ZOn84\n2z5/hqFdGialP9GxATsWjmDb588wcUjLa+pVKFWMjXOHJS1/fTcuqf5rT7Zg8/+e5uNXrn5/3/Wh\nkGTtZ5Q1q7+hWnAlgiuXZ/Jb185NoaqMGD6M4MrlqV2jGr9u3w7AyZMnub9JI2qGVGV56NX5yzt1\naEdMTEym9SRy4cIF7r+3Hg3r3kO9mtV4fcK4a8qsCFtOgzo1aFS3Jk0b1uWXn61AzadOnqRFs8bU\nr1Wd8OWhSeW7dXqEY27QBrn3uOV2bRkicfha1n9Zl214lloPp0rZ2+nXtjb3PvYhdXpPoWXDypQN\nupXG95SldeO7qNNrCjV7vMf7X6y7pm7En6eo12cq9fpMpUG/D4i9cJnlP+6myE35CakUSJ1eU7h0\nOYHgcrdTIL8PvVvXYubSXzKlMyEhgeHDhhAatopfd+5hycIF7N2zJ1mZ1d+s4kBkBL/vjWDajFkM\nG2oFrV28cAEDBg5m/c+bmTb1fQBWhIdRPaQGAQEB12wro+TPn5/lq75jw6btrN+4je+/Xc2WzcnD\nrzW57342bNrOT5u2MW3mbIY9OQiApUsW0u/xQXy/7hdmfDgFgFUrwqhWPYQSbtCWm49bbtaWKUSc\nLx6EcU1kI5VL38aWPUeJu3gZgPW/HqJ9k2DuuSuIt//3I5fsmcdOnvkv3Xbuq1WeQ9Gn+fP4WQr5\n5cPXx/ozza+AL5fjrzC8e2NmLPmZ+IQr6baTFls2b6ZcufKUKWsFn+3UpSvhYaHcVaVKUpnw5aF0\n79kbEaFuvXqcO3eWY8eO4evrS2xsLBcvXsTb25v4+HimTX2fL78Oy5SWlIgIhQoVAuDy5ctcvhyP\npIjanpgPEBv7H4lxQX19fImLjeWSg7YZH05l4dJQ3EFuPm65WVvGyXujJkyPOBvZfeA4DauX5pYi\nfhTM70uL+pUIur0o5UsWo2H10qz7+EnWTB9IzbuC0m2nU/PqLP72NwDOx15i9c9/sHHuMI6f+pd/\nzl+gdnBJwtbtSbeN9IiJiSYo6OqkU4GBQURHRzstExMdTZdu3QkPC6V1i+aMGv0iH82YTvcevfDz\n88u0npQkJCTQqG5NKtxZgvuaNaNWnWuDJoSFfk3tkGA6d2jLtJmzAejYpRsrw5fTvnULnn1uNB/P\nmkGXbj3dpi03H7fcrC1TGNfEjYGIBIjIUne2ue/ISd6Z/yNhU/qz/L3+/BZxjIQrV/Dx9uKWIn40\nfnw6L05byfzXuqfZhq+PN60a3cVX3+9KSnv383XU6zOV0R+s4JWBDzJh1rf0bVOb+a915/m+97tz\nF5zi7+/PsuUr2LBpKyE17mHlijAeebQjTw4aQLcuHdn4S+bcJY54e3vz06Zt7I44wratW9iz+9qQ\nY23atWfLjt18vuhLJo4fm6Rt8bIw1m7YRPWQe/hmZTjtHnmUYU8Oonf3zmzedP3aMkt2HLc8o80V\nt4SHuSaMIU4DVY1R1Y7ubndu2FYa9ptG8yc/4uy/cUT8eYrok+f4eq1lTLbuieLKFaVY0ZtSrf9Q\n/Urs2BfNiTPnr8mrXjEAEdj/50k63H83PV/6grKBt1Au6NYMaQwICCQq6mpggujoKAIDA52WCUhR\n5o2JE3j+hTEsXriABg0b8fGcuUxM5eVaZilatCj3Nm7K99+uTrNMw0aNOXzoEKdPnUqW/tak13h2\n1At8uXgh9Ro0ZMbsT5k0cfx16cnNxy03a8sUXt7OFw/ihjLEIjJJRIY4rI8TkedEZLKI/C4iu0Sk\ni51XOjG6q4j0FZFQEVkrIhEiMjazGorfbBnYkrf7065pMIvW7CBs3R6a1CwHQPmSxcjn682ps6n7\niTs7uCVS8srA5oyftQZfH2+8va0ewRVV/Arky5DGWrVrExkZweFDh7h06RJLFi2kVeu2ycq0atOW\nL+bPQ1XZtHEjRYr4U6LE1XBekRERREdH0bhJU2JjY/Hy8kJEiItzHuImPU6dPMnZs2cBiIuLY+0P\n31GhYqVkZQ4eiCQxKO6OX7dz6eJFbrn16sPoQGQEMdHR3Nu4KbFx7tOWm49bbtaWcSTPuSZutJd1\ni4D3gQ/t9c7Am8CDQHWgGLBFRK4dtgB1gKpY85JuEZEVqrrVsYCIDAQGApCvSKoCFrzek1v8/ayX\nam+Hcu78BeaGbeWjMR3ZOn84l+ITeHzCEgBKFCvM9Bce5ZFnPwOsl3H31ynP0De/uqbdNo2rsH1v\nNMdO/QvAzohjbJk/nN8jj7ErMmNzWfv4+PDelGm0afUQCQkJ9OnbnyrBwcz+aCYAAwYNpkXLh1m9\naiXBlcvjV9CPjz7+NFkbY18Zw6vjJwLQuWs3Oj/anrcnT+LlsdfX6zx+/BhPDOhPwpUE9MoV2nfo\nSIuHWzNn9kcA9B8wiOVff8XCL+bj4+NLwYIFmPO/L5Je2AFMGPcyL4+bAEDHTl3p0aUD77/zFi+8\nPO66tOXm45abtWUKD3M9OEMSew43CiKyF2gGFAemA5uBXao6x87/H7AE2AmEq2pVEekL3K+qve0y\n44G/VfX9tLbjVaiE5taYdWdMzLpMY2LWZY6CvrLNXfHjvIreqfnvfd5puQvhQ9y2zazmRusRg2Vk\nOwJ3YPWQy7hYL+UT68Z6ghkMuYk81iP2LEeKe1gEdMUyxkuA9UAXEfEWkeJAY6xeckqai8gtIlIQ\naA9syC7BBoMhBcZH7Nmo6m4RKQxEq+oxEVkG1Ad+w+rljlLV4yJSOkXVzcCXWJFc56f0DxsMhmwk\nj/WIbzhDDKCqdzv8VuA5e3Escxjr5VwiUaraPlsEGgyGtJG892XdDWmIDQaDZyOmR3zjoaqfAZ/l\nsAyDwUDivPDGEBsMBkPOIYJ4GUNsMBgMOYrpERsMBkMOYwyxwWAw5CSCcU0YDAZDTiKI6REbDAZD\nTmMMscFgMOQwXl6e9QmzM4whNhgMnoXYSx4ibz1WDAbDDYGIOF1cbKeFiOwTkUgRGZ1Kvr+IhInI\nbyKyW0T6uX1nMD1ig8HgYQjiFteEiHhjBYloDkRhBXxYrqqOkXeHAHtUtY09O+M+EflcVS9dtwAH\nTI/YYDB4HuLC4pw6QKSqHrQN60KgXYoyChQWq4tdCPgbiHfDHiTD9IiziBqVAtmQSyNh3FxveE5L\nSJMzG9MMemJwQsKVGyRWgbg8aqKYiDhOVztLVWc5rAcCRx3Wo4C6KdqYBiwHYoDCQBdVvZJx0elj\nDLHBYPA4XDTEp9wQKukhYAdwP1AO+FZE1qvqP9fZbjKMa8JgMHgUiT5iZ4sLRAMlHdaD7DRH+gFf\nqUUkcAio7JYdccAYYoPB4Hm4x0e8BaggImVEJB9WCLXlKcr8iRVsGBG5HagEHLz+HUiOcU0YDAbP\nwnUfcbqoaryIDAVWA97AHDuU2mA7fyYwAfhMRHZZW+Z5VT113RtPgTHEBoPB43DXl3WquhJYmSJt\npsPvGOBBt2wsHYwhNhgMnkce+7LOGGKDweBxmEl/DAaDIQcRcc+XdbkJY4gNBoPHYXrEBoPBkNPk\nLTtsDLHBYPAwxMxHbDAYDDmKAHnMM2G+rMtJ1qz+hmrBlQiuXJ7Jb107QZCqMmL4MIIrl6d2jWr8\nun07ACdPnuT+Jo2oGVKV5aFfJ5Xv1KEdMTExmdYzpGtjti56nm2LnmdotyYAVKsYyI+fDmfj58/x\n07wR1AoulWpd/0IF+eLNvuxY+gK/LnmBuneXBuC1p9qwecEoPn61R1LZri1rJrWfGXLbcfMUbU8M\n7E/poNupXePudMtt27oFfz9fln21NElb8/vupXaNuwlz0Nbl0fYcc5O2jOF8LmJP8yEbQ5xDJCQk\nMHzYEELDVvHrzj0sWbiAvXv2JCuz+ptVHIiM4Pe9EUybMYthQ58AYPHCBQwYOJj1P29m2lRrtrIV\n4WFUD6lBQEBApvRUKXcH/R6pz72936VO98m0bFSFskHFmDisDRNnr6Zej8lM+GgVE4e1TbX+2yMf\nYc3PfxDS8Q3qdHuLPw79RZGbChBSOYg63d7i0uV4gsuVoEB+X3q3qcvMxeszpTO3HTdP0QbQo1df\nvg5b5XQfXh4zmmYPXP2GYcmiBTw2YBA/btjEh9OmALAyPIxqISGUcJO2jOLlJU4XT8IY4hxiy+bN\nlCtXnjJly5IvXz46delKeFhosjLhy0Pp3rM3IkLdevU4d+4sx44dw9fXl9jYWC5evIi3tzfx8fFM\nm/o+I0aOyrSeyqVvZ8vvR4i7eJmEhCus336A9vdXQxWK3FQAsHq9x06eu6ZukZsK0KhGOT4L3QjA\n5fgEzp2P44oqvj7eAPgVyMfl+ASG97yPGYvWE5+QuZkEc9tx8xRtAI3ubczNN9+SbpmZH35Au/Yd\nKH7bbUlpybR5Wdo+/GAKzzzrPm0ZQizXhLPFkzCGOIeIiYkmKOjqxE+BgUFER0c7LRMTHU2Xbt0J\nDwuldYvmjBr9Ih/NmE73Hr3w8/PLtJ7dB47TMKQst/j7UTC/Ly0aViHo9qI8984yXn+6LRHhY3nj\n6ba8Mi38mrqlA2/l1NnzzBrbnV8+H8n0l7rgVyAf52MvsnrDHjZ+/hzHT/3DP+cvULvqnYT9uCvT\nOnPbcfMUbS7pj45m+fKvGTDoiWTpnbt2Z0XYcto+/CAjn3+BWTOn061Hz2zV5ohgesQeiYgEiMjS\nNPLWisj1zlmarfj7+7Ns+Qo2bNpKSI17WLkijEce7ciTgwbQrUtHNv7yS4bb3Hf4L96Z9z1h055g\n+QeD+W1/NAkJysCODRn17jIqtH6VUe9+zYyXu15T18fbi5BKQcxeuoH6Pd4mNu4SI/s2A+DdeT9Q\nr8dkRr8fyitPtGTCzFX0bVeP+W/04fnHml/3scgIWXHc8pK2USOfYcLESdeMSPD39+fL0HDW/7KF\nkBr3sGpFOO07dGToEwPo0bUTmzZm/3EzPWIPRFVjVLVjTutwJCAgkKioq8EBoqOjCAwMdFomIEWZ\nNyZO4PkXxrB44QIaNGzEx3PmMnHCuExpmhu6iYa93qH5wA84+08sEX+eoEfr2nz9w04AvvxuB7WC\n77ymXvSJs0SfOMeW3UcAWPb9b4RUDkpWpnqlQESE/UdO0OGBEHq+MJeygcUoV7JYhjTmxuPmCdpc\n4ddtW+nbqxtVKpbh66+W8sywIclezgG8+foEnhv9IksWLaB+g0bM+uQzXp/wapZrS4aYHnGuR0Qm\nicgQh/VxIjJSRH631wuKyEIR2Ssiy4CCDmUfFJFfRGS7iCwRkUJ2ejMR+VVEdonIHBHJf706a9Wu\nTWRkBIcPHeLSpUssWbSQVq2Tvwhr1aYtX8yfh6qyaeNGihTxp0SJEkn5kRERREdH0bhJU2JjY/Hy\n8kJEiIuLy5Sm4jcXAqDk7UVpd381Fn2znWMn/+HemuUBaFq7ApFHT15T76/T/xL11xkq3Gn5FZvW\nqcgfB/9KVuaVwQ8zfsZKfH288bZvkiuq+BXIlyGNufG4eYI2V9i9/yB79h9iz/5DtO/Qkfemfkib\ndu1TaIu+VtuFrNfmiDV8LW+NmsiL44gXAe9jRWcF6AwMAvra608Asap6l4hUA7YDiEgx4CXgAVX9\nT0SeB0aIyFvAZ0AzVd0vIvPsNq4JriYiA4GBACVLpT7MKxEfHx/emzKNNq0eIiEhgT59+1MlOJjZ\nH1kz8A0YNJgWLR9m9aqVBFcuj19BPz76+NNkbYx9ZQyvjp9o7WTXbnR+tD1vT57Ey2PHu360HFjw\nVj9u8b/Jeqn25lLOnY9jyGsLmTyyAz7eXly8FM/QiYsAKFGsCNNf7sojT1shwEZM/opPJ/Qkn68P\nh6NPM/DVL5LabdPkbrbvPcqxU1Z0mZ37o9mycBS/R8SwKyJjw59y43HzBG0AfXt1Z/26tZw+dYqK\nZUsy5uVxXL58GYDHBw52Wv/VsS8x9tXXAOjUpRvdOj3CO5Pf5KWx2dwjxvMMrTNENe8FHBSRvViz\n6hcHpgM9gHBVrSoiXwNTVfUHu+x2LON5B5bBjbKbyQf8AkwFPlDVxnb5ZsAQVe2QnoaaNWvphk1b\n0yuSY5jgoXmT3Bw8tFB+r21uiB8HgF9AJa00aIbTcjvGNXPbNrOavNgjBlgCdMQyrotcrCPAt6ra\nLVmiSHU3azMYDNeDB76Mc0ae8xHbLMKKP9URyyg7sg7oDiAiVYFqdvpGoKGIlLfzbhKRisA+oHRi\nOtAL+DFr5RsMhrTIiz7iPGmIVXU3UBiIVtVjKbJnAIVs98V4YJtd5ySWH3mBiOzEcktUVtULWJFc\nl9hxq64AMzEYDDlGXhs1kVddE6jq3Q6/DwNV7d9xWL3l1Or8ANROJf17oEaWCDUYDBnGwzq8Tsmz\nhthgMORR3BTFOTdhDLHBYPAoBM9zPTjDGGKDweBx5LEOsTHEBoPB8zCuCYPBYMhJ8uA4YmOIDQaD\nR2FNg5m3Rt4aQ2wwGDwO0yM2GAyGHMb4iA0GgyEHETHD1wwGgyHHyWMd4rTnmhCRIukt2SnSYDAY\nHPEScbq4goi0EJF9IhIpIqPTKNNURHaIyG4RyZIJv9LrEe8GFOslZSKJ6wqkP/O5wWAwZAFih0q6\n/nbEGyuARHOseci3iMhyVd3jUKYo1pzmLVT1TxG5LfXWro80DbGqlkwrz2AwGHISN7mI6wCRqnoQ\nQEQWAu24p/cBAAAgAElEQVSAPQ5lugNfqeqfAKp6wi1bToFLPmIR6QqUVdXXRSQIuF1Vt2WFIEPW\nk5ujYNxce2hOS0iXM1um5bSENPHOYy+w0sPFURPFRMQxTM4sVZ3lsB4IHHVYjwLqpmijIuArImux\nptadoqrzMq44fZwaYhGZBvgCjYHXgVis+XivmS7SYDAYshoBV33Ap9wQKskHqIkVeq0g8IuIbFTV\n/dfZ7jUbcUYDVb1HRH4FUNW/RSRjoXcNBoPBjbip8x8NOLpgg+w0R6KA06r6H/CfiKwDqgNuNcSu\nfCd4WUS8sF7QISK3YkWpMBgMhuzHhTBJLroutgAVRKSM3bnsCixPUSYUaCQiPiLih+W62OvW/cG1\nHvGHwJdAcRF5FSs8fXbHzzYYDAbAck24wx+uqvEiMhRYDXgDc1R1t4gMtvNnqupeEfkG2InVAf1Y\nVX+/7o2nwKkhVtV5IrINeMBO6pQVQgwGg8FV3PVBh6quBFamSJuZYn0yMNk9W0wdV7+s8wYuY7kn\n8ta0RwaDwePIa3NNODWqIjIGWAAEYDmzvxCRF7JamMFgMKSGiGuLJ+FKj7g3UENVYwFEZCLwK/BG\nVgozGAyGtPD2NEvrBFcM8bEU5XzsNIPBYMgR8pprIk1DLCLvYfmE/wZ2i8hqe/1BrGEfBoPBkO1Y\nH3TktAr3kl6POHFkxG5ghUP6xqyTYzAYDE64keYjVtVPslOIwWAwuEpec024MmqinIgsFJGdIrI/\ncckOcXmdNau/oVpwJYIrl2fyW5OuyVdVRgwfRnDl8tSuUY1ft28H4OTJk9zfpBE1Q6qyPPTrpPKd\nOrQjJiYmT2ibObYHR75/g61LXkxKu7mIH+EzhrIr9BXCZwylaOGCSXkj+z/I76Fj+W3ZyzxQ/65U\n20yrfv3qZdm86AV++nwU5UoVB8C/UEHCpg/J8A2f08fNU7VlhETXhLPFk3BlTPBnwKdY+98SWAws\nykJNNwQJCQkMHzaE0LBV/LpzD0sWLmDvnj3Jyqz+ZhUHIiP4fW8E02bMYtjQJwBYvHABAwYOZv3P\nm5k21ZpJbUV4GNVDahAQEJAntP0vbCPthnyYLG1kv+as3byPu9uNZ+3mfYzs9yAAlcveQaeH7uGe\njhNpO2Q6U17onOqfrmnVf7rX/Tzy1AxGTV7KgI6NABg9oAVvfbIGVXVZc244bp6oLTO4a2L43IIr\nhthPVVcDqOoBVX0JyyAbroMtmzdTrlx5ypQtS758+ejUpSvhYaHJyoQvD6V7z96ICHXr1ePcubMc\nO3YMX19fYmNjuXjxIt7e3sTHxzNt6vuMGDkqz2jbsP0Af5+LTZbWumk15odtAmB+2Cba3FctKX3J\n6u1cuhzPkZjTHDh6itpVS1/TZlr1L8cnULBAPgoWyMfl+ATKBBUj6PairN8WkSHNueG4eaK2jCJy\nYxrii/akPwdEZLCItMGal9NwHcTERBMUdHXip8DAIKKjo52WiYmOpku37oSHhdK6RXNGjX6Rj2ZM\np3uPXvj5+eVpbbfdWpjjp/4B4Pipf7jtVusyDCzuT9TxM0nlok+cIeA2f5frT56zhk8m9OK5/g8y\nc+E6Xh3ahnHTwzOsL7cet9yuLTPciB90PAPcBAwDJgL+QH9nlURkGPAEsB3LlVFFVSeJyDjgvKq+\n7YpAEWkKXFLVn10pn1lEpDKwEGuIXkdVPZCV27se/P39WbbcGshy5swZ3n5rEouWLuPJQQM4c/YM\nTw9/lnr16+d5bRnwGqRbf+f+aJr0eQeAhveU4/jJcwjC/yb143J8AqPfXcaJv/+9TrXpY85pxshr\noyac9ohVdZOq/quqf6pqL1Vtq6obXGj7SaC5qvZQ1eWqeu3bAddoCjRILUNE3BmFuj2wVFVruGqE\n7ZhXmSIgIJCoqKvBAaKjowgMDHRaJiBFmTcmTuD5F8aweOECGjRsxMdz5jJxwrjMysrV2k6c/pc7\nillxa+8oVoSTtnGMPnmOoDtuTioXeNvNxJw453J9R0Y/3oI3Zn/DmEEtGTPla+Ys+5knuzV1SV9u\nPW65XVtGEZy7JfKMa0JElonIV2kt6TUqIjOBssAqEXlGRPrakT5SlisnIt+IyDYRWW/3Sh3zSwOD\ngWfsKKr3ishnIjJTRDYBb4lIHRH5RUR+FZGfRaSSXbevrfUbEYkQkbfsdG+7jd9FZJet72FgOPCE\niPyfXa6niGy2t/tRotEVkfMi8o6I/AZkuhtQq3ZtIiMjOHzoEJcuXWLJooW0at02WZlWbdryxfx5\nqCqbNm6kSBF/SpQokZQfGRFBdHQUjZs0JTY2Fi8vL0SEuLi4zMrK1dpW/LiLnm2sSDY929QlfO1O\nK33tTjo9dA/5fH24M+BWypcqzpbfD7tcP5Eebeqy+qfdnPknFr8C+bhyRdEril8BX5f05dbjltu1\nZZg8ONcEqprqghUaJM0lrXoO9Q8DxezffYFp9u9xwEj79/dABft3XeCHVNpJKm+vfwaEA972ehHA\nx/79APClwzYPYrlSCgBHsGbjrwl869Be0VR03QWEAb72+nSgt/1bgc5p7PNAYCuwtWSpUhp3WdNd\nli1foeUrVNAyZcvquPGvadxl1anTZujUaTM07rJq7KUrOmjwk1qmbFkNDq6qP/2yJVn9Dh076a49\n+zXusuqR6L+0br36eleVKvrFoqVOt51btRUIGaIFQoboolVbNObEWb10KV6jjv+tg8bN14Amo/SH\njX9oxJG/9PuNe7VE4+eSyr/ywXI98OcJ3XfouLYd8mFS+pyvNmiD7m9qgZAh6da/ud5wXbt5nxaq\n9ZQWCBmizfq9q7v2R+u23Uf07navJpXLrcctN5/TuMuqwFZnNsPVpXi5YB361R6nizu3mdWLZGR4\nTkYQkcNALVU9JSJ97d9DE33EWHHvTgL7HKrlV9W7UrQzDgefsoh8Bvyfqs6110sCU4EKWEbSV1Ur\n29tsqKoD7HKrsHzcu7GM5UqsLwbXqOoVx+3Yk0W/CCRGbC0ILFDVcSISb+tMSG//a9aspRs2bU2v\niCEVTPDQvElBX9mm1x8/DoDby1fVLm8vdVrug0fucts2sxp3+lgzihdwVlVDMlH3P4ffE7AM8yO2\nK2OtQ95Fh98JWD3nMyJSHXgIy+3RmWtfPgowV1VTm+7zgjMjbDAYspY89q4u5yZ5V9V/gEMi0glA\nLKqnUvRf0h8u58/VgH99nW1XRIoBXqr6JfAScE8qxb4HOorIbXadW0TkTmdtGwyG7OFG/LIOABHJ\nnwXb7wE8Zr/42g20S6VMGPBI4su6VPLfAt4QK8q0Kz38QGCtiOwA5gPX9HpVdQ+WkV4jIjuBb4ES\nKcsZDIbsR8SKWeds8SScGi4RqQN8gtXzLGX3Wh9X1afSq6eqpR1+f4b1kg1VHeeQfgho4aSd/UA1\nh6T1KfJ/ASo6JL2Ucpv2emuHMtf0gh112euLSOVTblUtlJ5eg8GQ9XjcqAgnuNIjngq0Bk4DqOpv\nwH1ZKcpgMBjSwpr0J2+NI3blT3kvVT2SYhYq87LKYDDkGN6eZWed4oohPmq7J9T+qOEpwEyDaTAY\ncgTxwB6vM1wxxE9guSdKAX8B39lpBoPBkCPkMTvs3BCr6gmgazZoMRgMBqcI4ONhoyKc4cqoidlY\nX6wlQ1UHZokig8FgcMIN1yPGckUkUgB4BDiaRlmDwWDIWjzwgw1nuOKaSDaWVkT+B/yUZYoMBoMh\nHQTwzmNd4szMNVEGuN3dQgwGg8FVbrgesYic4aqP2Av4GxidlaIMBoMhPTIaXTu3k+6XdWLtbXWg\nuL3crKplVXVxdogzGAyGlFhzTThfXGtLWojIPhGJFJE0O5giUltE4kWko7v2w5F05ao1WfFKVU2w\nl6yZvNhgMBgygDs+cbY/UPsQKyp9FaCbiFRJo9ybwBo370YSrjw3dohIjawSYDAYDBnBmmvCLdNg\n1gEiVfWgql7CCh6c2gyQTwFfcjVQhNtJ00csIj6qGg/UALaIyAGsCdkFq7Oc2jy+BoPBkOW46CIu\nJiKOYXJmqeosh/VAkg/FjcIK2eawHQnEGrJ7H1A7U2JdIL2XdZuxpotsm04Zg8Gt5PZQRFsPnslp\nCWnSd9bGnJaQLQji6vC1U24IlfQ+8LwdTu06m0qb9AyxAKiLoeUNBoMhW3DfBx3RWAGFEwniarSf\nRGoBC20jXAx4WETiVfVrtyiwSc8QFxeREWllquq77hRiMBgMruKm2de2ABVEpAyWAe4KdHcsoKpl\nEn/bgYvD3W2EIX1D7A0Uwu4ZGwwGQ25AwC2hkFQ13o7YvhrL3s1R1d0iMtjOn3ndG3GR9AzxMVUd\nn11CDAaDwVXc5a5V1ZXAyhRpqRpgVe3rnq1ei1MfscFgMOQmhBwMP59FpGeIm2WbCoPBYHAVcZuP\nONeQpiFW1b+zU4jBYDC4QmLw0LxEZmZfMxgMhhwlb5lhY4gNBoPHIXjlsXkwjSE2GAwexY32ss5g\nMBhyJTfUfMSGrGXN6m+oFlyJ4MrlmfzWpGvyVZURw4cRXLk8tWtU49ft2wE4efIk9zdpRM2QqiwP\nvfqRT6cO7YiJiTHaslHbX8eiGNarLT0frkevVvVZMtcagjrng0k8cm8w/do1pl+7xvzy47ep1l8y\ndya9WzegV6v6LP5sRlL6jMnj6NOmEa+NeiIpbXXo4mRlnFGm+E0sf6Zh0rLjteb0vbd0Uv5jTUoT\n+XZLbvbzTbX+G53vZtO4+1k5slGy9OdaVSJ8REMmd62WlNbunoBkbWcp4p5pMHMTxhDnEAkJCQwf\nNoTQsFX8unMPSxYuYO+ePcnKrP5mFQciI/h9bwTTZsxi2FDrply8cAEDBg5m/c+bmTb1fQBWhIdR\nPaQGAQEBRls2avP29mHI6AnMX7mRjxat4asvPuFQ5B8AdO47mE9D1/Fp6DrqN2l+Td2D+/cQtmQe\ns5Z8x6eh6/l57Rqijhzk/L//sH/Pb8wN+wkfX18O7NvDxQtxrPzqCzr0eNxlbYdO/kfb9zbQ9r0N\ntH9/A3GXEljz+3EASvgXoFHFYkSfiUuz/ldbo+g/e2uytEIFfAgOLELrdzdwOeEKFe8oRH4fLx6t\nHcj8DUdc1nY9JLomnC2ehKfpzTNs2byZcuXKU6ZsWfLly0enLl0JDwtNViZ8eSjde/ZGRKhbrx7n\nzp3l2LFj+Pr6Ehsby8WLF/H29iY+Pp5pU99nxMhRRls2ayt22x1UCq4OgF+hwpQuW5FTfx1zqe6R\nA/upUq0mBQr64ePjQ0jtBvy4JhwvEeLj41FVLl6Iw8fHhwWfTOPRXgPw8U299+qMBhWK8efpWGLO\nXABgTLu7eDN8H+nFethy8AxnYy8nS1NVfL2t3mYBX2/iE5THm5Zh3k9HiL+SfXEjRMTp4kkYQ5xD\nxMREExR0deKnwMAgoqOjnZaJiY6mS7fuhIeF0rpFc0aNfpGPZkyne49e+Pn5GW05qO1Y1J/s37uT\nKtVrAvDl/Nn0adOIN14Yyr/nzl5TvkzFu/ht20bOnfmbC3GxbFz3LSeOR+NXqDD1Gjenf/sm3Fr8\ndm4qXIQ9O7fR+IFWmdbWKqQE4Tss98sDwbdx/NwF/jj2b4bb+e9iAmv3nmT5Mw05+e9F/r0QT/VS\nRflud5bNmZ4q4sLiSdzQL+scZlNa6mL5okB3VZ2epcKc4O/vz7LlKwA4c+YMb781iUVLl/HkoAGc\nOXuGp4c/S7369Y22bNQW+995XhrWh2Evvs5NhYrQvlt/+jz5HCLCx1NeZ9qkl3jhjeRzLZcuV4ke\njw9jxGOPUrCgH+Ur3423l9U36jFgGD0GDANg0phhPDbsBcKWzGPLT/9HuUrB9HlypMvafL2FZsG3\n8fbKfRTw9WJws3L0nbUlU/sJMHvtIWavPQTA652qMmV1BJ3rBNGoUjH+iPmX6d9n7cy5Aq7OR+wx\nmB5xxigKPOmOhgICAomKuhocIDo6isDAQKdlAlKUeWPiBJ5/YQyLFy6gQcNGfDxnLhMnjDPaslFb\n/OXLvDSsD83bdKTJg20AuKXYbXh7e+Pl5UWbTr3Zu2t7qnVbd+rFJ1/9H9M+X0Fh/6KULF0+Wf7+\nPTtBlVJlyvN/34QyfsqnRB89xNHDrhu7JpWLsyfqH06fv0SpW/0oeUtBwkc0ZO2LTbjDvwChzzSk\nWOF8Gd7vKgFFEODgyf9oWf0Ohv1vB6WK+XFnMff8hZEeIs4XT+KGMsQi0ltEdorIbyLyPzu5sYj8\nLCIHEyO0ikghEfleRLaLyC4RSYxjNQkoJyI7RGTy9WipVbs2kZERHD50iEuXLrFk0UJatU4eDKVV\nm7Z8MX8eqsqmjRspUsSfEiVKJOVHRkQQHR1F4yZNiY2NxcvLCxEhLi7tFzBGm3u1qSqTxgyjdNmK\ndO03JCn91InjSb/XfRdOmQp3pVr/zOmTAPwVE8W6NeE80CZ5kOCPp7zO40+/SHx8PFcSrgDgJV5c\nvOC61tYhJQiz3RL7j5+n7rgfaPr6jzR9/UeOn7tAu/c2cOrfSy63l8jwFhV4b3UEPl5XRynoFaWg\nr3eG28oY4tI/T+KGcU2ISDDwEtBAVU+JyC3Au0AJoBFQGVgOLAUuAI+o6j8iUgzYKCLLgdFAVVUN\nSWMbA4GBACVLlUpXj4+PD+9NmUabVg+RkJBAn779qRIczOyPrOFPAwYNpkXLh1m9aiXBlcvjV9CP\njz7+NFkbY18Zw6vjJwLQuWs3Oj/anrcnT+Llsdc3e6nR5jq7tm1idegiylasQr92jQEYOOJlvgv/\nksg/dgFCicBSjBxvxVE49dcx3nzpaSbPXgzAS0/14dzZv/Hx8eWZsW9RuIh/UtvrvltB5aohFLvd\neohUuKsqfdo0pFzFYMpXruqSvoL5vGlYsRgvfbnbadnbiuTn9U5VefyTbQC816M6dcvdws035eOn\nl+5jypoIlmyOAiw/8+9R5zjxz0UA9sb8w4pnG/HHsX8z5XvOCHnRNSHpvTXNS4jIU8AdqjrGIe0z\n4FtV/dxe/1dVC4uIL/Ae0Bi4AlQCygAFsHzKTu+CmjVr6YZNW50VM3gYJmZd5jjwzsPb3BA/DoCK\nVUP0g8Wpj8t2pEXwbW7bZlZzw/SI0+Giw+/Ex2wPoDhQU1Uvi8hhLCNsMBhyAXmsQ3xD+Yh/ADqJ\nyK0AtmsiLfyBE7YRvg+4007/FyictTINBkN6JLomnC2exA3TI7ZjUU0EfhSRBODXdIp/DoSJyC5g\nK/CH3cZpEdkgIr8Dq1T1uSwXbjAYrsHTXsY544YxxACqOheYm05+Ifv/U0CqA0pVtXtq6QaDIfvw\nsA6vU24oQ2wwGDyfvDhqwhhig8HgYXjeOGFnGENsMBg8Cw/8cs4ZxhAbDAaPwrgmDAaDIReQt8yw\nMcQGg8ETyWOW2Bhig8HgcZiXdQaDwZDDeOUtO2wMscFg8ECMITYYDIacwwqFlLcs8Y006Y/BYMgL\niOWacLa41JRICxHZJyKRIjI6lfwedjCJXXYAieru3h0wPWKDweCJuKFDLCLewIdAcyAK2CIiy1V1\nj0OxQ0ATVT0jIi2BWUDd6996ckyP2GAweBhuC5VUB4hU1YOqeglYCLRzLKCqP6tqYjSAjUCQW3fF\nxhhig8HgUQhuc00EAkcd1qPstLR4DFiVaeHpYFwTBkMGqHBHoZyWkCbRO3bmtITswzVDW0xEHOOV\nzVLVWZnanBUg4jGs+JZuxxhig8HgcbjoejjlJGZdNFDSYT3ITku+LZFqwMdAS1U9nRGdrmJcEwaD\nweNwk2tiC1BBRMqISD6gK1Yk9yREpBTwFdBLVfe7ez8SMT1ig8HgWQhuGTWhqvEiMhRYDXgDc+yQ\naoPt/JnAK8CtwHSxZnyLz4rI0MYQGwwGj8NdH3So6kpgZYq0mQ6/Hwced8vG0sEYYoPB4FEkjprI\nSxhDbDAYPA9jiA0GgyFnyWtzTRhDbDAYPI48FinJGGKDweB5GENsMBgMOUhenAbTGGKDweBZSN7r\nEZsv63KQNau/oVpwJYIrl2fyW5OuyVdVRgwfRnDl8tSuUY1ft28H4OTJk9zfpBE1Q6qyPPTrpPKd\nOrQjJibGaMshbZER+2jWqFbSUj7oVmZNn3pNuQ3rf6RZo1o0rlud9g83A+DUqZO0fagpTeqFsCo8\nNKlsn24dOH4s89qGPFKTrbP7s+3jxxjawfoO4fWBTdkx53E2z+rHonGP4H9T/jTre3kJv8zsy5ev\nPZqU9trjTdg8qx8fP98qKa1rsypJ7WcHIs4XT8IY4hwiISGB4cOGEBq2il937mHJwgXs3bMnWZnV\n36ziQGQEv++NYNqMWQwb+gQAixcuYMDAwaz/eTPTpr4PwIrwMKqH1CAgIMBoyyFt5StU4vuftvL9\nT1tZ8+MmChb0o2XrZLMqcu7sWUY/+xRzF3zFuk2/MXvuAgC+XrqI3v0HsOqHn5k14wMA1qwKp2q1\nEO4okTltVUoXo9/D1bl36DzqDJxDy3rlKBtQlO+3Habm459QZ+CnRET9zXPd6qXZxtBHarHvz6vT\nKxS5KR8hFe6gzsBPuXQ5geAyxSiQz4feD93NzNDtmdKZcdw2DWauwRjiHGLL5s2UK1eeMmXLki9f\nPjp16Up4WGiyMuHLQ+neszciQt169Th37izHjh3D19eX2NhYLl68iLe3N/Hx8Uyb+j4jRo4y2nJQ\nmyPr1/5A6TJlKVnqzmTpXy1ZSKs27QkqWQqA4sVvA8DHx5e42DguXbyIt5elbdb0Dxjy9MhMa6hc\n6la2/HGMuIvxJFxR1v92lPaNKvL9tsMkXFEANu+NIbB44VTrBxYrTIu6Zfl05W9JaVeugK+PZTb8\nCvhyOf4KwzvVYcbX24lPuJJprRnF9IgNbiEmJpqgoKsTPwUGBhEdHe20TEx0NF26dSc8LJTWLZoz\navSLfDRjOt179MLPz89oy0Ftjnz91WLad+xyTfrBAxGcPXuWR1o9wION67J4wf8A6NCpK9+sDKNz\n+5Y8/ezzfPbxTDp27XFd2nYfPkXDu4O4pUgBCub3oUXdsgTdViRZmd4tqrF688FU609+shljZq/l\nimpS2vm4S6zedICNM/ty/PR5/vnvIrXvKkHYzxGZ1plRhLxniHPVyzoRKQ2Eq2rVbNxmLaC3qg7L\nrm1eL/7+/ixbvgKAM2fO8PZbk1i0dBlPDhrAmbNneHr4s9SrX99oyyFtly5dYs3KcMaMfe2avPj4\neHbu2M6S5au5cCGO1g80pmbtupQrX5HPl1g9+7NnzvDBe5P59PMlPPvUYM6ePcMTTz1DrTppuxBS\nY9+fp3ln4SbCJnUh9sJlfjtwgoSEq0Z1VPf6JCRcYeH3e66p27JuOU6c/Y9fI/7i3uolk+W9u3gz\n7y7eDMD0ES2Y8NlP9G1ZjQdqlWHXwRO8+fkvGdKZGTzN9eAMj+sR23Gm3Iaqbs0JIxwQEEhU1NXg\nANHRUQQGBjotE5CizBsTJ/D8C2NYvHABDRo24uM5c5k4YZzRlgPaEvnh22+4u3oNit92e6r6mzZr\nzk033cSttxajXoNG7N6VfEL39ya/ztMjR7Ns6SLq1G/A1JlzePuNCZnSMvebnTR8ci7NR3zB2X8v\nEBH9NwA9H6zKw/XK0feNsFTr1a8aSOv6Ffhj/mDmjWlL05A7mTO6dbIy1cvfhoiwP+pvOjSpTM8J\noZQtcTPlAm/OlNaMkNd6xLnREPuIyOcisldEloqIn4gcFpE3RWQ70ElEQkRkox1ddZmI3Cwit4nI\nNgARqS4ias8liogcsNvpJCK/i8hvIrLOzmsqIuH273EiMkdE1orIQRFJMtAi8rId7fUnEVkgIpl3\n3gG1atcmMjKCw4cOcenSJZYsWkir1m2TlWnVpi1fzJ+HqrJp40aKFPGnRIkSSfmRERFER0fRuElT\nYmNj8fLyQkSIi4u7HmlG23WybOmiVN0SAA+1asPmX34mPj6e2NhYtm/bTIVKlZPyDx6IICY6iob3\nNiEu7qq2Cxcyp614Ucu1UfK2wrRrVJFF3++hee0yjOhSl44vf0ncxfhU673yyTrKd5tO5Z4z6T1x\nOWt3HKH/pPDkZfrey/jP1uPr7YW3PQvPFVX88mfxH9pujOKcW8hVrgmbSsBjqrpBROYAT9rpp1X1\nHgAR2Qk8pao/ish4YKyqDheRAiJSBLgX2ArcKyI/ASdUNVZEXgEeUtVoESmaxvYrA/cBhYF9IjID\nCAEeBaoDvsB2YFvKiiIyEBgIULJUqXR30sfHh/emTKNNq4dISEigT9/+VAkOZvZH1gx8AwYNpkXL\nh1m9aiXBlcvjV9CPjz7+NFkbY18Zw6vjJwLQuWs3Oj/anrcnT+LlsePT3bYzjLbM899//7Hu/75n\n8vvTk9LmfmJF5+nz2EAqVrqL+x54kPsa3IOXlxc9evfnripXPXFvjH+FF16xdLTv2IV+3TvywXuT\nGfXi2EzpWTC2PbcUKWi9VPvgW879d5H3hjYnv6834W9aD4vNe2MYNmUNJW4txPQRLXhkzFKn7bZp\nUIHt+49z7PR5AHZGnmDL7P78fvAEuw6ezJTWjOFhltYJog6O+JzG9hGvU9XEnuz9wDAsQ9hEVY+I\niD+wy6FMOWCJqt4jIrOxZtPvBywAWgDrgWqqOkpEZgLlgMXAV6p6WkSaAiNVtbWIjAMuq+pEu+29\nWKG2OwI3q+pYO/1dIEZV305rX2rWrKUbNm1NK9vgoZyLvZzTEtKkdId3c1pCmlz4fvQ2d02oXr1G\nTV35f8790EE353fbNrOa3OiaSPlkSFz/z4W667B6w3cCoVg92EZYxhhVHQy8hBWnapuI3JpKGxcd\nfieQO/9qMBhuaMSFxZPIjYa4lIgkvrruDvzkmKmq54AzInKvndQL+NH+vR7oCUSo6hXgb+DhxDZE\npJyqblLVV4CTJA8cmB4bgDa266MQ0NpZBYPBkHV4iThdPIncaIj3AUNst8DNwIxUyvQBJtu+4hBg\nPEOA+MkAABPmSURBVICqHsZ6GK6zy/0EnFXVM/b6ZBHZJSK/Az8Dv+ECqroFK6jgTmAVsAs4l/Fd\nMxgMbiGPdYlz1Z/dtiGtnEpW6RTldgCpDqpU1ZIOv18HXndY75BKlbX2gqqOS9GW43jmt1V1nIj4\nYRn6a17WGQyG7MHD7KxTcpUhzuXMEpEqQAFgrqpm14f1BoPBARE8zvXgDGOIXURVu+e0BoPBYJO3\n7LAxxAaDwfPIY3bYGGKDweBpeN6oCGcYQ2wwGDyKxNnX8hK5cfiawWAw3FCYHrHBYPA4jGvCYDAY\nchIPnObSGcYQGwwGj8IDP5xzijHEBoPB45A81iU2L+sMBoPH4a4IHSLSwg74ECkio1PJFxGZaufv\nFJF73L0vYAyxwWDwQNwx548ddu1DoCVQBehmT2PgSEuggr0MJPVJyK4bY4gNBoPn4Z7Z1+oAkap6\nUFUvAQuBdinKtAPmqcVGoKiIlEjZ0PViDLHBYPAoBLfNRxwIHHVYj7LTMlrmujEv67KI7du3nSro\nK0fc2GQx4JQb23MnRlvmuJG03emuhrZv37a6oK8Uc6FoARFxjFc2S1VnuUuHOzGGOItQ1f9v78zD\n7RyvNv67gxARlEuqhjZqqjEIFUqpIXwRpBTRxlA1JOahxmirqrTSqmpafIbS6udKfJp+KFWpVtGY\nSdESY7WkFVOQiETc3x/rOe12JJyc6X3POet3XefK3vt9z/usvc/O/a5nPetZa4X2vJ6k++rafytt\nax1pW+uwvXM7Xep53tulZ5Xy2sKe02YyNJEkSU/lXmBNSatJ6g2MIDrxNHIdsH/JnhgMzLA9rb0N\nSY84SZIeie13JB0J3AwsAlxu+1FJo8rxi4Abib6XTwKziA7x7U4KcdehlrGtQtrWOtK2irF9IyG2\nja9d1PDYwBEdbYdinCRJkqQqMkacJElSMSnESZIkFZNCnCQtQNLyVduQdF9SiJN2Rd2kLFbj+5B0\nCDBG0mIdME5/SQPL4x0lrdLeY3QGUos2WCQLILMmugiSZNuSPgksDky1Pa/xWLUWvtcOSesB/wKw\nXdfdYwuk4X3sRxSEGWd7bgcM1Rc4V9KrwNLAfh0wRofQ8J1cFzhU0g22J1VtV1ckhbiLUL7wQ4Hv\nAm8DkyXdantiHUQY3iNexwB7E0L8qqQrbf+xUuNaSIO49LL9LnAQsDFwZjm+qO132ms8289Iup9I\nkfqW7ZdLVbB36/J3XRDlcxoGHENsYe4vaTHbN1VsWpcjQxNdBEkbAMcBewCfA6YCW0hav1LDmiFp\nIyLpfRhwOvAH4DhJa1dpV0so4tskfisA2P4c8Cfgf8vzdyS1yYGZT/jmemAUUYbxYNvzisgt3ZZx\nOhpJqwFnAaOB7YDHgCGStqvUsC5ICnFNkbSipHGSeklaChgJrA8sYvsNomTfJ4CdKrZTjf8SYZPn\nbb9q+y/ALcB0YEA1Frac4gEj6XDgQknnSNrD9lCgl6Qby3mt9oibhW/2kDQCeNP21cBpwJGS9pa0\nE3BKR8Sl25E+xOxsuu1/AJcBawOjJG1dqWVdjBTi+vIK8COi4MhcYBzwG+I/6idtTy/PP95WD621\nNItN9y//3g8sJmkMgO1/Au8QhbVriaQ1JS1eHo8gag4cBWwDbAv/9oxXkPTLtozVIMJHACcDywF/\nkjTU9s3AscAphKd5VQfFpVtFw023L0C50d5D1GLob/t54FpgMWDHygztguTOupoj6VJgLeKLvQox\nhd0KuAo4BDitbNOsDEmjiVDEw0Rc+HYiLDETuBM4HNjd9lOVGbkAJO0MXAAMsv1GqTMwlfisRwK7\n2J4r6SO2X5X0CdttKm8qaTPg+8AuwP7E1H5J4FTb4yUtB/Sq4yKnpN2IBcVFifj5YCIssSowibiR\nfJ14TwfYfqEiU7sU6RHXjPlM9Q8FpgATiaLUPyQKkOxMLO7cWBZ3KkHS3oQHOQpYj/B87wcOBp4F\n+gH71FGECxsC44nY5meJEoeXAwfZHlJE+Cjg2DIDWGgRbh4Ttn0vsA8wBNjT9vrEjOdqSTvZfqWm\nIrwx4a3/GHgN+AURF74EuAvYgLix/IO4sbxVjaVdjxTimlEWaXYCzpT0A8Iz+xrwBHANUaz7DELs\ntpe0alMaW2cgaZCkrRvEvzfhAe0ALAEcW6bffW2Psf1d2492ln2tYDLh0Y0lvPlbgd8S4YJ1JY0k\nFh8ntCaLQdISDeGIjSUNAiilFPsTswgI8fol8Hgb30+7IWlVSVuUx6sDRwP32/6D7S8Ttv6YyPA4\nn1hM7k/cVI6w/WpFpnc5UohrhqTNgYsIoV2ZiCMOAk4CZgD/V7zLScALwJxONnEb4BxiSkqx6Vrg\ny7Z3tD2nhCoOVdR4rR3NPNSXiBj87cA65fFFwBtEyGI4McVe6JtJyXTZT1KfEhMeD5wn6VfllCnA\nRyWNB8YAX7X9bOveVftSPqOBwCxJSxALri8R9Xs/B2D7OGLW81NJfcpi5wzgi7YfqsbyrknGiGuE\npAHElH6u7W+W104CtrD9+bKCvo7tP5djS9ie3Um2NeXVIukCIgTxXeA+QkRWAs4lGjIeDexn+5HO\nsG1haJa1sCtg4DYixr01kao2odxQ+gLv2H67lWMNI+KotwFbAKNsvybpbuAZ2yOKWG8DTLL9WFvf\nX3tSvm/9gKuJm+/dwKnELOgm27eV89ax/dfKDO0GpEdcEyT1J+KsLwCrSFoDwPa5ROfY9WzPtf1n\nSb3KsQ4X4SbvsUGERxOi2xu4mPCafkZMsb9HxK5rKcLwnqyF4ykhn5IOeA2xsDgYOKh4eDNbI8IN\nf58byjUHAh8h+sBhe3NggKSbbD9se1ydRLjJfmBR268Q6xPHExtbvk/Efvdo8oyJOHG32d5eBSnE\n9eElIi94VyJ1bRtJm0r6FLA8kYEA/EcUO4l/1z5QbB4ZBYy2vT1wKfBtYAXb3yO8yi/VVYSbkLQJ\n8AXCS31K0rbAXrZ/ATwArEbcaFpFw01rFLAJEUZ6Hdha0qrlnMFA76bndaHMGN5V7OK8RlIfIqQy\nkciEWQ84nwjdTIP/3NzqvhOwzuQW54qRtBKwpO0nFW1bzic6hg8gVtZ7A2dUETssaVTnSjrM9uvE\ngtKTwMeIJP6xktYBxksabvvuzraxJTTLd4Zojz4d+DnwMvF+VlRUWPsJ0M/2jDaOuRuxbXkX289J\nep34e0rS720/U25mtaIsFu9MLF4ebfstSbOJWc884GwiFPWNzlwk7u6kEFdIiUGeSmzK+BURi3uY\nKOjzK0VFqz62/z4fMelwyrR0X0VVsNVtXyTpZWArSS+VHNGbCSH7e2fa1lKaxYQ3AebYfkTS2cAB\nwCUl3HMQsHzDglNbWQm4uojworZvkDSPiBm/JenvwLy6eJHNvl+bEfnAj0jaBziMyI64gXAM5qQI\nty8pxBVie6ZiB9pAIva2IrGT6zBJjzcugFT1H1ZRO2I7YPciwmcQ6UmDSgrbQOALdU3cbxDho4iF\n0L6SxhECfHg5djDhvY5sx6H/BgyXdK3tppS0XoQH/nu3Y+Gg9qB4wlsRM4VniXj/dCKVbxKxQeM2\n25dWZmQ3JoW4YsqU/3ZJw4lyix8DPkPs46+UsvgyBFgG+BKRuH92ebwlES/8tuu7WQMASUOAHW0P\nlLQhcTPpJekaogzlMGD/ds53vpP4jA6UdCewLJFNMsKx7bsWzMcT3o9YsPwL8GKZja1MrF30I9Yy\nknYm09dqiKS1bE+t2IYlbc9S1LH4A3AlETYZB1xm+8Iq7WspikLrXydEcQvHNuZBRJzzXuAKYIbt\nWR0w9seA3YHdiHDHOU2ph3VCUaDnadvPSzqBSOn7ie3Zip2TY4h1iomVGtqNSSGuEY25uuV5JQXf\nS1rStsC9JbY5hBCybxE76MYQAvNaXWKcTczvM1Nszf0q8BRwvu1XFBtnjgGOLLHwjrSpN4Dtzt58\n84GUGY+IG1IfYms3hBD/j+1pkg4gqulNqur72BNIIU7eh6ILyHZE7uglxO69vYCTbd/d5C1XaeP8\naLYwdwhR7+Bd2z+StCkx7Z4BXGD7JUmLt3azRndAUcXv6XLj/SLwa+KGtTKxYePwSg3sQWQecfI+\nbD9dFmWGA0sRcevPAseXUEUti7k026wxkgiljJJ0oe37iPDKysRiaC86f3t4LVDUuF4SuEzSecTC\n4nJEbvA+xPb6nRTlQXOTRieQHnHygSjq9IrwlCZUHbueH8084VWItkZHEqGHzYliRNNsf7lkgUyz\n/a/KDK6Ips9J0lK231R0ADkPeJoQ4q2IFlevA8u4jeU+k5aTWRPJhzGniNxZVRsyP5qJ8EiiCP1J\nREx7V9tbKspb3iBptu3RFZpbKUWEhxAlPZ8GnrR9sKQdiBohnyYqzZ1p+7Uqbe1ppBAnH0jdF2ca\nRHh7Ik94WPH2DDQ1LB1ApN2Nr8TImlDi5D8GTiDCModKWrvcnCZJeodYoK3137w7kkKcdEnU0E25\npF8dDTxm+81yyixgsKLDyVBgG9vPVGNtdTSEI5YkQjQTbF9XYr93EyUst7f9O0eBqcqydXoyuViX\ndDkkLUtsPkDSNkS61RNET7nNi5BMJmLElwNb2X6iMoMrpCEccSpRtP0ASWs6eBX4J7BI89+pwNQe\nTXrESVekP1HJ7GRgXdtrSXqQiGPvBSDpHttTqjSyDpT6GrsSnvDtik4b15f0PojFzCuqsi8JUoiT\nLoftqWVqvQPwg5IPPFPSmcRmkwOISmH3VWlnVUhaxPa88hldSsSDf1hmCmMlvQ2cWE7/hu27KjM2\nATJ9LeliNMQ8lyGK0G9ANLKc4Kh0thZR4ew82y9WaWtnI6mfo8g9JVOkL1FI6jRiE8uPGs5dHMD2\n2xkTrp4U4qRLo2h3tD2RC7ssUabxHNszP/AXuxllMe43RJfvR4lC7g8QNaS3BtYg0tLGVWZkskAy\nNJHUmgV5a5J6255j+3pFnd9BwH8Bh/U0EQYoBZp+QLS7nwl8xfafFC23niPyqk+TtILtb1Rpa/J+\n0iNOakuzzRoHE47DcrbPbn68PO/bE0W4kbI541pgrO2zFA1AhxI3qp8CK9u+o0obk/eT6WtJbWkQ\n4SOJ2hEPEvUujmg6rv80uqSnizCA7UnAgUQd5H1tzyVi6MOAV2zfkfUj6keGJpLaIWkA0cb+H4rm\nlRsRYYfRwGTgIklL2J7tzm2k2iWwPbHskrtS0ghgNpEdMaMcz2lwzcjQRFIrSjbEWUSH4J87OkRc\nDbwLLAYc4GhoeThRK+G3FZpbayTtQRRAOsT25MyOqC8pxEltkLQm8AywE1EPeRrREWQPouPyRrYf\nlvRFYqfYrq6gu3VXQtJy7uDC90nbSSFOaoGkjxP98cY72hltQfTGexa4mIgRn0C0bdoQOMj2I9VY\nmyTtSwpxUjmShgF7AscBqwD7A18DNgX2JcT4fKKKGsBbtp/vdEOTpINIIU4qRdLywARgFBEHHlx+\n/gmMJYr77E10D748BTjpjmTWRFI1c4C5wDeJKmCjid1gnyc2J3yH+J4OpaYtmpKkrWQecVIppTbC\nrUTL+SfKwtIdwPXAMsSq/2SinXsuOiXdkhTipA6MB3YH9pR0gu15hDjfQoQrlrad3nDSbckYcVIb\nJG1MiPI42xeUHWB9bM+q2LQk6VAyRpzUBtsPSvoCcKukubYvJFoeJUm3Jj3ipHZIWp9IUXuqaluS\npDNIIU6SJKmYXKxLkiSpmBTiJEmSikkhTpIkqZgU4iRJkopJIU6SJKmYFOKkXZE0T9JDkh6RdE3p\nLtzaa20r6YbyeDdJp3zAucuWYvELO8YZkr7a0tebnXNFyXtu6VgDJGXpzuR9pBAn7c1btjeyvT5R\n0GdU40EFC/29s32d7e98wCnLAgstxElSB1KIk47kdmCN4gk+LulnwCPAqpKGSJos6YHiOS8FIGln\nSY9JeoDozEF5/UBJ48rjj0qaKGlK+dmSqNK2evHGx5bzTpR0r6Q/S/pmw7XGSJoq6Q5g7Q97E5IO\nKdeZIunaZl7+DpLuK9cbVs5fRNLYhrEPa+sHmXRvUoiTDkHSokTDz4fLS2sCP7G9HjATOB3YwfYm\nwH1Ed+YlgEuAXYn27ysu4PIXALfZHghsAjxKlMx8qnjjJ0oaUsb8NNF8dJCkz0oaBIworw0l6h1/\nGL+0vVkZ76/AVxqODShj7EJpalqOz7C9Wbn+IZJWa8E4SQ8la00k7U0fSQ+Vx7cDlwErAX+zfVd5\nfTCwLnBn6ezemyh1+SngGdtPAEi6Cjh0PmNsR3TxoFRqmyHpI83OGVJ+HizPlyKEuR8wsamQkKTr\nWvCe1pd0FhH+WAq4ueHYhNJJ+glJT5f3MATYsCF+vEwZe2oLxkp6ICnESXvzlu2NGl8oYjuz8SXg\nFtv7NjvvPb/XRgScY/viZmMc24prXQEMtz1F0oHAtg3HmtcIcBn7KNuNgo2kAa0YO+kBZGgiqYK7\ngM9IWgNAUl9JawGPAQMkrV7O23cBv/87opNHUzx2GeANwttt4mbgoIbY88qS+gN/BIZL6iOpHxEG\n+TD6AdMkLUY0NG1kL0m9is2fBB4vY48u5yNpLUl9WzBO0kNJjzjpdGxPL57l1ZIWLy+fbnuqpEOB\nX0uaRYQ2+s3nEscA/y3pK8A8YLTtyZLuLOlhN5U48TrA5OKRvwmMtP2ApPHAFOBF4N4WmPw14G5g\nevm30abngHuApYFRtmdLupSIHT9QaipPB4a37NNJeiJZfS1JkqRiMjSRJElSMSnESZIkFZNCnCRJ\nUjEpxEmSJBWTQpwkSVIxKcRJkiQVk0KcJElSMf8P4+zQmIZNuGsAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVUAAAEmCAYAAADSugNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FFUXh9+zKRC6dBJ670WqCIiCiEqXLigqTURQVERF\nQRBFwQI2QEU+UamKEASxYqN36b0FhFBCS0jZnO+PmYRN34QN2eB988yTmVt/c2fm7C0z94qqYjAY\nDAbP4MhqAQaDwXAzYYyqwWAweBBjVA0Gg8GDGKNqMBgMHsQYVYPBYPAgxqgaDAaDBzFG9QYhImNF\n5Et7v7SIXBYRHw/ncVhEWnsyTTfyfFxETtnnU+g60rksIuU9qS2rEJEdItIyA/FERD4XkfMisi4T\npBluADeNUbUNymkRye3i1l9EVmahrGRR1aOqmkdVnVmt5XoQET/gHaCNfT5nM5qWHf+g59R5HhGZ\nJSKvpRVOVWuo6soMZNEMuBsoqaqNMhA/y/DUD7qI9BORvzyhKZm0VUQqZkbartw0RtXGBxh+vYnY\nNYabrWwyg2JATmBHVgvxBkTE9zqTKAMcVtUrWZC3wVOo6k2xAYeBUcA5oIDt1h9Y6RKmKbAeuGD/\nb+ritxKYAPwNRAAVbbfXgFXAZSAYKAR8BVy00yjrksYU4JjttxFo7uI3FvjS3i8LKOAL3GanHbdd\nxXqwwPrRGwUcAM4C84GCLmn2BY7Yfi/ZZdA6hfIJAN62w18A/gICbL8OWIYxzD7naonK9Vlgmx1v\nHpYhrQxcsc/jMvCr63klKtf+9n5F4Hc7nTPAPJdwClS09/MDXwChtt7RgMP262drnwycBw4B96Zx\nXzxn678CfIb1Y7AcuAT8DNziEn4B8K+t8Q+ghu0+EIgGouLuBZf0n7fTj7Svafx1AJYBb7ukPxeY\nmYzOx+xr77TTf9V2HwDsx7qvlwCBicrsCWAfcCiZNJcDQxO5bQW6uMQfBhy0r8ekjJQzMBuIxXpu\nLgMjbfcmWM9OmJ1vS5c4/ex8L9lpPwhUS1QGYSnklySui9+jwC5b8wqgjO3+h32+V+y0e2SaLcpK\nQ+jRE7FvZOBb4DXbLd6oAgXtgu5r3/i97ONCLg//UaCG7e9nu+0HKmA96DuBvXY+vlgP/ucuGvpg\nGV1f4BmshzOn7TeWZIxqonPwwzI6b9jHw4E1QEkgBzAdmGP7Vbdvjha23ztADCkb1Q/t8wnCqtE3\ntePFGce77fxH2ufs71Ku64BAuwx3AYOTO4/kzouERnUOlvF3YBnmZokMRJxR/QJYDOS109wLPOby\nQEVjGRsf4HHgBCCp3BdrsAxpEHAa2ATUszX8CoxJ9FDmtcvmPWCLi98s7HsrUfpbgFJc+5E6zDWj\nWtzO8y4sw3EQyJuKsfjL5fguLGN3q63nfeCPRGX2k31dApJJ7yHgb5fj6lgGLodL/N/s+KXtcu5/\nHeXc2uU4COvH/j77et9tHxcBcmNVPKrYYUtw7ccrQRkkk09qcTti3bvVsJ7B0cCq5O6xTLVFN8Lg\n3YiNa0a1JlYtowgJjWpfYF2iOKuBfvb+SmBcIv+VwEsux28Dy12O27s+dMloOg/UsffHkrZR/RhY\nyrXawi6glYt/CftG9wVeAeYmutmiSMao2jd1RJyWRH4vA/MThQ3BrlXY5drHxf8tYFpy55HceZHQ\nqH4BzMDqM0ysQ7Fqsj72eVR38Rvkch37Aftd/HLZcYuncl+41mS+AT52OX4S+C6FuAXstPPbx7NI\n3qg+mty96HL8AFYL5gwuPyTJ5NePhEb1M+Atl+M89vUv61Jmd6WSXl6sH8wy9vEEXGrJdvy2LsdD\ngF+uo5xdz/l5YHaiMCuAh7Hu1TC7XAI0lTJIJp/U4i7H/vF1uZfDXc7/hhjVm67fUFW3YxmmUYm8\nArGakq4cwfpFjeNYMkmectmPSOY4T9yBiDwrIrtE5IKIhGHVbgu7o1tEBgEtgd6qGms7lwEWiUiY\nnd4urKZRMft84vWq1Q+X0kBRYaxa2YFk/BKUi533MRKWy78u++G4nHM6GQkIsM4eIX80Ba1+JLxW\nia9TvB5VDbd3U9Pk1jUUER8RmSgiB0TkIpahiNOUGsndN64EY/1Y7FHV9AzCJL42l7GucVr3bFz4\nS8D3QE/bqRdW15UrrvGP2HnGkd5ydqUM0C3u3rXv32ZACfte7QEMBk6KyPciUtWdRNOIWwaY4pLf\nOaz7LSj51DKHm86o2ozBara4FuYJrEJ3pTRWrSwOzWiGItIcy2h0x+qjK4BVYxY3444HOqrqRRev\nY1j9WAVctpyqGgKcxGpyxqWRC6vrITnOYPVVVUjGL0G5iIjY6YYkEzYt4gZYcrm4FY/bUdV/VXWA\nqgZi1T4/SmY09gxWbcz1WiW+TplFb6wmZGusH8SytnvcNUzp/kjrvpmA9YNYQkR6pUNP4muTG+sa\np+eenQP0EpHbsH5Yf0vkX8plv7SdZ0ZIrOMYVk3V9d7NraoTAVR1harejdX62g18kkI6STNKOe4x\nYFCiPANUdVUGzylD3JRGVVX3Yw2oDHNxXgZUFpHeIuIrIj2w+piWeijbvFh9mqGAr4i8AuRLK5KI\nlMIagHpIVfcm8p4GTBCRMnbYIiLS0fZbCLQTkWYi4g+MI4Xradc+ZwLviEigXSO7TURy2HnfLyKt\n7FeknsEacEn3jaiqoVgPfB87j0dxMeQi0k1EStqH57EeoNhEaThtTRNEJK997iOAL9OrJwPkxTr3\ns1g/DK8n8j8FpOtdWhFpATyC1b/5MPC+iLhbc5oDPCIide1r9TqwVlUPp0PCMizDPA5rYDA2kf9z\nInKLfR8Ox3puMkLisvkSaC8i99j3Qk4RaSkiJUWkmIh0tH8kIrHGBmJd0ilp39NJSCPuNOAFEalh\nh80vIt1S0Zgp3JRG1WYcVv8LAGq9Q9kOy2icxapVtlPVMx7KbwXwA1Zn/xGsmmFazUKAVljN+YX2\nC/CXRSTuFaUpWCO+P4rIJawBl8b2+ezAGvn9GqvWeh44nko+zwL/YL2xcA54E6vvdg/WANv7WLXE\n9kB7VY1y87wTMwBrtP0s1qCfq3FuCKwVkcv2eQ3X5N9NfRKr1nsQawT6a6wfhczmC6xrF4I1KLkm\nkf9nQHW7efldWomJSD47zaGqGqKqf9ppfG63CFJFVX/G6vP+BusaV+BaU94tVDUSa/C2NVY5JmYx\n1psqW7C6Cj5LT/ouvAGMtsvmWVU9hlXrfxGronEM675w2NsIrFrxOeAOrIEwsAYOdwD/ikhyz2aK\ncVV1EdZ9PdfuvtkO3OsSdyzwP1tj9wyeZ5qI3YFrMBj+Y4iIApXslp3BQ9zMNVWDwWC44RijajAY\nDB7ENP8NBoPBg5iaqsFgMHgQMwlDJiG+ASr+ebNaRrLUq1Y6qyWkiLe3m9Icsjcky6ZNG8+oahFP\npOWTr4xqTESa4TQidIWqtvVEnunBGNVMQvzzkqNKpr21cV38vfaDrJaQIrGx3m1WHQ5jVjNCgJ8k\n/poxw2hMhFvP1tUtH7r1NaOnMUbVYDBkL0TA4dH53T2KMaoGgyH74cXTHRujajAYsh9pf5CWZRij\najAYshmm+W8wGAyeQzDNf4PBYPAcYpr/BoPB4FFMTdVgMBg8helTNRgMBs8hmOa/wWAweBTT/DcY\nDAZPIeDjvc1/7zX3NykxoVuJ3D2HyN1fE3N6KwCxEWeI3LuQyN1ziDr4PepMfiUT58UjRO76isid\ns4k5tTHePfrEKiJ3zyXqyM/Xwp7bE59+RvhxxQ/UrlGFGlUrMumtiUn8VZURTw2jRtWKNKxXm82b\nNgEQGhrKXXc0o37dmixZfG3FkW5dOnLiREbXlLvG4IGPUqZkMRrUq5Wsv6ry7NPDqFWtEo3q12Hz\n5mu6Wt/ZnAb1ahHsoqv7A5046QFdcXhruXm7tnQR90pVWlsWYYzqDSQ24izOszvxr9wV/yo9ib14\nmNjIMKKP/oZf4G3kqNoLR/5yxJzenCSuaiwxx//Ar3w7/Kv2xnl+H7FXz6HOSDQ8lBxVeyLiIDbi\nLBobg/PcLnyK1MyQTqfTyVPDnmBx8HI2b9vJgrlz2LVzZ4IwK35YzoH9+9i+ax8ffDyDYUOtJYbm\nz53DgIGD+XPVOj6Y+h4A3y8Npk7degQGBibJK7306duP74KXp+i/4ofl7N+/n2079/LBR9N56skh\nACyYN4fHBgzij7/X8uEHUwBYtjSYOnXrUsIDusC7y82btWUIkbS3LMIY1RuIRp7HkasY4vBDxIEj\nTyCxYQfRyDAkt3Vz+uQtRWzYgaRxw08jOfLjyJEfcfjgc0slYi8cAgTVWFQVjY0BceA8vRmfwrUR\nyVgTaf26dVSoUJFy5cvj7+9Ptx49WRq8OEGYpUsW07vPQ4gIjZs04cKFME6ePImfnx/h4eFERkbi\n4+NDTEwMH0x9jxHPjsyQlsQ0a96CgrcUTNH/++DF9O7TFxGhUeMmXAi7pivC1uVw2Lren8LTz3hG\nF3h3uXmztvRjj/6ntWURxqjeQCRnQWKvnEBjrqKx0TgvHkGjL1vuFw4B4Aw7gEZfThJXoy8jfnmu\npeWXB42+gvj445OvDFF75iF+uRAff2LDT+FTIOMr8Z44EULJkteWgw8KKklISEiaYU6EhNCjV2+W\nBi+mXdu7GTnqRaZ//BG9H+xLrly5MqwnfdpPJNAVGFSSkydC6N6zN0uDl9D+vjY89/wLzJj2Eb0e\n7ONRXd5cbt6sLUN4cfPfDFSlgIgEAlNVtaun0nTkLIhP0VuJOrAEHL44AgoDgl/pu4gJ+ZOYUxvw\nyV823TeEb7Fb8S12KwDRR3/Ft3hjYs7uJPbSURw5C+NbvIGnTiFN8ufPz6Il3wNw/vx5Jr81kXkL\nFzFk0ADOh51n+FPP0OS2226YHldd3y5eGq/r7UlvMnfBtzzx+ADCzocx7KkRNG5y43W56vPGcvNK\nbVncvE8LU1NNAVU94UmDGodvoerkqNKdHJW6gE8OJGcBHDlvwb9CB3JU6Y6jQGUkR/4k8aya6bUa\nrFVzzZ0gTGx4qBU2RwFiw/bjX7YtGnWB2MiwdGkMDAzi+PFj8cchIccJCgpKM0xgojBvTBjP8y+8\nxPy5c2h6ezM+nfk/Jowfmy4t6SUwMDCBrhMhxykRmFDXxNfHM3LUiyyYN4fbmjZjxmezmDD+VQ/k\n7b3l5s3aMoRp/nsHIjJRRJ5wOR4rIs+JyCQR2S4i/4hID9uvrIhst/f7ichiEVkpIvtEZExGNWh0\nuPU/6hKxFw7iU6DyNTdVq7ZaqEZS7bmKopEXiI28iMY6cZ7fhyNf2QRhYv5di2+JxqCxEL+go0Bs\nTLo0NmjYkP3793H40CGioqJYMG8u97frkCDM/e078PWXX6CqrF2zhnz58lOiRIl4//379hEScpwW\nd7QkPDwch8OBiBARkfYyGNfD/e068PWXs1FV1q1dQ778SXWdCAlJouvq1evX5c3l5s3a0o+Y5r8X\nMQ94D/jQPu4OvAm0AeoAhYH1IvJHMnEbATWBcDvM96q6wTWAiAwEBgLg0v/pStThHyDmKogD35It\nEN8cxIRuxXnmHwAc+SvgU7AaABp9heijv+JfoT0iDnxLNif64BJQxadgNRwBheLTdYYdRAKKxtde\nJaAwkbvnIAGF7G4G9/H19eXdKR/Q/v57cDqdPNzvUarXqMEn06cBMGDQYNreex8rli+jRtWK5ArI\nxfRPP0+QxphXXuLVcRMA6N6zF90f6MTkSRN5ecy4dGlJzMN9e/PnHys5e+YMlcqXYvTLY4mOjgag\n/8DB3HPvfaz4YRm1qlUiIFcupn8yM0H8V8eMZsyrrwHQrUcvenbrzDuT3mT0mOuvqXpzuXmztgzh\nxc3//9wS1SKyC2gFFAE+AtYB/6jqTNt/NrAA2AYsVdWaItIPuEtVH7LDjAPOqep7KeXjyFVUvXWN\nqvPrzRpVGcWsUZUxAvxko6p6pHPfUaCM5mj+fJrhri59wmN5pof/Wk0VLIPZFSiOVXMt52a8xE+7\ndz/9BsPNjBfXVP9Tfao284CeWIZ1AfAn0ENEfESkCNACq/aamLtFpKCIBACdgL9vlGCDwZAI06fq\nPajqDhHJC4So6kkRWQTcBmzFqn2OVNV/RaRsoqjrgG+AksCXiftTDQbDDcSLa6r/OaMKoKq1XPYV\neM7eXMMcxhqYiuO4qna6IQINBkPKmCWqDQaDwbOIqalmb1R1FjAri2UYDAbi5qg2RtVgMBg8gwji\nxa+2GaNqMBiyHaamajAYDB7EGFWDwWDwFIJp/hsMBoOnEMTUVA0Gg8GTGKNqMBgMHsTh8N4v7L1X\nmcFgMCSHuLm5k5RIWxHZIyL7RWRUMv75RSRYRLaKyA4ReSStNI1RNRgM2Q4RSXNzIw0frLmV7wWq\nA71EpHqiYE8AO1W1DtASeFtE/FNL1zT/DQZDtkIQTzX/GwH7VfUggIjMBToCrmt3K5BXLCudBzgH\npLqUhjGqBoMh++Fe876wiLjOJjdDVWe4HAcBx1yOjwONE6XxAbAEOAHkBXqoamxqmRqjmknUq1aa\nv9d65wz73rzag5lZP+Pc0nBoVku4MYjbo/9nPDDz/z3AFuAuoALwk4j8qaoXU4pg+lQNBkO2wxN9\nqkAIUMrluKTt5sojwLdqsR84BFRNLVFjVA0GQ7Yirk81rc0N1gOVRKScPfjUE6up78pRrDXtEJFi\nQBXgYGqJmua/wWDIfnigl0hVY0RkKLAC8AFm2iuDDLb9pwHjgVki8o+d6/Oqeia1dI1RNRgM2Qv3\n+1TTRFWXAcsSuU1z2T+BtYS92xijajAYsh3e/EWVMaoGgyH74cUviRijajAYsh1mQhWDwWDwECIe\n+6IqUzBG1WAwZDtMTdVgMBg8iffaVGNUDQZDNkPM6L/BYDB4DAG8uPVvPlPNSn5c8QO1a1ShRtWK\nTHprYhJ/VWXEU8OoUbUiDevVZvOmTQCEhoZy1x3NqF+3JksWfxcfvluXjpw4ccJj2urUqErNapWY\nnIy2d9+eROMG9WjcoB4N6tYiT05fzp07R2hoKK1aNqdB3VqJtHXyqLbUyi14yWIa1qtN4/p1ub1x\nA/7+6y/gxpWbN13TmNCtRO6eQ+Tur4k5vRWA2IgzRO5dSOTuOUQd/B51RiUb13nxCJG7viJy52xi\nTm2Md48+sYrI3XOJOvLztbDn9sSnn/mk/d1/Vva5GqOaRTidTp4a9gSLg5ezedtOFsydw66dOxOE\nWfHDcg7s38f2Xfv44OMZDBv6OADz585hwMDB/LlqHR9MfQ+A75cGU6duPQIDAz2i7enhQ/kueBmb\ntu5gwby5SbQ9/cxzrN2wmbUbNvPqa6/TvMUdFCxYkAXz5tB/wCD+WLWWD9+f4qKtrse0pVVud97V\ninWbtrJ24xamfTKTIYP7Azem3LzpmsZGnMV5dif+lbviX6UnsRcPExsZRvTR3/ALvI0cVXvhyF+O\nmNObk8RVjSXm+B/4lW+Hf9XeOM/vI/bqOdQZiYaHkqNqT0QcxEacRWNjcJ7bhU+RmhnSmREcDklz\nyyqMUc0i1q9bR4UKFSlXvjz+/v5069GTpcGLE4RZumQxvfs8hIjQuEkTLlwI4+TJk/j5+REeHk5k\nZCQ+Pj7ExMTwwdT3GPHsSI9o27A+obau3Xsk0ebKgnlz6dajJwC+fn6ERyTU9uH7UzymzZ1yy5Mn\nT3xN5cqVK/H7mV1u3nZNNfI8jlzFEIcfIg4ceQKJDTuIRoYhuS1D7ZO3FLFhB5LGDT+N5MiPI0d+\nxOGDzy2ViL1wCBBUY1FVNDYGxIHz9GZ8CtfGmkj/BiBW8z+tLaswRjWLOHEihJIlr806FhRUkpCQ\nkDTDnAgJoUev3iwNXky7tnczctSLTP/4I3o/2JdcuXJ5RltICEElSybM90TiGdEswsPD+enHH+jU\n+QEAevTszdLgJbS7tw3PPf8CM6Z9RK8H+3hOmxvlBrD4u0XUqVmVLh3vZ9qMmZa2zC43L7umkrMg\nsVdOoDFX0dhonBePoNGXLfcLhwBwhh1Aoy8niavRlxG/PNfS8suDRl9BfPzxyVeGqD3zEL9ciI8/\nseGn8ClQPsM6031emJpqliMigSKyMAW/lSJyvRPZ3lDy58/PoiXf8/faDdStdyvLvg+m8wNdGTJo\nAL16dGXN6tU3TMuypcE0ue12ChYseE3b4qX8vWa9rW0pnbt0ZcjgAfTu0Y21a26Mto6dOrN1+27m\nf/Md48a+fE2bl5RbYjJDmyNnQXyK3krUgSVEHQjGEVAYEPxK34Xz7HYi98yH2CiQ9JkB32K3kqNq\nT/yCmhFzci2+xRsTc3YnUYd/IObfDWkn4AFMTTWLUdUTqto1q3W4EhgYxPHj11ZyCAk5TlBQUJph\nAhOFeWPCeJ5/4SXmz51D09ub8enM/zFh/Njr0xYURMjx4wnzDQxKNuyC+fPobjf9EzPx9fGMHPUi\n8+fNoWnTZnwycxYTxr96fdrcKDdXmjVvwaFDBzlzJuFsbZlSbl54TX0LVSdHle7kqNQFfHIgOQvg\nyHkL/hU6kKNKdxwFKiM58ieJZ9VMr9VgrZpr7gRhYsNDrbA5ChAbth//sm3RqAvERoZlSKvbiKmp\n3lBEZKKIPOFyPFZEnhWR7fZxgIjMFZFdIrIICHAJ20ZEVovIJhFZICJ5bPdWIrJZRP4RkZkikuN6\ndTZo2JD9+/dx+NAhoqKiWDBvLve365AgzP3tO/D1l1+gqqxds4Z8+fJTokSJeP/9+/YREnKcFne0\nJDw8HIfDgYgQERFxXdrqN0iobeH8eUm0AVy4cIG//vyddh06JvHbv28fIcdDaHFHSyI8qM2dcjuw\nf3/8kjGbN20iMjKSQoUKJdSWCeXmjddUo8Ot/1GXiL1wEJ8Cla+5qRJzagM+hWokiSe5iqKRF4iN\nvIjGOnGe34cjX9kEYWL+XYtvicagsRC/RI9AbKrr4l031itV3jv6fzO+pzoPeA9r6VmA7sAgoJ99\n/DgQrqrVRKQ2sAlARAoDo4HWqnpFRJ4HRojIW8AsoJWq7hWRL+w03kucsYgMBAYClCpdOlWRvr6+\nvDvlA9rffw9Op5OH+z1K9Ro1+GS6NZXjgEGDaXvvfaxYvowaVSuSKyAX0z/9PEEaY155iVfHTbBO\nsmcvuj/QicmTJvLymHHul1YK2t5573063N8WZ6yThx5+xNI2w9Y2cDAASxYvolXrNuTOnTtJGmNf\nGc3Yca8B0K1HL3p07czbk97k5THXV1N1p9wWLfqGr7/8Aj9fP3IGBDD7q3kJHrLMLDdvu6ZRh3+A\nmKsgDnxLtkB8cxATuhXnmX8AcOSvgE/BagBo9BWij/6Kf4X2iDjwLdmc6INLQBWfgtVwBFz7YXKG\nHUQCisbXXiWgMJG75yABhexuhswka41mWog3LwKXUURkF9YSCEWAj4AHgaWqWlNEvgOmquqvdthN\nWIawOJbxjGv3+gOrganA+6rawg7fCnhCVbukpqF+/Qb699ob07+UXrz5mnvzw+LtePPCf1e3fLjR\nA4vwAZArsIpWGfRxmuG2jG3lsTzTw81YUwVYAHTFMpTz3IwjwE+q2iuBo0gdD2szGAzXQxYPRKXF\nTdenajMPaxGvrlgG1pU/gN4AIlITqG27rwFuF5GKtl9uEakM7AHKxrkDfYHfM1e+wWBICW/vU70p\njaqq7gDyAiGqejKR98dAHruLYByw0Y4TitXvOkdEtmE1/auq6lWsZWoX2It/xQLTMBgMWYY3j/7f\nrM1/VLWWy/5hoKa9H4FVi00uzq9Aw2TcfwHqZYpQg8GQbry5+X/TGlWDwXCT4sHVVDMDY1QNBkO2\nQsja5n1aGKNqMBiyHV5cUTVG1WAwZD9M899gMBg8hZe/p2qMqsFgyFZYU/9579ugxqgaDIZsh6mp\nGgwGgwcxfaoGg8HgIUS8+5Uq7+2YMBgMhhTw1Mz/ItJWRPaIyH4RGZVCmJYiskVEdohImvN+pFhT\nFZF8qUVU1YtpSzYYDAbP4/BA81+slQo/BO7GmvJzvYgsUdWdLmEKYE0f2lZVj4pI0bTSTa35vwNQ\nrMG2OOKOFUh9FmaDwWDIBMReTsUDNAL2q+pBK12ZC3QEXNcV7w18q6pHAVT1dFqJpmhUVbVUSn4G\ng8GQlbhpUwuLiOtM8TNUdYbLcRBwzOX4ONA4URqVAT8RWYk1890UVf0itUzdGqgSkZ5AeVV9XURK\nAsVUdaM7cf+rKBAb670z7HsrfWd79231RNOyWS0hRbb98FZWS0iRysU/TDtQOnBz9P+MB2b+9wXq\nY60kEgCsFpE1qro3pQhpDlSJyAfAnViTMwOEY+YTNRgMWYRg9ammtblBCODaIi9pu7lyHFihqldU\n9QzWJPeprgbizuh/U1UdBFwFUNVzWOs3GQwGQ5bgkLQ3N1gPVBKRciLijzXP8pJEYRYDzUTEV0Ry\nYXUP7EotUXea/9Ei4sBq0SIihbBmvzcYDIYbj4eWS1HVGBEZCqwAfICZqrpDRAbb/tNUdZeI/ABs\nw7J7n6rq9tTSdceofgh8AxQRkVexlny+vnWGDQaDIYMI4OOhl/9VdRmwLJHbtETHk4BJ7qaZplFV\n1S9EZCPQ2nbqlpalNhgMhszEi79SdfszVR8gGqsLwHyFZTAYshRv/vbfndH/l4A5QCDW6NjXIvJC\nZgszGAyG5HDnE9WstLnu1FQfAuqpajiAiEwANgNvZKYwg8FgSAkfL66pumNUTyYK52u7GQwGQ5bg\nzc3/1CZUeRerD/UcsENEVtjHbbDe7zIYDIYbjvXyf1arSJnUaqpxI/w7gO9d3NdknhyDwWBIAy+f\nTzW1CVU+u5FCDAaDwV28ufnvzuh/BRGZKyLbRGRv3HYjxN3s/LjiB+rWrEqtapWYPGliEv8LFy7Q\ntXMHGjeoS4O6Nfnif58DEBoaSus7m9OgXi2CF38XH777A504eeLETalt+cj2/PRKD34e25tfxvWN\nd9//y1xWvPQAP77cnX8WTEk2blT4JdZ8NNIKN7orZ/dvA+CfBVP5aUxP1n/6SnzYo6uXse+nr93W\ndfpkCCPibu4DAAAgAElEQVQe7sgj7ZrySLvb+eaL6QCMe/oxBnRuyYDOLenVqh4DOrdMqivyKo93\nv5v+ne7gkXa3M+v9a+U8Y/Kr9O/YgjeeHxLv9tOS+Sz8n/vTbrzw1GCa1CjD/XcknVPks4+nULl4\nbs6dPZNs3DsbVKNdy4Z0aNWELm2axbtPGj+a9nc24rmh/ePdFi+cw6wZH7it63qJa/574DPVTMGd\ngapZwGvAZOBe4BHsT1YNGcfpdDJi+FCCl/1IUMmSNG/aiPvbdaBaterxYWZM+5Cq1aqxcNESQkND\nqVerKj17PciCeXN4bMAgOnbqQpeO99O+YyeWLQ2mTt26lAgMvGm1tXhuOjnyFog/Pr17Ayc2/0Hr\nsXPw8fPn6sVzycbbOmcyxWo2pcmQt4iNiSYm6irR4ZcJO7qbu1+dy8ZZ47lwfD95ipbk8F/BNHv6\nfbc1+fj4MHjkOCrXqEP4lUsMfqAV9Zu25JV3rzX0Pn7zZXLnSTrnu59/Dt75fBEBufMQEx3NsD73\n06h5a0pXqMy+ndv4dPEfTB49nIN7dxJUuhw/LJrDmzPmu62tS48+9Hl0ECOfHJDA/WTIcf7+/RcC\ng1Kf3fOLb5ZTsFDh+ONLFy+w458tBP+2jhdHDGHPru2UKVuBb+bO5rM5i93W5Qk8MUl1ZuHOi/y5\nVHUFgKoeUNXRWMbVcB1sWL+O8hUqUq58efz9/enavQdLgxPdmCJcvnQJVeXK5cvccktBfH198fPz\nIyI8nMjISBwOH2JiYvjg/Sk8/czIm16bKwd/W0iV+x7Gx8+a3ydnvoJJwkSHX+bM3s2Ubd4RAIev\nH/658oIIsc4YVBVn1FXEx5e9K76kQqseOHzdX7qtUNHiVK5hTVqUK3deSleozJlT116OUVVW/rCY\nu+7vkiSuiBCQOw8AMTHRxERHx6+/FBMTjapy9WoEvr5+zJ/5IZ0fHICvn5/b2hre1oz8BZKWyeuv\nPM9zL7+W7ia0OBzERFtldjUiHF9fPz77eAp9H3scv3Toul5EPDZLVabgjlGNtCdUOSAig0WkPdZk\nrYbr4MSJEEqWKhl/HBRUkpMhCWcdG/z4UPbs2U2FskE0ql+bSW+/h8PhoHvP3iwNXkL7+9rw3PMv\nMGPaR/R6sA+5cuW6ebWJ8OfbQ/hlXB8O/v4tAJdPHeXs3i38+trD/P7mQM4d2pEk2pUzIeTIW4CN\nM1/l57G92ThrPDGREfgF5KZ4rdv55dUHyZm/MH4BeTh3cDtBt7bMsMR/Q46yf9c/VKtTP95t24bV\n3FKoCCXLVkg2jtPpZEDnlnRpVo0GTVtSrU59cuXOS+MWrRnY5U4KFSlG7jx52bVtI81a35dhbXH8\n/MNSipUoQbUatVMNJyL0696Ozm1uZ+7smQDkyZOXO1q1oWPr2yhStDh58+Vj66b13H1v++vWlV6y\n+8v/TwO5gWHABCA/8GhakURkGPA4sAmYB1RX1YkiMha4rKqT3REoIi2BKFVd5U74jCIiVYG5WF0b\nXVX1QGbm5w4//7SCWrXrsGzFLxw8cID297WhabPm5M+fn28XLwXg/PnzvD3pTeYu+JYnHh9A2Pkw\nhj01gsZNbruptLUc9SkBtxTl6sVz/PX2E+QtXhZ1xhB15QJ3vjSL84d2sHbaC7SduDhBDUxjnYQd\n2UPd3iMpWL4mW76ezJ5ls6jR+XGq3PswVe59GICNs8ZTvdNgDv3xHad2rCF/yYpUa98/JTlJiLhy\nmTHD+jFk1ARy57lW5/j1+2+TraXG4ePjwyeLVnL54gVeefIhDu3dRbnK1ejZfxg9+w8DYPLo4fR7\nchTfL5jNhlUrKV+5On0ffyadJQgR4eFMmzKJz+clnt0uKV8v+ZniJQI5G3qafj3aU6FiZRre1owB\nQ0cwYOgIAF4cMYThI0cz/6tZ/L3yF6pUr8mQp59Pt66M4M2j/2nWVFV1rapeUtWjqtpXVTuo6t9u\npD0EuFtVH1TVJaqadLTDPVoCTZPzEBFPLrHdCVioqvXcNaj2wmEZIjAwiOPHjscfh4Qcp0RQUIIw\ns/83i46duiAiVKhYkTLlyrF3z+4EYSa+Pp6Ro15kwbw53Na0GTM+m8WE8dc3iZg3agu4xVpvLWe+\nggTe2pLzh3YQULAYgfXvQkQoWL4mIkLU5bAk8QJuKUrB8jUBKNmgFWFHEuoMO7IbVMlbvAzHN/xM\nk8cnciU0hEunjrqlLSY6mjHDH6F1+660aNMu3t0ZE8NfP3/Pnfd2TjONPPnyU7dRM9b99UsC9307\nt6EKpcpV5PcVSxjz7mecOHaY44fT/5t/9MhBjh89TIe7mnBng2r8ezKEzm1uJ/T0v0nCFi9h9X8X\nKlKUu+/twLbNGxL47/xnC6hSrkJlfgj+limfzObo4YMcPrg/3brSi5B2098rm/8iskhEvk1pSy1R\nEZkGlAeWi8jTItLPXkEgcbgKIvKDiGwUkT/t2qKrf1lgMPC0vURscxGZJSLTRGQt8JaINBKR1SKy\nWURWiUgVO24/W+sPIrJPRN6y3X3sNLaLyD+2vvuAp4DHReQ3O1wfEVln5zs9zoCKyGUReVtEtgIZ\nrg7Wb9CQA/v3cfjQIaKiolg4fx73t+uQIEypUqVY+Zv1kJ06dYp9e/dQtlz5eP/9+/ZxIiSEFne0\nJDw8HIfDgYhw9WpERmV5pbaYyAiiI67E75/asZZ8QRUIrHcHobuth/3Sv0eIjYnBP0+BBHFz5i9M\nQMFiXPr3MACnd60jb2D5BGF2fDeN6p0et/pYY62pgkUEZ9TVNLWpKpNGD6d0+cp06zckgd/G1b9T\nqlxFihRPfoAu7NwZLl+8AEDk1Qg2rv6d0uUqJQjz+dQ3eGT4KJwxMcQ6nQA4xEFkBsqxSrWarNlx\nhN827OK3DbsoXiKIRT/+TZGixROEC79yhcuXL8Xv//37L1SqWj1BmPfeHM/w518hJiYaZ5wuh4OI\niPB060o32fjb/wy/I6Gqg0WkLXCnqp4RkX4pBJ0BDFbVfSLSGGsp2Ltc0jlsG+j47gIReQxrYpem\nquq0l9Jubk842xp4HXjATqIuUA+IBPaIyPtAUSBIVWva6RVQ1TDXfESkGtADuF1Vo0XkI+BB4Aus\nrpC1qpqk/SUiA4GBAKVKp77YrK+vL2+/9z4d27XF6XTyUL9HqF69Bp/OsF6Z6T9wMKNefJmB/R+h\n4a21UVXGT5hI4cLXRmNfHTOaMa++BkC3Hr3o2a0z70x6k9Fjrq+m6m3arl48y5oPngMgNtZJ6cb3\nULxWU2Jjotnw+Th+erk7Dl8/Gjw2FhEh4nwoG/83nmZPTQWgbu/nWDfjZWKd0eQuHESDR8fEpx2y\naSW3lK1GwC1FAChQqjI/vdKD/CUrUaBU5TS1bd+0lp+WzKd85erxr0099tRLNLnjbn5btihJ0//M\n6ZNMHv00E2fM5WzoKd58YSixTiexsbG0bNuR2+68Jz7sXz8vo3LNuhQuWgKACtVq8liH5pSvUp0K\nVWumqe3pwQ+zbtWfnD93lub1KjHsudF06/1wsmFP/XuSl0YM4dOvF3HmzGmeeKQnAM4YJ+27dKfF\nXW3iw/60PJiadW6lWHFLV7UatWnXsiFVqtdMs6/WU3jzt/+imjlvR4nIYaCBi1FtoKpD4/pUsda5\nCgX2uETLoarVEqUzloRGdRbwm6r+zz4uBUwFKmH1h/qpalU7z9tVdYAdbjlWn/AOYAPWxLTfAz+q\naqxrPvZs4C8CccvRBgBzVHWsiMTYOp2pnf+t9RvoX6vN17zp5aEvN2W1hFTx5oX/St4SkNUSUqRy\n8dwbPbAIHwDFKtbUHpMXphnu/c7VPJZnevBkn2R6cQBhqlo3A3GvuOyPxzKyne3ugpUufpEu+07A\nV1XPi0gd4B6sroXuJB14E+B/qprcFIdX0zKoBoMhc/Hicaqsm3BaVS8Ch0SkG4BYJLdK4SVSf4Ur\nP9dWQOyXVr4iUhhwqOo3wGjg1mSC/QJ0FZGidpyCIlImrbQNBsONwZu/qHLbqIpIjkzI/0HgMXvQ\nZwfQMZkwwUDnuIGqZPzfAt4Qkc24V/MOAlaKyBbgSyBJbVRVd2IZ3B9FZBvwE1DCnRMyGAyZi4i1\nRlVaW1aRphESkUbAZ1g1wtJ2bbK/qj6ZWjxVLeuyPwvrc1dUdayL+yGgbRrp7AVce7//TOS/GnAd\nURidOE/7uJ1LmCS1U1dd9vE8rPdrE4fLk5peg8GQ+XjxOJVbNdWpQDvgLICqbgXuzExRBoPBkBLW\nhCre+56qO81lh6oeSfSdsBmoMRgMWYaPF9dU3TGqx+wuALVfgH8SMFP/GQyGLEGyuCaaFu4Y1cex\nugBKA6eAn203g8FgyBK82KambVRV9TTQ8wZoMRgMhjQRwNeLX1R1Z/T/E5KZlFpVB2aKIoPBYEiD\nbF1TxWrux5ET6Awcyxw5BoPBkAZZ/HJ/WrjT/E/wrqaIzAb+yjRFBoPBkAqCd0+okpFv/8sBxTwt\nxGAwGNzFm2uq7qymel5EztlbGNYnm8lNNGIwGAw3BBFJc3MznbYiskdE9ovIqFTCNRSRGBHpmlaa\nqdZUxVJWh2sTlsRqZs0VaDAYDG5gffvviXTEB/gQuBs4DqwXkSX23B+Jw70J/OhOuqlKsw3oMlV1\n2psxqAaDIcvx0GeqjYD9qnpQVaOw1qhLblKnJ4FvuDa/cura3AizRUTquZOYwWAwZDbWt/8emfov\niIRvMh233a7lJRKE9cbTx+7qS7H5LyK+qhqDtRzJehE5gDU5tGBVYpObh9RgMBgyHTe7TAuLiOuK\nhTNUdUY6s3oPeN5eHcStCKn1qa7DmiKvQyphDKkQ66W9Jb6e6JDKJN7tlPbaS1lJj0/XZrWEFJna\nLbk53m8+BHH3laozaSynEgKUcjkuybXxozgaAHNtg1oYuE9EYlT1u5QSTc2oCoC7yzUbDAbDDcFz\nL/+vByqJSDksY9oT6O0aQFXLxWdrrY+3NDWDCqkb1SIiMiIlT1V9xw3RBoPB4HE8MUuVvQLzUGAF\n4APMVNUdIjLY9p+WkXRTM6o+QB7sGqvBYDB4AwIeWy5FVZdhrazs6pasMVXVfu6kmZpRPamq49xW\nZzAYDDcIL/5KNe0+VYPBYPAmhCxcBtoNUjOqrW6YCoPBYHAX8UyfamaRolFV1XM3UojBYDC4Q9zC\nf95KRmapMhgMhizFe02qMaoGgyHbITi8eO4/Y1QNBkO2IjsPVBkMBoNX4u53+FmBNxv8m5rjx45x\nX5tWNKhbk4b1avHRB1OThFkavJgmDerStNGttGjaiFV/W6vYhIaGcvedLWh0a22Cl1z7Yq5H106c\nPHHCI/p+XPEDtWtUoUbVikx6a2IS/+Ali2lYrzaN69fl9sYN+Puva9ruuqMZ9evWZMnia9q6denI\niQxqe/bJgdSrUorWt1+bwyfs/Dl6d7mPFg1r0LvLfYSFnU8S70TIMXp0bMNdt9WlVdN6fDb9g3i/\n18e+RJvmDXjq8Ufj3b6d/zWfTns/3fpiIi6xZ/YrbJ7cly2T+3LpyHaO/fQ5GyY8wNb3HmPre49x\nfveaJPEiw06zY/pwtrz9EFvefpiTfy2M9zuybBpb332EffMmxLuFbvqRk38ucFvXvyeOM7h3O7q3\naUz3e5ow53NroqUpb7xM19YN6XVvU54b/CCXLoYlG3/V7z/zQKsGdL6zHrM+fjfe/f2JY+h1b1PG\nPDMo3m3Zd/P4euZHbmu7LsRjU/9lCsaoZhG+vr68/uYkNmzZzq9/rGLGtI/YvSvB3Li0vLMVq9dv\nZtW6TXw0/VOGPm4tYLtw/lweGzCQlX+t4aP3LWO87Ptg6tSpR4nAwOvW5nQ6eWrYEywOXs7mbTtZ\nMHcOu3Ym1HbnXa1Yt2krazduYdonMxkyuD8A8+fOYcDAwfy5ah0fTH0PgO+XBlOnbj0CM6itW6++\nfDF/SQK3D6dM5vYWd/LH+h3c3uJOPnpvcpJ4Pj6+jB73Jr+u3sLiFX/wxWfT2Lt7FxcvXmD7ts38\n+OcG/P392b1zO1cjIpj/9Rc8/NjgdOs7vOR9ClRpRL1nZ1P7qZkEFC0DQGCzbtR56jPqPPUZt1Rt\nkiSeOHwo0+4J6j7zBbWGfsy/qxcRfuowMRGXuRKylzpPf47Dx48rJw/gjI7k9IblFGva2W1dvr6+\nPPXia8z/cS2ff/MTC2d/ysF9u2nc7E7m/rCaOctXUbpsRWZ99G6SuE6nk7fGPMuUzxcyf8Vafgxe\nyMF9u7l88QK7d2xlzvJV+Pn5s3/3Dq5ejSB4wVd07zsg3WWXEeKa/2ltWYUxqllE8RIlqFvPqnnl\nzZuXKlWrciIk4QQ5efLkiW/mXLlyJX7fz8+X8PBwIiMj8fHxISYmho/en8pTzzznEW3r162jQoWK\nlCtfHn9/f7r16MnS4MVuavNLou2Dqe8x4tmRGdbTuGlzCtxySwK3n5YF07VnHwC69uzDj8uWJIlX\nrHgJatWxpgLOkzcvFStV5d+TITjEQUxMNKpKREQ4vr5+TP/wXR4ZMAQ/P790aYuJuMzFQ1sp2vB+\nABy+fvgG5HUrrn++QuQJqgyAT45cBBQtQ9SFUMThQGOdqCrO6Ks4fHw5+ftcStzeBYeP+z12hYsW\np2rNugDkzpOXshUrE/rvSZo0vwtfXyudmvUacOrfpC2IHVs3UqpMeUqWLoufvz93t3uA339ahjiu\nld3ViAh8/fz48pP36fHwQHzTWXbXg6eWU8kMjFH1Ao4cPsy2LVto0KhxEr8lixdxa+3qdOvcno+m\nfwpAtx69+X7pEjrefw/PjhzFJ9M/pmfvB8mVK5dH9Jw4EULJktdmRAsKKklISOIZ0WDxd4uoU7Mq\nXTrez7QZMwHo0as3S4MX067t3Ywc9SLTP/6I3g/29Zi2OM6EnqZY8RIAFC1WnDOhqU/KfuzoYXb8\ns4V69RuRJ29e7mzdlntbNqZosRLkzZePzRvXc8/96Z/lMvL8SXxzF+DAgolsnfIYBxa+hTMqAoCT\nq75l67uPsH/BRGLCL6WaztVzJ7kSso88pavjkyMXBao0ZtuU/vjnLYRPzjxcOraLgjWap1tfHCeO\nH2HPjn+oUbd+AvclC76kacvWScKH/nuSYiWuzddcrEQgoadOkjtPXm5v2YYH2zWnUNFi5Mmbjx1b\nNtKyTbsMa8sI4saWVfynB6pcpvJamFZYO3wBoLeqeqzz6PLly/Tp1Y2Jk98hX758Sfw7dOxMh46d\n+evPP3jt1TEEL/+R/Pnz8813SwE4f/4870x+k6/nf8vQxwcSFnaeJ4ePoHGT2zwlMUU6dupMx06W\ntnFjX2bZip/Jnz8/i5Z8H69t8lsTmbdwEUMGDeB82HmGP/UMTW7zrDYRSfVj8CuXLzOoXy/GTJhM\nXruMHx/2DI8PewaAkcMH88yoV5gzeyZ//PYL1arXZNiz7q1tqbFOrpzYR7mOw8lbujqHlkwl5Lev\nKd60MyVbPQQIx378jMPff0jFbsmvK+eMDGfvl69QtsOT+ObMDUBQy94EtbRmoTuw8C1KtXmUU+uW\ncmHvenKVqGCn7R7hVy7z/JCHGPHy6+TJe+0em/nhZHx9fbm3Y3e30wJ4aNBwHho0HIDXRj3JoKdf\n4Lt5X7D2z1+pWLUGjw31TIspJbx9iWpTU00fBYAhnkosOjqaPj270r1nbzp26pJq2GbNW3D40EHO\nnDmTwP3NN17juedfZMG8OdzW9HamfzqLN1579bp0BQYGcfz4tVUmQkKOExQUlGL4Zs1bcCgZbW9M\nGM/zL7zE/LlzaHp7Mz6d+T8mjB97XdriKFykKKf+PQnAqX9PUrhwkWTDRUdHM6hfTzp37cm97Tsl\n8d++bQuqSoWKlfl+8bd8PPMrjhw+yKED+93S4Z+/CDnyFyFv6eoAFKp1B1dO7MU/b0HE4YM4HBRt\n1I7Lx3YnGz/WGcOe2a9QuG5rCtVskcT/SsheVJWAIqU4u20llfu8ytWzIUScOe6WvpjoaJ4f8hBt\nO3TjrrbXauLBC7/ir19XMP7dT5JtKhcpXoJTJ6+1Tk6dPEGRYiUShNmzYyuqSpnylfhl2Xe88cEs\njh85xNFDmT8Fc9zvaGpbVvGfMqoi8pCIbBORrSIy23ZuISKrRORg3PKzIpJHRH4RkU0i8o+IxC0G\nNhGoICJbRGTS9WhRVZ4Y1J8qVavx5PCnkw1z4MB+4tZa3LJ5E5FRkRQqVCjef//+fZwIOU7zO1oS\nERGBw+FARIiIuHo90mjQsCH79+/j8KFDREVFsWDeXO5vl7BpfGD/NW2bN20iMjKRtn37CAk5Tos7\nWhIeHu6iLeK6tMVx973tWDj3SwAWzv2Su+9rnySMqvLcsEFUrFyVAUOGJ5vO5Dde5ZkXxhAdE43T\n6QTA4XAQERHulg7/vIXwz1+EiNCjAFzYv4mAomWJung2Psy5HX+Sq1i5JHFVlQML3ySgaBkCW/RI\nNv2jP86k9D2Poc4Y0FjLURzERqV9jVWV8aOGUrZCZR7sPzTefdXvPzN7xlTenjGHnAHJd8tUr30r\nRw8fIOTYYaKjovhp6Te0aH1vgjDT3nmdwSNeIiZR2V296l7ZZRxx6y+r+M80/0WkBjAaaKqqZ0Sk\nIPAOUAJoBlQFlgALgatAZ1W9KCKFgTUisgQYBdRU1bop5DEQGAhQqlTpVPWsXvU3c77+kho1a9G0\nkTVgNWbcaxw/Zj2cjw0YzOJF3zLnq9n4+fmRMyCAWbPnJKhVjBszmldefQ2Abt170rN7F96Z/Baj\nXxmbkSKKx9fXl3enfED7++/B6XTycL9HqV6jBp9Mt6aZHDBoMIsWfcPXX36Bn6+lbfZX8xJoG/PK\nS7w6znodqHvPXnR/oBOTJ03k5THpn01y6IC+rP77T86fPUOjmhUYMWo0Q4Y/y+OPPsi8r2YRVLI0\nH8/8CoB/T57g+ace53/zFrN+7Sq+nf81VavXpO0djQAYOXocd93dFoAV3y+hdt1bKV7CeiuhRq06\n3N2sPtVq1KR6zdpu6yvXcTj75ryGOqPJUTCQit1GcWjJFK6c3I8g5LilOOW7PAtA1MUzHFj4FtUe\nfYtLh//hzKYfyVW8PFvfewyA0m0HxL8pcG7Hn+QpWQX/fIUByFWiIlve7Ufu4hXIHVgxTV1bN6xh\n2aJ5VKxSnd73NwPgiWdfYfK454mKiuKJh6yae626DXlhwruEnjrJa6OGMeXzBfj6+jJy7CSGPfwA\nzlgnHbr1oULlavFpr/xxKdVq1Y2vvVauXouebZtSsWoNKler5XbZZQRvb/7Lf2XVaRF5Eiiuqi+5\nuM0CflLVr+zjS6qaV0T8gHeBFkAsUAUoB+TE6oNNcyGlW+s30D9WrfP8iXgAb16jKvRiZFZLSBWz\nRlXGaFi+wMY01otym8o16+r7839KM1zbGkU9lmd6+M/UVFPB9SmO+/l7ECgC1FfVaBE5jGVQDQaD\nF+DFFdX/VJ/qr0A3ESkEYDf/UyI/cNo2qHcCZWz3S4B7LyEaDIZMIa75n9aWVfxnaqr2gl4TgN9F\nxAlsTiX4V0CwiPwDbAB222mcFZG/RWQ7sFxVM/fdEYPBkCxZORCVFv8Zowqgqv8D/peKfx77/xkg\n2ZcpVbV3cu4Gg+HG4c3N//+UUTUYDNkfbx/9N0bVYDBkM7L2PdS0MEbVYDBkL7L4i6m0MEbVYDBk\nK0zz32AwGDyM95pUY1QNBkN2xIutqjGqBoMh22EGqgwGg8GDePEK1caoGgyGbIgxqgaDweAZrOVS\nvNeq/pcmVDEYDDcDYjX/09rcSkqkrYjsEZH9IpJkvRsRedCe2P4fezL7NOdXNDVVg8GQ/fBARVVE\nfIAPgbuB48B6EVmiqq7rsR8C7lDV8yJyLzADSLpCpwumpmowGLIZHltOpRGwX1UPqmoUMBfo6BpA\nVVep6nn7cA1QMq1ETU3VYDBkKwS3m/eFRWSDy/EMVZ3hchwEHHM5Pk7qtdDHgOVpZWqMaibhEMiT\nwzQE0kupgjmyWkKqrBqZdMVTQxbgnlE946nlVOzJ6h/DWs8uVYxRNRgM2Q4Pjf6HAKVcjkvabgnz\nEqkNfArcq6pnE/snxlSlDAZDtsNDo//rgUoiUk5E/IGeWCsqxyMipYFvgb6qutedRE1N1WAwZC8E\nj4z+q2qMiAwFVgA+wEx72aXBtv804BWgEPCRvQR7TFpdCsaoGgyGbIenXv5X1WXAskRu01z2+wP9\n05OmMaoGgyFbkY7R/yzBGFWDwZD9MEbVYDAYPIc3f/tvjKrBYMh2ePFqKsaoGgyG7IcxqgaDweAh\nvH3qP2NUDQZD9sLLl6g2X1RlY/bs2UP9+vWpXbs2q1evBiAmJobWrVsTHh5utBltN602kbS3rMIY\n1WzM9OnTmTJlCsuWLWPy5MkAfPzxx/Tp04dcuXIZbUbbTarNY1P/ZQrGqGYBhw8fplq1agwYMIAa\nNWrQpk0bIiIi+OSTT2jYsCF16tThgQceiP/179evH8OGDaNp06aUL1+ehQsXAuDn50d4eDjh4eH4\n+fkRFhZGcHAwDz30kNFmtGULbRnFm2uqqKrZMmGrX7++psShQ4fUx8dHN2/erKqq3bp109mzZ+uZ\nM2fiw7z00ks6depUVVV9+OGHtWvXrup0OnXHjh1aoUIFVVU9cuSI3nHHHdqkSRPdunWrjhgxQn/7\n7bcU83UHo81oywxtwAb10LNVq86teuhMRJqbJ/NMz+ZVNVURKSsi229wng1EZOqNzBOgXLly1K1b\nF4D69etz+PBhtm/fTvPmzalVqxZfffUVO3bsiA/fqVMnHA4H1atX59SpUwCULl2alStXsnr1anLl\nysXx48epVq0affv2pUePHuzd69akOkab0Zal2jKCNzf/s93ov4j4qKrTU+mp6gZgQ5oBPUyOHNcm\nY/bx8SEiIoJ+/frx3XffUadOHWbNmsXKlSuTDW/98CfkpZde4rXXXmPq1Kn079+fsmXL8uKLL/LV\nVyYZodEAABYVSURBVF8ZbUabV2vLCGb0P334ishXIrJLRBaKSC4ROSwib4rIJqCbiNQVkTX2KoeL\nROQWESkqIhsBRKSOiKg9FyIicsBOp5uIbBeRrSLyh+3XUkSW2vtjRWSmiKwUkYMiMixOlIi8bK+6\n+JeIzBGRZz194pcuXaJEiRJER0en6+b8/fffCQwMpFKlSoSHh+NwOHA4HB4dkTXajLYbqS1VPLia\nambgjTXVKsBjqvq3iMwEhtjuZ1X1VgAR2QY8qaq/i8g4YIyqPiUiOUUkH9Acq/bZXET+Ak7/v73z\nDrOrqtr47w0QCCFUiVQJ0qRIgIABBekBIRTpvQkhoSOINAEBQYkiYhCkCZaPL/ABCgiiiFIDQoI0\npRdpamihQxLe74+1R27GlMnkzpxzk/V7nnly7z1nzl73zs171l577bVsvyfpJGAz2y9Jmn8K438O\n2BDoAzwu6XxgNWB7oD8wBzAGGN3+FyUNAYZATJWml9NOO42BAwey8MILM3DgQN5+++1p/o5tTj/9\ndEaOHAnAkCFD2H333ZkwYQLnn3/+dNuQtqVtdbBt2tTXVdXkXPuqkNQPuN12m4e5EXAYIWrr235e\n0nzAww3nLANcZXsNSRcRVbr3Ba4ANgfuAFa1fYykC4BlgCuBa2y/JmkD4GjbgyWdAoy3/Z1y7b8T\n7Wt3ABawfXJ5/WzgZdvfn9J7WXPNNX3//d0eVUiSWiJptJvUL6r/6gN8459GTfO8JRaYs2ljTg91\nnP63V/m25+924HdvJ7zUpYDfEJ7luoSwYnsocCLRl2a0pIUmc40PGx5PpJ7efJLM0qgDP1VRR1H9\njKR1yuPdgDsbD9oeB7whab3y0p7AbeXxHcAewJO2PwZeB7Zou4akZWzfa/skYCyTNv2aGncBW5Xw\nwjzA4M69tSRJmkEPaZo/ldlW2chT5nHg4DL1XgCYXKBmb2B4ia2uBpwKYPs54iZ1eznvTuBN22+U\n58MlPVzStu4GHuyIQbbvIxqCPUT0/X4YGDf9by1JkqZQY1e1VjHVOiNpHtvvSJqbEO0htsdM6fyM\nqSbJJzQ7pvr72+6Z5nmLzNezkphqxgs7zoWSVgLmAi6fmqAmSdJ1SFQ6vZ8WKaodxPZuVduQJEmh\nvpqaopokSetRY01NUU2SpNWodnV/WqSoJknSUojc+58kSTLLkJ5qkiQtR07/kyRJmkXVlf2nQYpq\nkiQtRdV7+6dFimqSJC2Hauyq5kJVkiQtR7Ma/0navBSff0rSsZM5LknnluMPSVpjWtdMUU2SpOVo\nRj0VSbMB5wFfAVYCdi1b0Rv5CrBc+RnC5As8TUKKapIkrUdzqlR9AXjK9jO2PwL+F9im3TnbAD8v\nTWHvAeaXtOjULpqimiRJSyGaVk91ceCFhucvltem95xJyIWqLmL06NGvSnq+iZf8FPBqE6/XTNK2\nzjEr2bZUsy40Zszom3vNoU914NS5JDXW37zQ9oXNsmNKpKh2EbYXbub1JN1fRW3IjpC2dY60rXPY\n3rxJl3qJSbt/LFFem95zJiGn/0mSzKrcBywnaWlJPYFdiA4fjVwH7FWyANYGxtl+ZWoXTU81SZJZ\nEtsTJB0C3AzMBlxq+1FJQ8vxC4AbiT53TwHvEZ2ap0qKauvQ5bGgGSBt6xxpW8XYvpEQzsbXLmh4\nbODg6blm9qhKkiRpIhlTTZIkaSIpqkmSJE0kRTVJOoCkhaq2IWkNUlSTpqI6lw+aDhrfh6QDgBMk\nzdEF4/SV1L883lTSEs0eozuQOpSMP0uQq/8tgiTZtqTPAnMCT9ie2HisWgsntUPSysC/AGzXddfQ\nFGl4H3sSxTZG2B7fBUP1Bs6S9AYwL7BnF4zRJTR8J1cChki6wfYtVdtVNSmqLUL58m4BfA/4EBgl\n6Vbb19ZBUGESIToc2IkQ1TckXW779kqN6yANQtHD9sfAfsDqwKnl+Oy2JzRrPNvPShpNpO2cZvu1\nUj3p47r8XadE+ZwGA4cT21D7SprD9k0Vm1YpOf1vESR9HjgS2A7YEHgCWEfSKpUa1g5JqxEJ0oOB\nE4E/A0dKWqFKuzpCEdI2IVsYwPaGwN3A/5XnEyTNkDMymRDJ9cBQovTc/rYnFsGad0bG6WokLQ2c\nDgwDNgIeAwZJ2qhSwyomRbWmSFpE0ghJPSTNA+wBrALMZvttokzZUsBmFdupxn+J0MRLtt+w/Tfg\nD8BYoF81Fnac4pki6SDgfElnStrO9hZAD0k3lvM67am2C5FsJ2kX4B3bVwDHA4dI2knSZsCxXRHH\nbSK9iFnTWNsvApcAKwBDJa1XqWUVkqJaX14HfkwUcxgPjAB+R/yn+6ztseX5Z2bUc+os7WK5fcu/\no4E5JJ0AYPufwASiyG8tkbScpDnL412IPeCHAusDG8B/PNaFJV0zI2M1COrBwDeBBYG7JW1h+2bg\nCOBYwgP8ZRfFcTtFww20N0C5af6F2Bvf1/ZLwNXAHMCmlRlaMbmjquZIuhhYnviSLkFME9cFfgkc\nABxfttpVhqRhxHT/YSKOegcx9X8XuAs4CNjG9tOVGTkFJG0OnAsMsP122ff9BPFZ7wFsaXu8pAVs\nvyFpKdszVNJR0lrAD4Atgb2I6fPcwHG2R0paEOhRxwU+SVsTi2mzE/HmtYmp/5LALcRN4STiPe1t\n++WKTK2M9FRrxmSm00OAB4FriQK5PyKKO2xOLGzcWBY2KkHSToRnNxRYmfBIRwP7A88BfYCd6yio\nhVWBkUQs8MtEWbdLgf1sDyqCeihwRPHMp1tQ28dQbd8H7AwMAra3vQoxE7lC0ma2X6+poK5OeNHn\nAW8CvyLiqBcB9wCfJ24SLxI3ifersbRaUlRrRlmg2Aw4VdIPCY/pW8CTwFVE4eBTCOHaWNKSbalV\n3YGkAZLWaxDynoRnsgkwF3BEmeL2tn2C7e/ZfrS77OsEowhPazjhZd8K/J6Ykq8kaQ9i4e3KzqzG\nS5qrYcq/uqQBAKV8XF/Cu4cQomuAx2fw/TQNSUtKWqc8XgY4DBht+8+29yVsPY/IVDiHWEjtS9wg\nDrb9RkWmV0qKas2QNBC4gBDNxYm42wDgGGAc8Jvi9d0CvAx81M0mrg+cSUz7KDZdDexre1PbH5Vw\nwBBFjcra0c5zfJWIWd8BrFgeXwC8TYQFtiWmsdN9YygZG3tK6lViqCOBsyX9upzyIPBpSSOBE4Cj\nbT/XuXfVXMpn1B94T9JcxGLjq0T90Q0BbB9JzEZ+JqlXWegbB+xm+6/VWF49GVOtEZL6EdPm8ba/\nXV47BljH9lfLSvCKth8qx+ay/UE32daWt4mkc4lp/veA+wlBWAw4i2imdhiwp+1HusO26aHd6vtW\ngIHbiJjwekT61JXl5tAbmGD7w06ONZiIO94GrAMMtf2mpHuBZ23vUoR3feAW24/N6PtrJuX71ge4\ngriR3gscR8xObrJ9WzlvRdt/r8zQmpGeak2Q1JeIS74MLCFpWQDbZxEdHFe2Pd72Q5J6lGNdLqht\nXl2DoA4jBLQn8FPCm/k5MY39PhHrraWgwiSr71+nhFVKitpVxKLa2sB+xfN6tzOC2vD3uaFcsz+w\nANH3CdsDgX6SbrL9sO0RdRLUNvuB2W2/TsTzv05sgvgBESvdrs1jJeKqM80W5RklRbU+vErknW5F\npFOtL2lNSZ8DFiJW0oFPBK6b+M9edMVGg6HAMNsbAxcD3wEWtv19wtvbva6C2oakNYAdCO/xaUkb\nADva/hUwBliauGl0ioYb0FBgDSJU8xawnqQlyzlrAz3bnteF4sl/rNi9d5WkXkTY4loio2Nl4Bwi\nPPIKfHKjqvsOsO4it6lWjKTFgLltP6Vo7XAO0YW3H7FC3BM4pYpYW0ntOUvSgbbfIhZTngIWJRK+\nh0taERgpaVvb93a3jR2hXT4tRMvhscAvgNeI97OIohLVT4A+tsfN4JhbE1tPt7T9D0lvEX9PSfqT\n7WfLjalWlIXSzYmFu8Nsvy/pA2I2MhE4gwj3nNydC6StRIpqhZSY3XFEAv+vidjVw0SxlF8rKv/0\nsv3CZIShyylTv10V1ZOWsX2BpNeAdSW9WnIQbyZE6YWpXqwi2sVQ1wA+sv2IpDOAvYGLSkhlP2Ch\nhsWWGWUx4IoiqLPbvkHSRCLG+r6kF4CJdfHu2n2/1iLyTR+RtDNwILHKfwNxk/8oBXXKpKhWiO13\nFTuP+hOxqkWIHTwHSnq8Mfhf1X8+xV7+jYBtiqCeQqTMDChpVf2BHeqa5N0gqIcSi4C9JY0gxPSg\ncmx/wqvco4lDPw9sK+lq221pUj0Iz/hPbmJRlmZQPNR1CQ/+OSI+PpZIL7uFSOa/zfbFlRnZIqSo\nVkyZVt8haVuixNyiwJeIfdWVUhYeBgHzAbsTSd5nlMdfJOJr33F9E/sBkDQI2NR2f0mrEjeGHpKu\nIkrvDQb2anI+7V3EZ7SPpLuA+YmsiF0cW3drwWQ81D2Jxbq/Af8us6TFiVh/HyL2n0yFTKmqIZKW\nt/1ExTbMbfs9RV2BPwOXE6GJEcAlts+v0r6Ooij6fBIhcOs4tqIOIOKC9wGXEb3c3+uCsRcFtgG2\nJkIKZ7alw9UJRfGTZ2y/JOkoIs3sJ7Y/UOyYO4GI619bqaEtQopqjWjMBS3PKyk+XVJlNgDuK7HA\nQYQonUbsnDqBEIs36xITbGNyn5lie+XRwNPAObZfV2yyOBw4pMSOu9KmngC2u3ujxlQpMxERN5de\nxPZcCFH9H9uvSNqbqDp2S1Xfx1YjRTX5LxTdBTYichMvInZt7Qh80/a9bV5slTZOjnaLUgcQ+88/\ntv1jSWsSU9txwLm2X5U0Z2cT+2cGFNXOnik30d2A3xI3n8WJ5P6DKjWwRck81eS/sP1MWZDYFpiH\niPN+Gfh6CQfUslBGu8T+PYhwxVBJ59u+nwhhLE4sBPag+7f41gJFjd65gUsknU0sqi1I5J7uTGyR\n3kxREjET+qeT9FSTqaKoMyrCg7my6ljv5GjnoS5BtD45hJjeDyQKvbxie9+SzfCK7X9VZnBFtH1O\nkuax/Y6is8DZwDOEqK5LtMF5C5jPM1jicFYlV/+TafFREazTqzZkcrQT1D2IgtjHEDHgrWx/UVHS\n7wZJH9geVqG5lVIEdRBRxvAZ4Cnb+0vahKjZ8AWiIteptt+s0tZWJkU1mSp1X5hoENSNiTzUwcUL\nM9DWbLAfkQo2shIja0KJK58HHEWEPoZIWqHcaG6RNIFYnKz137zupKgmLYkaupqWlKDDgMdsv1NO\neQ9YW9E5YQtgfdvPVmNtdTRM+ecmwiBX2r6uxErvJcr2bWz7j47iPbVped6q5EJV0nJImp9IVEfS\n+kQK0JNED6mBRRRGETHVS4F1bT9ZmcEV0jDlP44oIL23pOUcvAH8E5it/e9UYOpMQ3qqSSvSl6j4\n9E1gJdvLS3qAiPvuCCDpL7YfrNLIOlDqHWxFeKh3KCr4X19SziAW8i6ryr6ZkRTVpOWw/USZvm4C\n/LDkm74r6VRiY8LeREWl+6u0syokzWZ7YvmMLibipz8qHvxwSR8C3yinn2z7nsqMnQnJlKqkpWiI\nEc5HFMT+PNGE7kpHRajliUpQZ9v+d5W2djeS+jgKblMyHnoTRXqOJzY8/Ljh3DkBbH+YMdTmkqKa\ntDSKligbE7mW8xOl6c60/e5Uf3EmoyxE/Y7otvsoUVR6DFEDdz1gWSJVakRlRs4i5PQ/qTVT8qIk\n9bT9ke3rFXVKBwBfAQ6c1QQVoBS/+SHRQvpd4Gu271a05fkHkbd7vKSFbZ9cpa0zO+mpJrWlXWL/\n/oQTsKDtM9ofL897z4qC2khJ5L8aGG77dEXzvi2Im87PgMVt31mljTM7mVKV1JYGQT2E2Mv/AFF/\n4OC24/qkSR2zuqAC2L4F2Ieo47qr7fFEzHkw8LrtO3M/f9eS0/+kdihadU+w/aKi8dxqxNR+GDAK\nuEClPbe7twliS2D72rI76nJJuwAfEKv848rxnJ52ITn9T2pFWdU/nejU+QtH5fkrgI+BOYC9Hc3o\nDiL2rv++QnNrjaTtiOIyB9gelav83UOKalIbJC0HPAtsRtRzfYXoNLAd0fl0NdsPS9qN2CG0lSvo\nMttKSFrQXVyEO5mUFNWkFkj6DNEPa6Sj5ck6RC+s54CfEjHVo4jWLqsC+9l+pBprk2TKpKgmlSNp\nMLA9cCSwBLAX8C1gTWBXQljPIapNAbxv+6VuNzRJOkCKalIpkhYCrgSGEnHTtcvPP4HhROGUnYgu\nnpemmCZ1J1f/k6r5CBgPfJuoljSM2AX0VSKR/bvE93QLatrGJUkayTzVpFLKXvVbiTbOT5ZFlTuB\n64H5iNXrUUSL5FxwSWpPimpSB0YSLa+3l3SU7YmE0P6BCAnMazu91KQlyJhqUhskrU4I7Ajb55ad\nP71cw3bYSTIlMqaa1AbbD0jaAbhV0njb5xNtUZKkZUhPNakdklYh0qaertqWJJleUlSTJEmaSC5U\nJUmSNJEU1SRJkiaSopokSdJEUlSTJEmaSIpqkiRJE0lRTZqKpImS/irpEUlXlS6fnb3WBpJuKI+3\nlnTsVM6dvxSunt4xTpF0dEdfb3fOZSWvtqNj9ZOU5QpnclJUk2bzvu3VbK9CFEsZ2nhQwXR/72xf\nZ/u7UzllfmC6RTVJmk2KatKV3AEsWzy0xyX9HHgEWFLSIEmjJI0pHu08AJI2l/SYpDFExX/K6/tI\nGlEef1rStZIeLD9fJKpZLVO85OHlvG9Iuk/SQ5K+3XCtEyQ9IelOYIVpvQlJB5TrPCjp6nbe9yaS\n7i/XG1zOn03S8IaxD5zRDzJpHVJUky5B0uxEs76Hy0vLAT+xvTLRl/5EYBPbawD3E11S5wIuArYi\nWiovMoXLnwvcZrs/sAbwKFEm8OniJX9D0qAy5heIxoEDJH1Z0gBgl/LaFkS91mlxje21ynh/B77W\ncKxfGWNLSkPCcnyc7bXK9Q+QtHQHxklmAnLvf9Jsekn6a3l8B3AJsBjwvO17yutrAysBd5VuyT2J\n8n6fA561/SSApF8CQyYzxkZEdwBKRatxkhZod86g8vNAeT4PIbJ9gGvbirRIuq4D72kVSacTIYZ5\ngJsbjl1ZOro+KemZ8h4GAas2xFvnK2M/0YGxkhYnRTVpNu/bXq3xhSKc7za+BPzB9q7tzpvk92YQ\nAWfa/mm7MY7oxLUuA7a1/aCkfYANGo613+ftMvahthvFt631djKTk9P/pAruAb4kaVkASb0lLQ88\nBvSTtEw5b9cp/P4fiQ4BbfHL+YC3CS+0jZuB/RpitYtL6gvcDmwrqZekPkSoYVr0AV6RNAfRjLCR\nHSX1KDZ/Fni8jD2snI+k5SX17sA4yUxAeqpJt2N7bPH4rpA0Z3n5RNtPSBoC/FbSe0T4oM9kLnE4\ncKGkrwETgWGlr/1dJWXpphJXXREYVTzld4A9bI+RNBJ4EPg3cF8HTP4WcC8wtvzbaNM/gL8A8wJD\nbX8g6WIi1jqm1IQdC2zbsU8naXWySlWSJEkTyel/kiRJE0lRTZIkaSIpqkmSJE0kRTVJkqSJpKgm\nSZI0kRTVJEmSJpKimiRJ0kT+H61cidzQG01KAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVUAAAEmCAYAAADSugNBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWd4FUUXgN+TRgsJAqEkgPSO9F4FadKRjiC9gyJdEZEi\nWD8pAtIFlSY9dAuCSK/SCUhJAUIvCZAy349dwk1yk3sTbkjQeZ9nn2SnnDk7O3vu2ZnZGVFKodFo\nNBrH4JTcCmg0Gs2/CW1UNRqNxoFoo6rRaDQORBtVjUajcSDaqGo0Go0D0UZVo9FoHIg2qsmAiIwV\nkR/M/3OJyAMRcXZwGRdF5A1HyrSjzL4ics28nkzPIeeBiOR1pG7JhYicEJFaicgnIrJARG6LyL4k\nUE2TRPwrjappUK6LSDqLsB4isj0Z1bKKUuqyUspdKRWR3Lo8DyLiCnwN1DOv52ZiZZn5LzhOO8cj\nIgtFZIKtdEqpYkqp7YkoohpQF8ihlKqQiPzREJHcIqJExOV5ZVnIrCUi/g6StV1EejhCVgy5XUTk\nT0fLjY9/pVE1cQbefV4hpsfwb64nR5EVSA2cSG5FUgIOMF6vAheVUg+ToewXIvNfi1LqX3cAF4GR\nwC0ggxnWA9hukaYKsB+4a/6tYhG3HZgI7AJCgfxm2ATgL+ABsB7IBPwI3DNl5LaQMQW4YsYdBKpb\nxI0FfjD/zw0owAWobMp+ejzCeLDA+AEcCZwHbgLLgYwWMjsBl8y4D806eCOO+kkDfGWmvwv8CaQx\n45piGMY75jUXiVGvQ4FjZr5lGIa0IPDQvI4HwG+W1xWjXnuY/+cH/jDl3ACWWaRTQH7zf09gERBs\n6jsacDLjupi6fwncBv4BGtpoF8NM/R8C8zB+DDYB94FfgFcs0q8Arpo67gCKmeG9gDDgydO2YCF/\nhCn/sXlPo+4DsBH4ykL+UmC+FT27m/c+wpT/iRneE/DDaNfrAO8YddYfOAf8Y0XmZYv78wCjrTmZ\n9XkJuG7Ws2eMdtndzLsjhrx0GM9GpIVMb+Jpp2Zb+cEMv4PxzGTFeNYizGt+AEy3or/VvBZtZB4Q\nBARgPKfOQJEY9Xjnhdif5DaASXJRZkMGVgETzLAoowpkxHgIO5kNv715nsni4b8MFDPjXc0wPyCf\neRNPAmfNclzMBrnAQoe3MYyuCzAE4+FMbcaNxYpRjXENrhhGZ5J5/i6wB8gBpAK+A5aYcUXNRlPD\njPsaCCduo/qteT0+ZuOrYuZ7ahzrmuUPN6/ZzaJe95kPT0bgFNDH2nVYuy6iG9UlGMbfCeOBqRbD\nQDw1qouAtUB6U+ZZoLsZ1wXDuPU0r6MvEAhIPO1iD8aD7INhSA4BpU0dfgM+tkjfzSw3FfANcMQi\nbiFm24oh/wiQk2c/Uhd5ZlSzmWXWBjoCF4D0cejaBfjT4rw2xo9PGVOfaVgYOrPOtpn3JY0Vedbu\nRzfz/uYF3DGel8Ux0i/CMKDWZNYC/GOExddOe2M4I2nN+1UW8IjZNuKoj/jyrjbLSQdkwWijva3V\n4wuxPy+ysBd2Uc+ManEML8OL6Ea1E7AvRp7dQBeLGzwuRvx24EOL86+ATRbnTSwfOis63QZKmv+P\nxbZRnQn48swrOwXUsYjPjmFQXIAxwFKLuHQYXlQso4phxEKf6hIj7iNgeYy0AUAti3p92yL+c2CW\nteuwdl1EN6qLgNkYfYYx9VAYnqyzeR1FLeJ6W9zHLoCfRVxaM2+2eNpFR4vzlcBMi/OBwJo48mYw\nZT/15BZi3ah2s9YWLc7fwniDuYHFD4mV8roQ3ajOAz63OHc3739uizqrHY88a/fjV6CfxXkhizb1\nNH3eeGTWIrZRja+ddsN403vNiqyothFHWVbzYvxAPsbC6GM4Sb9bq8cXcfyr+wqVUscxDNPIGFHe\nGK88llzC8F6ecsWKyGsW/4daOXd/eiIiQ0XklIjcFZE7GN5tZnv0FpHeGA22g1Iq0gx+FVgtIndM\neacwXmuymtcTpa8y+uHiGijKjOGVnbcSF61ezLKvEL1erlr8H4LFNSeQ4YAA+8wR8m5x6OpK9HsV\n8z5F6aOUCjH/jU8nu+6hiDiLyGQROS8i9zCM41Od4sNau7FkPcaPxRmlVEIGUGLemwcY99hWm7Vb\npvm/C0abSqzM+NrpYmALsFREAkXkc3OA0x7iyvsqRhsJsijzOwyPNVn4VxtVk48xXg8tG18gxs2w\nJBeGV/YUldgCRaQ6htFog9FHlwHDYxY7844Hmiml7llEXcHoL8xgcaRWSgVg9CXltJCRFqPrwRo3\nMPqZ8lmJi1YvIiKm3AAraW3xdIAlrUVYtqf/KKWuKqV6KqW8MbzPGSKS34quYUS/VzHvU1LRAWiG\n8cbjieG5wbN7GFf7sNVuJmIYmuwi0j4B+sS8N+kw7rG9bdZaXMznIBdGt5HlD01CZcbZTpVSYUqp\nT5RSRTG6nBoDne0oh3jyXsHwVDNblOehlCpmj9yk4F9vVJVSfhgDKoMsgjcCBUWkg4i4iEhbjH5J\nXwcVmx6jcQYDLiIyBvCwlUlEcmJ07HdWSp2NET0LmCgir5ppvUSkmRn3M9BYRKqJiBswjjjurel9\nzge+FhFv0yOrLCKpzLIbiUgd0wsYgtFg/0rQ1RvlBGM88G+bZXTDwpCLSGsRyWGe3sZo/JExZESY\nOk0UkfTmtb+PMWCR1KTHuPabGD8Mn8aIv4bRF2k3IlID6IphDN4BpomIT/y5olgCdBWRUua9+hTY\nq5S6aGf+YIz6tdR5CTBYRPKIiLspc5lSKtxOmdeATCLiaREWZzsVkddFpIQ5J/sexg9mpIWsOOsz\nrrxKqSBgK/CViHiIiJOI5BORmhZyc5jPxQvhX29UTcZh9DMCoIw5lI0xjMZNDK+ysVLqhoPK2wJs\nxhhUuYThGdrzGlUH4zXpZ3MC/AMReTpFaQrGiO9WEbmPMRhQ0byeExgjvz9heK23gfjmDw4F/sYY\nQb0FfIbRd3sGY4BtGoaX2ARoopR6Yud1x6Qnxmj7TYxBP0vjXB7YKyIPzOt6V1mfmzoQw+u9gDHS\n/xPGj0JSswjj3gVgDEruiRE/DyhqvnKusSVMRDxMmQNMr22nKWOB+UYQL0qpXzD6vFdi3ON8QDt7\nL8bsGpkI7DJ1roRRj4sxZjb8g9FOByZA5mkMw3zBlOlNPO0U403lZwyjeApjIHaxGTcFaGV+7DDV\nSnHx5e0MuGHcp9tmuuxm3G8Ys1muioijnu94EbMzV6PRaDQO4L/iqWo0Gs0LQRtVjUajcSDaqGo0\nGo0D0UZVo9FoHIheJCGJyJw5s8r1au7kVsMqd0ITO5if9HiktncuePJwJuh+cqsQJ3kyp7OdKJk4\ndfzIDaWUlyNkOXu8qlR4qM10KjR4i1KqgSPKTAjaqCYRuV7Nza49+5NbDausPPYi5s4njnoFs9pO\nlIy8Pvn35FYhTr7vUdF2omSifN4MMb9gTDQqPJRUhdrYTPfoyLd2fcHoaLRR1Wg0Lxci4OTQNd0d\nijaqGo3m5SMFL3GsjapGo3n5sP0RWrKhjapGo3nJSNmv/ynXh9ZoNBprCMbrv63DHlEiDUTkjIj4\niUjMJUIRkWEicsQ8jotIhIhkjE+mNqoajeYlQ4zXf1uHLSnGilffAg0xVqlrLyJFLdMopb5QSpVS\nSpUCRgF/KKVuxSdXG1WNRvPy4RhPtQLGzhEXzJXYlmKsoRsX7TFW5YoXbVQ1Gs1LhtmnauuAzCJy\nwOLoFUOQD9GX5PQn+mL2z0o0Fn5vgLH0YrzogSqNRvNyIdg7+n9DKVXOQaU2AXbZevUHbVQ1Gs3L\niGPmqQZgsQ0Rxg6wcX1u2A47Xv1BG1WNRvPSIeDskClV+4ECIpIHw5i2w9ibLHppxnYxNTF2xbCJ\n7lNNRrZu2UzJYoUpXqQAX34+Oc50Bw7sJ30aV1av/BmA4OBg6tSqTrlSJVi39tlOHq1bNicwMDBR\nuty8GsinvdswonVtRrapw5Yl857puXQBw9+qxcg2dVgyZWKC8i6d+ikftKvLrDHvRYXt2riKzT/N\nTZSeAOWKF6BmpdLUrlqOejUrxYpXSvHBsMFULFmEWpXLcOzIYQBu3AimSb1a1KhYio2+a6PSd27X\nkqtBias3gK1Dq7N6YGVWDqjEsn7G9/dDGhRk/XtVWTWwMlM6liR96tj+i5uLE0v7VmTVgMqsHVSF\n/nWe7cX4fv0CrBpYmU9bFY8Ka1wyO52q5LJbr3HD+1OvfH7aNqgcLXzZ99/R6o3ytKlfiamTx8TK\ndzXQnz4dGtOmXkXa1K/EkgUzo+KmTf6Y9g2r8PGQ3lFhG9cs46f5M+zW67lx0JQqcy+uARjbH53C\n2J79hIj0EZE+FklbAFvNXYptoj3VZCIiIoLB7w7Ad+NWfHLkoHrlCjRq3JQiRYvGSvfRByOpU7de\nVNiKZUvo0bM3zVq0pEXTRjRt1pwNvuspWaoU3t7eidLH2cWZDoM/InfhEoQ+fMCYTm9SvGJ17t66\nwaEdW5m4ZAuubqm4eyv2Nj9x5X0lSzYunj7Op0u3MXf8MK74nSJrjtzsWL+cYdMWW9HCflZt2Eam\nTNbXy/h162b+Oe/HniMnObh/H8MHD2Dz77tYvWIZ73TryZtNW9CxVVPebNyMLZt8KfFaKbJlT1y9\nPaXrvAPcCQmLOt/td5Nvtp4jIlLxfv0C9KyZh6+3nIuW50l4JN3mHSDkSQQuTsLiXhXYefYGF64/\npIi3By2n7eaTFkUpkNWdyzdDaFHWm94LD9mtU+NWHWjTuScfD+0bFXZg9w7+2LaRnzb8iVuqVNy6\nERwrn4uLC+99MIHCxUvx8MF9OjetRcVqr5Mla3ZOnzjKkk1/MWHkQPxOnyBH7rysX/Ej0xbaHL9x\nLA76okoptRFjI1DLsFkxzhcCC+2VqT3VZOLA/n3ky5efPHnz4ubmRqs2bfFdvzZWupnfTqNZi5Zk\n8Xq2jbmLqyshoSE8fvwYZ2dnwsPD+XbaFN4fOjzR+mTInJXchUsAkCadO96583Pr+lV+/Xkxjd/p\nh6tbKgA8M8Y2ZHHlFXEiIjwMpRRPHoXi7OLKxh++o27bLri4JN0Sf5s3rqd1+46ICOUqVOTe3Ttc\nuxqEq6srIaGhPHn8GCez3mbPmEb/94Y6XIe//G4SEWns/3b0yl2yeqS2mi7kSQQALs6Ci7OgFEQq\nhYuTYTTSuDoTHhFJ1+q5+XH3ZcIj7d9TrkyFqnhkeCVa2Mof5/NOn8G4pTLuZ8bMsVfjy5wlG4WL\nlwIgnXt6cucvSPDVIMTJiXDzfj4KDcXF1ZUf5kyj7Tu9cHF9kUs22j36nyxoo5pMBAYE4JMjR9S5\nj08OAgOj95EHBASwbu0aevXuGy28bbsO+K5fR+OG9Rg2YhSzZ82gfce3SZs2rUN0Cw68wqUzJ8hf\nvDRXL1/gzJF9fPxOEyb0asWFE0fszpsmnTslq9ZmdMcGZMichbTu6Tl//Ajlaj3nEpcitG7agLo1\nKrJoQexuhKDAQHxyPBt/yO6Tg6DAQFq2bseWDetp07wh7w4ZwYI5s2jdruNz15tSMK9bWZb3q0Tr\n8rFn5LQs68POs9Y38nQSWDmgEjtH1WK3303+9r9LyJMIdp69wcoBlQi+/5j7j8MpkcOT307F9ioT\nyqV//Diy/y+6tKhDr3ZvcuJo/J5voP8lzpz4m2KlypLOPT1Va9WjY+PqZMqSFff0Hpw4cpBa9Ro/\nt14JxkFfVCUF+vU/DsztdqcqpVollw7DhwxmwqeTcXKK3kA8PT1ZvdYXgNu3b/PVF5+xdMUq+vXp\nyZ3bd3h38PtUrFTZmkibPAp5yNThvek4ZCxp3NMTER7Ow7t3GLtwHRdOHGHaqH58vXYX1nZVjpkX\noPE7fWn8jvGjMHf8MN7qM4Tta5bw954d5MxfmOY93k2wjuu3/E52bx+Cg6/TpllDChQsROWq1W3m\n8/D05MefjbeBO7dvM+1/X7DwxxW8P7APd+/cps+AwZSvGLuP1had5uzj+r3HZEznxtyuZbkQHMLB\ni7cB6FUrD+GRkfgeDbKaN1LBW9P3kD61C1M7liJ/Fnf8rj9g/s6LzN95EYBPWhRl+q9+vFXOhyr5\nM3H26n2+2/5PgvUEozvp3t3bLFj1CyePHeKDgV1Y88dRq/cz5OEDRvTrzPsffYp7eg8AOvd+l869\njXs2YeRAeg8exZpli9i78zfyFy5G9wHDEqVXgrDzi6nkQnuqcaCUCkxKg+rt40OAv3/UeUCAP97e\n0b2cQ4cO0Pnt9hQukIfVq37mvUH9ow1MAUz+dDzDR37A8mVLqFKlGnPmL2Ti+E8SpVN4eBhTh/ei\nSoPmlK/dEICMWbNTrnZDRIR8xUvjJML9O7Gn6lnLa8nF08dRSpHt1Xzs+8WXgZNncj3gElcvJ9w4\nZDfrycsrC282bsbhg/tjxHsT4P9sTndQgD/ZY/Q1f/35p7w3dCSrfl5GxUpVmDprPl9OGp9gXQCu\n33sMwK2HT/jl5HVK5DAMUPPS3tQs5MWI5X/blHH/UTj7LtyiWsFM0cILZ0+PABeDQ6hfPCtDlh4j\nZ8a05MqUOO86SzZvXq/fBBGhWMmyiJMTd27djJUuPCyMEf0606Bpa2o3aBor/syJoyileDVvAX7d\nuIZJ0xfif+kfLv9zPlF6JRj9+p8yEJHJItLf4nysuWDCF+ZiCX+LSFszLreIHDf/7yIia0Vku4ic\nE5GPn1eXsuXK4+d3jov//MOTJ0/4efkyGjWO3nhPnb3A6XP/cPrcP7Ro2Ypvpn5L02bNo+L9zp0j\nwD+AGjVrERoSgpOTEyJCaKjtrSZiopRi7rhheOcpQMO3n314UrZmfU4d+AuAoEsXCA8PI32GjHbl\ntWTlrC9p1XcoEeFhREZGAiDixONHCdP14cOHPLh/P+r/7b/9QuEixaKlqd+wMSuW/IhSigP79pLe\nw5Os2bJHxV/wO0dQoD9Vq9eMVm+PEqgLGH2ead2co/6vkj8TftceUK1AJrrVyM2AxYd5FBZpNe8r\naV2jZgWkcnGicv5M/BMcfYB54Bv5mfbLeVycBSfTO4tUijSuiXt0a9VtxIE9OwG4dMGPsLAwMmSM\nbsiVUowfOYDc+QrSsccAq3Jmff0pfd7/kPDwMCIijH5hJycnHj0KSZReCUP0638KYhnwDcYiCgBt\ngM+AekBJIDOwX0R2WMlbASgOhJhpNiilDlgmMD+D6wWQM1f8U19cXFz4+ptpNG3UgIjICDq/05Wi\nxYoxZ7Yx8NizV5948wOMHTOaseMmANC6bXvatmrBV198xkcfJ9xTPXt0P7s2riRn/sJ82KG+IbPf\nCGo2a8uccUMZ2aYOLq5u9Br7P0SE28FXmTt+OMOmLoozb6lqtQE4sH0zeYq8xite2QDIVbAoo9q+\nQc4CRXi1YFHrCsVB8PVrdO3YGoCI8HBatG5H7br1+X7ebADe6d6LN+o35Netm6lYsghp0qZhyozo\n/a6Txo9h1EfjAGjRui1d2rdi2v++YPiHCf+tzOTuxtSOxqCOs5Ow4VgQf567yab3q+Hq7MTcbmUB\nY7Bq3NpTeKVPxbgWRem76DBe6VPxaaviODkZBnPL31f548yzvtfaRbw4EXCP4PuGJ3w66D6rB1bm\n7NUHnLn6wKZuHw7qzsG9f3Ln9k0aVSlKr3dH0rT124wbMYC2DSrj6urK2C9mICIEXwtiwshBTFmw\ngqMH9rBx9TLyFypKh0bVAOg/dAxVXzdmoGzf6kuREqXwymr8UBUsWoJ2DaqQv3AxChYpkeA6TBQp\n+PVflLJ/NPHfgIicAuoAXsAMYB/wt1Jqvhm/GFgBHAN8lVLFRaQLUFsp1dlMMw64pZT6Jq5yypQt\np/QeVQlH71GVeFL4HlUHHfXJqFOGV1Wq6iNspnvk299hZSaE/5qnCobBbAVkw/Bc89iZL+avz3/r\n10ijSUmkYE/1P9WnarIM43O0VhgGdifQVkScRcQLqIHhvcakrohkFJE0QHNg14tSWKPRxED3qaYc\nzM/Q0gMBSqkgEVkNVAaOYnifw5VSV0Ukd4ys+zCW/coB/BCzP1Wj0bxAUrCn+p8zqgBKqRIW/ytg\nmHlYprmIMTD1FH+lVHM0Gk3yoreo1mg0Gsdi7WOFlII2qnaQ0AUVNBpN0mGsUa2Nqkaj0TgGEcRJ\nG1WNRqNxGNpT1Wg0GgeijapGo9E4CkG//ms0Go2jECRFe6r/xS+qNBrNS46I2DzslNNARM6IiJ+I\njIwjTS0ROSIiJ0TkD1sytaeq0WheOmIu3J4YRMQZY8W6uoA/xupz65RSJy3SZMBYeKmBUuqyiGSx\nLs1Ct+fWTKPRaF4kYudhmwqAn1LqglLqCbAUaBYjTQdglVLqMoBS6rotodqoajSalw47X/8zi8gB\niyPmCuo+wBWLc38zzJKCwCvmAvUHRaSzLd30679Go3mpEMTe1/8bDlhP1QUoi7EGcxpgt4jsUUqd\njS+DRqPRvFw4ZvA/AMhpcZ7DDLPEH7iplHoIPDR3BSkJaKP6oknJ3yf37DE5uVWIk8BdU5JbhXj5\n88M6ya1CnBy9cie5VXgxiMOerf1AARHJg2FM22H0oVqyFpguIi6AG1AR+F98QrVR1Wg0Lx2OMKpK\nqXARGQBsAZyB+eZ6y33M+FlKqVMishlje6VIYK5S6nh8crVR1Wg0LxUJ6FO1iVJqI7AxRtisGOdf\nAF/YK1MbVY1G8/KRMnvWAG1UNRrNy4bj+lSTBG1UNRrNS4ejXv+TAm1UNRrNy0fKdVS1UdVoNC8f\n+vVfo9FoHISI40b/kwJtVDUazUuH9lQ1Go3GkaRcm6qNqkajeckQPfqv0Wg0DsNYVyO5tYiblGvu\n/wNs3bKZ14oVoljh/HzxeexFTpRSvP/eIIoVzk/50q9x+NAhAIKDg6ldsxplSxVn3do1Uelbt2xG\nYGBgonQp8GoW9iwdGXVc2/kFAzrUYky/RuxbNoo9S0eyfkZ/snt5xinDyUnYvWQEK6f0iQqbMKgZ\n+5aNYu74TlFh7d4sz4AOtRKl56NHj3ijRiWqVyxD5XKvMWnC2FhpViz9iWoVSlO1fCnq167G8WNH\nAbgRHEzDN2pQpVxJNqxfG5W+Y5sWBAUlrt4SqttTDh3cj5dHKtauXplkul0PCmBw52Z0aVSFLo2r\n8vOi7wC4d+c2Q7u9xdv1yzO021vcv2t9IZZ9O3+lc4OKdKxXnp9mP1vo5rsvP6F70xp8OqJfVNi2\ndcv5+ftZ1sQkAbbXUk3OPldtVJOJiIgI3hvUn7XrN3H42ElWLF3CqZMno6XZsnkT5/3OcfzUOabP\nnM2gAX0BWL50CT179WHnX/uYPvUbADb4rqdkqdJ4e3snSp9zl65Tqd1kKrWbTJUOnxHyKIx1vx/l\nf9//SoW2k6jUbjKbdh5nVK+GccoY0OF1zvxzLercwz01pYrkpELbSTwJi6BYfm9Sp3Klc9NKzFq+\nI1F6pkqVijUbf2Hn3kPs2H2QX7dtYf++PdHS5MqdG98tv7Fr/xGGjviQ9wYaRn7liqV07d6bX3bs\nZta3hpHYvHE9JUqWInv2xNVbQnUD495/MnoUr9epGxWWFLo5OzvTd8Q4Fm74ixlLN7P2x3lc9DvD\nT3OmUKZSDX7Ysp8ylWrw05zYK4NFREQwZdwIJs9ZxkLfXfy6YRUX/c7w4P49zp08xrx1O3B1deXC\nmZM8fhTKplVLaN6he6L0TAxOTmLzSC60UU0m9u/bR758+cmTNy9ubm60btsOXwsPBcB33Vo6vN0Z\nEaFipUrcvXuHoKAgXF1dCQkJ4fHjxzg7OxMeHs70qd/w/tDhDtHt9QqF+Mc/mMtBt7n/8FFUeNo0\nqVBKWc3jkyUDDaoVY8Hqv6LCIiMVri7ORt7UboSFR/Be5zrMXPoH4eGRidJNRHB3dwcgLCyM8LDw\nWF5JxUpVyPDKKwCUr1CJoABjiUxXV1dCQkN48vgxzk5Gvc2aPpVBg4clSpfE6AYwe+Z0mjRviZfX\ns+2OkkK3TFmyUbBYSQDSuqcnV76C3LgWxF+/bqJ+87YA1G/ell2/bIyV9/SxQ3jnyoN3zty4urlR\n+80W7Pp1E04ihIeFoZTiUWgoLq6uLJv/LS3f7omLq2uidU0QYrz+2zqSC21Uk4nAwABy5Hi2Pq6P\nTw4CAgJspgkMCKBt+w74rl9L4wZ1GT7yA76bOYMOHTuRNm1ah+jWun5Zlm8+GHU+tn8Tzm0aT7uG\n5Rg/c4PVPF8Me4sPp6whMvKZ0X0Q8pgtf55gz9KRXL1xl3sPQilfPDfrtx97Lv0iIiKoUakshXJn\np1btOpQrXzHOtIu/n0+deg0AaNWmPZt819GySQMGDxvJvNkzadP+bYfVmz26BQYGsGH9Grr17BMt\nPKl1u+p/Gb9Tf1OkZFlu3QwmU5ZsAGT0ysqtm8Gx0t+4FkQWCw/ZK5s3N64FkdY9PRVrvkHPFq+T\nySsr6dzTc+roQaq98aZD9LQHQXuqyY6IeIvIz3HEbReR591y4YXi6enJ6nUb2LX3AKVKl2HjhvW0\neKsV/Xr3pH3bVuzZvTvRsl1dnGlUswSrth2OChv77XoKNPyIpZsO0KdtjVh5GlYvzvVb9zl86kqs\nuK+//4VK7SYz8uvVjOnXmPEzfenSojI/fNaNET3qJ0pHZ2dnduw5yPGzlzh0cD8nT1hf3nLnH7/z\nw6IFjB0/CQAPT0+WrVrPb3/upWSpMmze6EvTFm/xbv/evNOxDfv2Jr7e7NXtg+Hv8/H4SbFGr5NS\nt9CHDxgzqAv9R00knXv6aHGJ6X9s32MQc9dsp9/I8cyfOomug0ayYcVixr7XncUzv0q0nglBe6rJ\njFIqUCnVKrn1sMTb2wd//2dGKCDAHx8fH5tpvGOkmTRxPCNGfcjypUuoUrUac+d/z8TxYxOtV/1q\nRTly+grXb92PFbds436a1ykVK7xyqbw0rlmC0xs+YdHkrtQqX5D5E6Lvj1ayUA5E4OzF67R8owxv\nj5hP3hxe5MvllWhdPTNkoFqNWvy6bUusuBN/H+Pd/r35cdkqMmbKFCv+i8kTGDJ8FCtXLKVS5arM\nmL2AzyYBb9nsAAAgAElEQVSOS7Qu9up25NBBerzTkZJF8rFuzUqGvTcg2sCUo3ULDwtjzKCuvNGk\nFTXqNQYgYyYvbl6/CsDN61d5JWPmWPkyZ83OdYsBsuCrgWTOmj1amnMnj6EU5MyTn+2b1zH2m3kE\nXr6I/8XzidLVbkR7qi8UEZksIv0tzseKyFAROW6epxGRpSJySkRWY2zm9TRtPRHZLSKHRGSFiLib\n4XVE5LCI/C0i80Uk1fPqWa58efz8znHxn3948uQJK5YtpVHjptHSNGrSlJ9+WIRSir179uDh4Un2\n7M8att+5cwQE+FOjZi1CQkJwcnJCRAgNDU20Xm0alIv26m9p9BrXeo2zF6/FyjNm2jryN/iIwo0+\npvPIBWzff5ZuoxdFT9OvMeNmbMDVxRlnZ6PBR6pI0qZ2S5B+N4KDuXvHGK0ODQ1l+2+/ULBQoWhp\n/K9cpnOH1sycu5D8BQrGknHe7xyBgQFUq1GLUIt6e/Qo8fVmr25HTvpx9NR5jp46T9Pmb/HFN9Np\n1OTZrsiO1E0pxeej3+XVfAVp0/XZSH2V2g3YsmYZAFvWLKNKndiDj4VLlCbg0gWC/C8R9uQJv21c\nTZXaDaKlmT9lEt0GjSQiPJzIyAgAxMnpuevRFk+3KtKj/y+OZUAbi/M2wF6L875AiFKqCPAxxk6J\niEhmYDTwhlKqDHAAeF9EUgMLgbZKqRIYc3v7WitYRHo93Q43+EbsfipLXFxc+N+U6TRpVJ9SJYrw\nVus2FC1WjDnfzWLOd8bUlAYN3yRPnrwUK5yf/n16MmXajGgyPh7zIZ+Mm2hcZLv2zP5uJtUql6f/\nwHdt15IV0qZ2o3bFwqz97UhU2IRBzTiw4gP2LRtFnUqFGfq50YuS3cuT1dOsVkMsmtR6jUMnLxMU\nfJe7D0I5diaA/cs/ILWbK3+fjbnPWvxcuxpE04ZvUK1CaepUr0St2m9Qv2FjFsz9jgVzjSlDn0+a\nwK1bNxn23kBqVCpL7WrR+zUnfPIRoz8eD8Bbrdsxf+4s6tSoRO9+gxKkS2J0s4UjdTt+aC/b1i7n\n8J6d9Gheix7Na7Hnj2207/kuB/7aztv1y3Nw9x906Gm0lxvXghjZqx0Azi4uDPpoMsO7t6ZLoyq8\n3rAZeQoUjpL95y8bKVS8FJmzZsfdw5P8hYvTrUl1njx+RP7CxROsa8Jw3JQqEWkgImdExE9ERlqJ\nryUid0XkiHmMsSkzrtHclxkROYWxpawXMAPoCPgqpYqLyBpgqlLqNzPtIaAXkA3DePqbYtyA3cBU\nYJpSqoaZvg7QXynVMj4dypYtp3btPeDoS3MIr5QfkNwqxElK3/gvJZOSN/57vXDmgw7YLhqAtN6F\nVKHeM22mOzK2Trxliogzxq6odTGe+/1Ae6XUSYs0tYChSqnG9ur3b/2iagXQCsNQLrMzjwDblFLt\nowWKlHSwbhqN5nlw3EBUBcBPKXUBQESWAs2Ak/HmssG/8fUfDEPaDsOwrogRtwNzG1oRKQ68Zobv\nAaqKSH4zLp2IFATOALmfhgOdgD+SVn2NRhMXDuxT9QEsp6z4m2ExqSIix0Rkk4gUsyX0X+mpmtvM\npgcClFJBIpLbInomsMDsIjgFHDTzBItIF2CJxUDUaKXUWRHpCqww9/7eD7yo7/E0Go0V7Bzdzywi\nln1ws5VSsxNY1CEgl1LqgYi8CawBCsSX4V9pVAHMQaWn/18Eipv/h2J4sdby/AaUtxL+K1A6SRTV\naDQJxs7X/xs2+nEDgJwW5znMsCiUUvcs/t8oIjNEJLNS6kZcQv+tr/8ajebfijjs9X8/UEBE8oiI\nG4aztS5aUSLZxBQmIhUwbObN+IT+az1VjUbz70RwzOR+pVS4iAwAtgDOwHyz67CPGT8LY1ymr4iE\nA6FAO2VjypQ2qhqN5qXDUXP7lVIbgY0xwmZZ/D8dmJ4QmdqoajSal47k/GLKFtqoajSal4tkXjDF\nFtqoajSalwpj6b+UO8aujapGo3np0J6qRqPROBDdp6rRaDQOQiR510u1hTaqGo3mpSMFO6pxG1UR\n8Ygvo+XnWxqNRvMicUrBVjU+T/UEoDAG257y9FwBuZJQL41Go7GKiN0LqiQLcRpVpVTOuOI0Go0m\nOUnBNtW+PlURaQfkVUp9KiI5gKxKqYO28v2XeRIeyZWbIcmthlXKdmyb3CrEycgNp5NbhXj5qmmR\n5FYhTkrnypDcKrwwUvLov80ZtCIyHXgdY3FmgBD0eqIajSaZEIw+VVtHcmGPp1pFKVVGRA4DKKVu\nmctkaTQaTbLwsr/+h4mIE8bgFCKSCYhMUq00Go0mLpJ5C2pb2GNUvwVWAl4i8gnGls+fJKlWGo1G\nEwcCOKdgV9WmUVVKLRKRg8AbZlBrpdTxpFVLo9Fo4iYFO6p2f1HlDIRhdAGk3OVhNBrNf4KU/Ppv\nz+j/h8ASwBtjY6yfRGRUUium0Wg01hCx70gu7PE6OwPllVKjlVIfAhWALkmqlUaj0cSDs4jNwx5E\npIGInBERPxEZGU+68iISLiKtbMm0x6gGEb2bwMUM02g0mmTBEbupiogzxkB8Q6Ao0F5EisaR7jNg\nqz26xbegyv8w+lBvASdEZIt5Xg9ja1eNRqN54RiT/x0iqgLgp5S6ACAiS4FmwMkY6QZizIAqb4/Q\n+Aaqno7wnwA2WITvsUewRqPRJAn2r6eaWUQOWJzPVkrNtjj3Aa5YnPsDFaMXJT5AC4yvSp/PqCql\n5tkjQKPRaF40do7+31BKlXvOor4BRiilIu2dcWDP6H8+EVkqIsdE5OzT4zkV/U8y6r0+VCr2Ko1q\nPrvPd27fokubxtSt/Bpd2jTm7p3bceaPiIig2RuV6fX2W1FhX4wfTZPXKzBsQI+osLU/L2Hh7ARt\nVR6Fk8D8TqX5rIXRtfRJ48Is6FyaBZ1Ls6JneRZ0Lm01X5uy3izuUoZFXcowtlEh3JyNBti3Rm4W\nvlOG0Q0LRqWtV8SL1mW87dbJxUkYWScPo+vm4+N6+WhS1AuAnpVyMLpuXkbXzcvENwswum5eq/nr\nFMjEx/XyMaZePrpXzIGL6eW0LJGVj+rmo0t5n6i0FXN5UqdARrt1s6Rvr+7kyZmNCmVeizfdwQP7\nyZDOjTWrfgYgODiYuq/XoEKZ11i/bk1UuratmhMUGJgoXWLi73+Fxg3qULFMCSqVfY2Z306NlWbn\nju3kypaRahXLUq1iWT77dDwAN4KDaVCnBpXLlcR33dqo9O1bt3CYfgnh6eu/rcMOAgDL1fhymGGW\nlAOWishFoBUwQ0SaxyfUnoGqhcAC81oaAsuBZXaprIlGy7ZvM2/Jmmhhs6d9ReXqtdi2+xiVq9di\n9rSv4sz//ZxvyVegUNT5/Xt3OfH3Edb/vg9XNzfOnDrOo9BQVi5dTMeuvROlY+syPly69Wx1rY99\nT9N10WG6LjrMH+du8Me5m7HyZHZ3o1UZH7r/cITOCw/h5CTUKexFOjdnCmZxp8v3hwiLUOTNnBY3\nFyfeLJ6NVUfsH+sMj1T8b/slJmw7z/ht5ymWzZ08GdMwZ48/E7ZdYMK2Cxz2v8dh//ux8mZI7ULt\nAhn59JcLjNt6HieB8jk9Se3iRM5XUjN+23kiIhXeHqlwdRKq5M7A7363ElV3HTu9w+p1G+NNExER\nwZgPR1HnjbpRYT8vX0r3nr3Y/uceZkwzjN3GDespWbI02b3t//GJDxdnFyZM+oK9h/5m2/ZdzP1u\nJqdPxew6hMpVqvHn3oP8ufcgIz74yNBvxVK69ujNrzt2M/PbKQBs2rCe10qWcph+CcVBC6rsBwqI\nSB5zPZN2wDrLBEqpPEqp3Eqp3MDPQD+l1JrYoix0s6PgtEqpLWYB55VSozGMqyaBlK9cDc8M0b2g\nX7dsoEWbjgC0aNORXzb7Ws17NTCA7b9spnXHLlFh4uREeFg4SikehYbg4uLKvJlT6NS9L66urgnW\nz8vdjcp5M7L+2FWr8a8X9OKXU9etxjmLkMrFCWeBVC5O3HjwhEgFLqbHmtrVifBIRftyPqw8HEhE\npEqQbo8jjOUmnJ0EZychZu6yOT3Zf+Wu1bxOIrg6O+Ek4ObsxJ1HYShTZwA3FyFCKeoWysxvfrdI\noGpRVKteg1deid/LnTVjOs1atCSzV5aoMFdXF0JCQnj8+DHOzs6Eh4czY9pU3hsyLHGKWCFb9uyU\nKl0GgPTp01OwUGGCAmM6ZdZxdXElNCSEJxb6zfx2Ku++7zj9EoKIY4yqUiocGABsAU4By5VSJ0Sk\nj4j0Sax+9hjVx+aCKufNwpoA6RNboCY6N4KvkyVrdgC8smTjRrB1ozXxo+EM/2giTvLslrm7p6dm\nnXo0e6MyXlmykd7Dg6OH9lO3YZNE6TKodj5m7vgnlsECKJnDg9shT/C/8yj2NTx4wtID/qzsVYE1\nfSvx8HEE+y/dITQsgt0XbrOgc2luPnzCw8fhFM2enp1+sb1dWwgwum5evmxaiFPXHnLxVmhUXIHM\nabn/KJzrD57EynfnUTjbztxgUuMCfN6kEKFhEZy69pDH4ZEcv3qf0XXzcjc0nNCwSPJkTMPRwNje\nrqMIDAhg/do19OgV/Xlt3bYDG3zX0axRfYYOH8mc72bSrkNH0qZNmyR6XLp0kb+PHqFs+Yqx4vbu\n3U2VCqVp1awRp06eAKBV2/Zs9F1H88YNGDJsJHNnz6Rt+7eTTD97cNTkf6XURqVUQaVUPqXURDNs\nllIq1vKmSqkuSqmfbcm05zPVwUA6YBAwEfAEutnKJCKDgL7AIYzugqJKqckiMhZ4oJT60o6yEZFa\nwBOl1F/2pE8sIlIYWIoxbayVUup8UpYXhw5WO+B/37qJTJm9KF6yNHt37YgW13PA+/Qc8D4AH7zf\nj3eHj2b5jwvZtf1XChUtTr/BI+wqu0rejNwJecKZaw8ondMzVvwbhbPwy+lgq3nTp3KhWv5MtJmz\nn/uPwxnfpDD1inix9VQwP+3356f9/gCMqFeAebsu0bhEVirkfoXzwQ/5fs8VqzJjooAJ2y6QxtWJ\nvlVy4e2RisB7jwEon8uTfXF4qWldnSjpk54PN5wjJCyC3pVzUjGXJ3sv32XrmZtsPWMY+E5lvVl3\n4jpV82SgaFZ3Au4+YuOpG3bpZi8jhg1m3MRJODlF92U8PT1ZucZ4Q7l9+zZff/kZPy1fxYC+vbhz\n5zYD332fipUqO0SHBw8e0Ll9Gz79/Gs8PKJvQ1eyVBmOn/kHd3d3tm7eSMe2b3Ho79N4enqyfPV6\nAO7cvs3/vvqcH5auZFC/3ty5c5sB7w6mQkXH6GcvKXk7FZueqlJqr1LqvlLqslKqk1KqqVJqlx2y\n+wF1lVIdlVLrlFKTE6ljLaCKtQgRceRusM2Bn5VSpe01qOak4Ocis1cWrl8z+hevXwsiU2avWGkO\n7t/Nr1s38Hq5Igzu8w57dv3B0P7Rf9dO/n0ElCJPvoJsXr+KKXMWc/niBS5e8LNLjxI+HlTNl4kV\nPcsztnFhyubKwEdvGv23zgI1C2Ti1ziMarlXMxB09xF3QsOIiFTsOHeTEj7RH9gCWdIhApdvh/J6\nQS/GrD+Nd4bU5MiQ2i79nhIaFsmZ6w8pls0dMAYkSvt4cCAOo1o4qzs3Hobx4EkEkQoOB9wjb6bo\nHlbODKlB4Nr9x5TN4cmcPf54pXMji7tjlw0+fPAgXTt1oFjBvKxdvZLB7w6INjAF8NmkCQwb8QEr\nli2hcpWqfDd3IZMmOGZRuLCwMDp3aE3rdu1p2rxFrHgPDw/c3Y16rdfgTcLCwrh5I/oPy+eTJzBk\n+ChWLl9KpSpVmTlnAZMnjnOIfvYi2H71T5GLVIvIarD6JgiAUqplPHlnAXmBTSIyH7gNlFNKDYiR\nLh/GFw1eGDsK9FRKnbaIzw30ASJE5G2MSbjdgUdAaWCXOWF3CpAaCAW6KqXOiEgXoCmQFsgHrFZK\nDTcN4TyMUT0FzAfOAO+Z5dRRSr1uljcIcAP2YnRQR4jIA+A7jFW7+gN/xlUP9lC73pusXv4jvQcO\nZfXyH6lTv1GsNEM/HMfQD42Gu3fXDubNnMKX386Pluabz8Yz/svphIeHERERAYCTkxOhofZt6fLd\nzot8t/MiAKVzetKunA/jN54BoNyrr3DpVijBVl6vAa7de0yx7OlJ5eLE4/BIyr6agdNXH0RL06Pq\nq3y+1Q8XJ8HZ/ClXClK72v5dcndzJkIpQsMicXUSimRNx5YzxsNeJIs7V+8/5k5ouNW8t0LCyJsx\nDa7OQliEonAWdy7dDo2WpmmxLPxwMBBnJ4kaNY6EqBkMjuL4mWe/1b17dKXhm41o0vTZQLKf3zkC\nA/ypXrMWf/99jNSpUyMihIbG7nJJKEopBvTtScFCRRgwaLDVNNeuXiVL1qyICAf370NFRpIxU6ao\n+PN+5wgMCKB6jVoc//sYr0TpF2pVXpKRzN/22yI+Ty9xc3IApVQfEWkAvK6UumEaOGvMBvoopc6J\nSEVgBlDbQs5F00BHdReISHeMqQ9VTCPnAVRXSoWLyBvAp8DTOUelMIzvY+CMiEwDsgA+SqniprwM\nSqk7luWISBGgLVBVKRUmIjOAjsAijK6QvUqpITEvRkR6Ab0AvHPE3jdxcJ932PfXTm7fukn10gUY\nNGw0vQYO4d1enfj5p0V458jJlNmLAbh2NYgP3+/H3J9W26zvbZvWU7xkGbJmM/pmixR7jca1ylOo\naHGKFIt/eo891CnsxS+no/f1Zkrnxsj6BRi26gQnr97n97M3mN+pNBFKcfbaA9Ydeza6Xz1/Js5c\ne8DNh4ZRPnf9Id+/U4bzwQ/xC35os3zPNC50Ke+DkwgicPDKPf4OMox2uVwe7L8c3Uv1TO1Cp3Le\nTP/zMhdvhXLI/x6j38hHhFJcufOInReeTVsr6Z2eS7dDufvIMMpX7jxiTL18+N95hP/dxwmqp66d\nOrBz5x/cvHGDQvly8cHojwkPDwOge0/b4x7jPh7NmE8mANC6TTvatWnJ119+zugxYxOkhzX27N7F\nsp9+oGjxElSrWBaAMZ+Mx/+K0f3SrWdv1q5eyfy53+Hs4kKa1KmZt+jHaN1R48d+xEdjjWlWrVq3\no2Pblnzz1eeM+uj59Uso9n7bnxyIUokc6rQl2JjXVc7CqJZTSg142qeKsc9VMIaX+JRUSqkiMeSM\nJbpRXQj8rpT63jzPCUwFCmB4nq5KqcJmmVWVUj3NdJsw+oRPAAeAjRhfim01J/ZGlSMiA4APgKeW\nJA2wRCk1VkTCTT0j4rv+EiXLqFVbn8uJTTK6Lk65ezYWezVxc0RfFCl547+Ezqh4kWRI63LQARPx\nAciav7hq+6XN8SKmtSjisDITgiP7JBOKE3BHKVUqEXkt3ZvxGEa2hdldsN0iztLViABclFK3RaQk\nUB+ja6ENsQfeBPheKWVticNHtgyqRqNJWlLwOFXyLTitlLoH/CMirQHEoKSVpPeJfwqXJ8++guhi\nq1wRyQw4KaVWAqOBMlaS/Qq0EpEsZp6MIvKqLdkajebF4KAvqpJGN3sTikiqJCi/I9BdRI5ivJY3\ns5JmPdBCRI6ISHUr8Z8Dk8zdXu3xvH2A7SJyBPgBiOWNKqVOYhjcrSJyDNgGZLfngjQaTdIi8uwj\nkPiO5MKmERKRChij5Z5ALtOb7KGUGhhfPvOzrqf/L8T43BWl1FiL8H+ABjbknAUsR1t2xojfDRS0\nCBods0zzvLFFmljeqaVe5vkyrHyOq5Ryj09fjUaT9KTgcSq7PNWpQGPgJoBS6ijGMlgajUbzwjEW\nVHkJ56la4KSUuhTjSx89UKPRaJINB08hdij2GNUrZheAMifODwT00n8ajSZZkGT2RG1hj1Hti9EF\nkAu4Bvxihmk0Gk2ykIJtqm2jqpS6jrHOoEaj0SQ7AlELjadE7Bn9n4OVNQCUUr2SRCONRqOxwUvt\nqWK87j8lNcYmWPat16bRaDSOJpkn99vCntf/aHM1RWQxz7kyk0aj0SQWIWUvqJKYb//zAFkdrYhG\no9HYS0r2VO3ZTfW2iNwyjzsYn2xaW2hEo9FoXghPd8mI77BTTgMROSMifiIy0kp8M3Mn6SMickBE\nqtmSGa+nKoZmJXm2YEmkSqq1AjUajcYOjG//HSFHnDEWya8L+AP7RWSdufbHU34F1imllIi8hrGb\ndOH45MarmmlANyqlIsxDG1SNRpPsOOgz1QqAn1LqglLqCcYeddEWdVJKPbCwe+mIZzeUKN3sKPiI\niJS2R0ONRqNJaoxv/+1a+i+z+cr+9Ig5DdSH6DOZ/M2w6OWJtBCR0xiL2tvc9DS+PapczH2xS2O4\nxecxFocWDCfW2jqkGo1Gk+TY2WV6wxEr/yulVgOrRaQGxqL4b8SXPr4+1X0YS+Q1fV6l/ou4uTiR\nM1Py7YseH5sGVE1uFeLEJSWvlAHM/Ouf5FYhTj781PZ+Zv8GBHHUlKoAwHIzuRw8Gz+KhVJqh4jk\nFZHMSqk49y+Pz6iKKciu7Zo1Go3mheC4yf/7gQIikgfDmLYDOkQrSiQ/cN4cqCoDpMJcBjUu4jOq\nXiLyflyRSqmv7dVco9FoHIkjVqkyd2AeAGwBnIH5SqkTItLHjJ+FsTNzZxEJA0KBtrYG7OMzqs6A\nO6bHqtFoNCkBAYdtl6KU2oixs7Jl2CyL/z8DPkuIzPiMapBSalyCNNRoNJoXQAr+StV2n6pGo9Gk\nJIRk3AbaDuIzqnVemBYajUZjL+KYPtWkIk6jqpS69SIV0Wg0Gnt4uvFfSiUxq1RpNBpNspJyTao2\nqhqN5qVDcErBa/9po6rRaF4qXuaBKo1Go0mR2LteanKQkg3+v56tWzbzWrFCFCucny8+nxwrXinF\n++8Noljh/JQv/RqHDx0CIDg4mNo1q1G2VHHWrV0Tlb51y2YEBgY+t179encnb65sVCz7mtX427dv\n06FNSyqXL0WtapU4eeI4ADeCg6lXuwYVy76G77pnerVr3ZwgB+j1lK1bNlOyWGGKFynAl1bqbccf\n28mWOQMVy5WmYrnSfDrBmG4dHBxMnVrVKVeqRIx6a57oegt7/Jhv+rTgy+6N+LxLAzYv+AaAkHt3\nmDWkM5M61mbWkM6E3L9rNX/o/Xt8P6Y/kzvV5bPO9bh4wrjHvt99xpfd3uSnT4dEpT24dQ07VixI\nkH6e6VLx0+gmHJnblcNzulCxSHYWf9CYPTM6sWdGJ05/34M9MzpZzVu3XG6Ozu3K8QXdGNqmQlT4\nhO7V2TezM3OHNYgKa1e7CANavKA1lsRhS/8lCdqoJhMRERG8N6g/a9dv4vCxk6xYuoRTJ09GS7Nl\n8ybO+53j+KlzTJ85m0ED+gKwfOkSevbqw86/9jF9qvEQb/BdT8lSpfH29n5u3Tp2eodVazfGGf/V\n55MoUbIUu/cfYfa8hYwYOhiAFcuX0q1nL37fuYcZ06cCsGnDel4rWZrsDtALjHob/O4A1qzfyKGj\nJ1ixbGmsegOoUq06ew8cZu+Bw3wweoyh37Il9OjZmx1/7eXbaVOAp/VWKtH15uLmRt+vf2DovA0M\nmbueM/t2cOnEYX79aRYFylRh1I+/UaBMFX77aZbV/Gumj6NQhRqMXLyNIfN8yZorP6EP7uN/9gRD\n52/E2cWNoAtnCHv8iH2bf6Zqi7cTpN+XfV9n64GLlOqxgAp9F3H68i06fepLpX6LqdRvMWt2nWPt\nrnOx8jk5Cd/0r0Oz0aso3XMhrV8vROFcGfFI60ap/Fmp0HcRT8IiKZY7M6ndXOhcrxiz1h1JTBUm\nmKev/7aO5EIb1WRi/7595MuXnzx58+Lm5kbrtu3wXb82WhrfdWvp8HZnRISKlSpx9+4dgoKCcHV1\nJSQkhMePH+Ps7Ex4eDjTp37D+0OHO0S3qtVq8ErGjHHGnz59kpo1XwegYKHCXLp0kevXruHq6kJo\nDL1mTJ/Ke+8Pc4heAAf2R6+3Vm3axqq3uHBxdSUkNLp+306b8lz1JiKkSpsOgIjwcCLCw0GEE7t+\noXyDlgCUb9CS439ui5U39MF9LhzdT8VGbUz93EiT3gNxEiLDw1FKEfY4FCdnF7Yvm0O1Fp1xdnG1\nWzePtG5UK5GDhZv/BiAsPJK7Dx9HS/NWjUIs//10rLzlC2XjfOAdLl69S1h4JCu2n6Fx5fxEKoWr\nuex+2tQuhEVE8l6rcsxce4TwiEi7dXteHLWdSlKgjWoyERgYQI4cz1Yd8/HJQUBAgM00gQEBtG3f\nAd/1a2ncoC7DR37AdzNn0KFjJ9KmfTFLDZYoUZJ1a41l5g7s38eVy5cICPCnddsObPBdR/PG9Rky\nfCRzvptJuw4dHapXYEAAPjlyRJ37+OQgMDD2am17d/9FhTIladbkTU6eOAFA23Yd8F2/jsYN6zFs\nxChmz5pB+45vP7d+kRERfNW9MR83r0DBclV5tWgp7t+6gUemLACkz+jF/VuxV4q7FXSFdBkysnTy\ncL7q0YRln4/icWgIqdO6U7hSTb7u0QSPTFlI456eSyePUqJ6vQTplTubJzfuhjB7SH12f9uJGe/V\nI22qZ8MoVYv7cO32Q84H3omV1zuTO/7B96POA27cxyezOw9Cw9iy/x/2zOjE1VsPuffwMeULZ2P9\nbr8E6fa8iB1HcvGfNqoislBEWiUgfQYR6ZeUOtmDp6cnq9dtYNfeA5QqXYaNG9bT4q1W9Ovdk/Zt\nW7Fn9+4kLX/w0BHcvXuHqhXL8N3M6bxWsjTOzs54enry82pf/ti1j5KlyrB543qatWjFwH696NS+\nNXv3JK1eTylVugxnzl9i36Gj9O03gLatWwBmva31Zdee/Wa9+dKiZSv69elJh7aJ18/J2Zkh83wZ\ns2IXl08dJejCmWjxcXlOkRHhBJw9QZVmHRkydz2p0qSJ6iao3b43Q+b50rTfB2ya9z8adHuPPb7L\nWDR2INsWTbdLLxdnJ0rlz8oc36NU7r+YkEdhDG37rG+0zeuFWbE9tpdqi69X7KdSv8WMnP0HYzpX\nZSawkjEAACAASURBVPyiv+jSoAQ/fNiYEe0rJlheQnm6RbWtI7n4TxvVRJABcIhR9fb2wd//2U4O\nAQH++Pj42EzjHSPNpInjGTHqQ5YvXUKVqtWYO/97Jo4f6wgV48TDw4OZs+eza+8hZs/7nps3gsmd\nJ2+0NJ9PmsDQER/w8/IlVKpSlVlzFzJp4ifPXba3jw8B/v5R5wEB/nh7R68TDw8P3N3dAWjQ8E3C\nwsK4cSO6pzj50/EMH/kBy5ctoUqVasyZv5CJ459PvzTpPchfujKn9+0gfcbM3Lt5HYB7N6/j/kqm\nWOk9vbLj6ZWNV4uWAuC1mg0JOHciWhr/cycAhVfOvBz9YxOdx07jZuBlgv1tL5YdcOM+AcH32X/m\nKgCr/zxLqfzG7vLOTkKzqgX4+Y8zVvMG3nxADq/0Uec+mdMTcONBtDQl82VBBM5euUXL6gV5e6Iv\neb0zkM87g03dnhcR20dy8Z8yqiLS2dxu9qiILDaDa4jIXyJy4anXKiLuIvKriBwSkb9F5OlmYJOB\nfOZ2tV88jy7lypfn/+2debyNVRfHv787yDxEIkKZMhQhJFM0SKTJ0CgV0SjRqKjX20QjMiTNiQaF\nDCUiZVaiNyEazPNQLu6w3j/2czn3crmXwzk3++tzPs559n6evc5z713P2muvvdby5cv4feVK9u7d\ny0cjP+TyFmmLLFze8go+eO8dzIzZs2aRP38Bihcvvq99+bJlrF69ioaNGrNr1y5iYmKQREJCwtGI\ndli2bdvG3r17AXj7zWHUq9+A/Pnz75dr+TLWrF5Fg4aN2bUrYZ9cuxN2H/XYNWulvW8fjxp5wH1b\nt24dqSkv586dQ0pKCoUL71dqy5ctY/Wq1TRs1JiEo7xvf2/bTMLOHQAk7tnN0nkzOLVUWarUa8rc\niZ86GSZ+SpULDqzAkb/wKRQsWpwNf64AYNn87zm1dLk0fSa+8RLNbr3f+ViTkwFQTAyJuw9/L9dv\n3cWqTTspX7IQAI2rl2LJny6/cpMapVn615YDFGUq835dR7kSBSl9an7i42Jo3bgiX8xKm6/+ifb1\neOrt74iPiyU2qNiQkmLkzpl5v++RoUz9ixQnTJyqpCpAT6CemW2SdDLwIlAcqI8rOzsG+BjYDVxl\nZjskFQFmSRoDPAxUNbPqGYzRCegEcHqpUoeUJy4ujpdeGUDLyy8lOTmZ9rfcSuUqVXh9iJv+dbyj\nM80ua86kCeOpclY5cufKzZBhacNpej3xGE8+9V8A2rS7jjbXXEm/vs/yeK+jy9jY4ebrmfHtNDZv\n2sRZZUvx6OO9SExMBOC2jp35dckvdO7YAUlUqlSZAYOHpTn/P7168viTfQBo3aYd17W5mpf6Pc9j\nj/c+KrnA3bcXX+7PFZc3IzklmZvbd3D3bWhw3zp1ZvSnHzNsyGDi4uLImSsX77w3Is30u/cTPen9\nVCBf2+toe+1VvND3OR7vlXVLdcfmjYx4pgeWkoylpFDtwsupXK8JpaucyztP3sOc8aModGoJbu7d\nH4Dtm9Yzqu8jdHxuOABX3duL9/vcT3JSIicXP512Dz+/79qLvv2S0yueTYEizro8rVwl+na4jOJl\nz+K0cpUyJV+3gVN486Hm5IiL5fd12+n0wkT3vRtVZFS6qX/xk/Pw2v2XcNXjo0lOMe4fOIWxT19D\nbEwMb3+5mF/+2J/wvuX55ViwdD1rt/wDwE+/bWTu4JtZvHITi1ZszPJ9zAqp0/9oRSdK1WlJ9wDF\nzOyxkGNvAV+Z2fvB551mlk9SPPAS0BBIASoCZwA5gXFmVvVw49WsWcu+mz0v/F8kDCQmHb9V2qzi\na1QdOdFco2r3l93nh6MIH0CFqtWt/6gDoynS06xK0bCNmRVOqOl/BoTGmKT+Rd8AnALUDKzS9TiF\n6vF4ooBw+VQlNZP0q6Tlkh4+SPsNgctwUeAmrHa4a55ISnUK0FpSYYBg+p8RBYANZpYo6UKgdHB8\nJ5Av49M8Hs+xJlyr/5JigYHAZUBl4DpJldN1Wwk0MrOzceWphx7uuieMTzUo6PVfYJqkZOCHQ3R/\nHxgraREwD1gSXGOzpO8kLQYmmFn4oto9Hk+mCdNCVG1guZmtAJD0IdAK2LdFz8y+D+k/C1fG+pCc\nMEoVwMzeBt4+RHve4P9NwPkZ9Ln+YMc9Hs/xI5PT+yKSQhc2hppZqKVZAvgr5PMq4FCBtrcBEw43\n6AmlVD0eT/YnC6v/m8K1UBW4AW/DRQodEq9UPR5PNiNscairgdNDPpcMjqUdTToHGAZcZmab07en\n50RaqPJ4PP8GMrHyn0n3wFygvKQzJOUA2uFi1fcPJZUCPgVuMrOlmbmot1Q9Hk+2IlzB/2aWJOlu\nYBIQCwwPFrQ7B+2DgSeAwsBrwQaSpMO5FLxS9Xg82Y5wbRExs/HA+HTHBoe8vx24PSvX9ErV4/Fk\nP6J4451Xqh6PJ9sRyYQph8MrVY/Hk+2I4grVXql6PJ5siFeqHo/HEx5cuZTo1apeqXo8nuyF/PTf\n4/F4wotXqh6PxxMuIlsu5XB4perxeLIVwk//T0gMSEqOzrIlG3fuOXynCJES5dV9ShfMFWkRMqR4\nlczVrYoEK78M8wW9UvV4PJ7w4af/Ho/HE0b89N/j8XjChfDTf4/H4wknfvrv8Xg8YcKv/ns8Hk+4\n8UrV4/F4woef/ns8Hk8YCUM1lWOGL/zn8XiyHWEq/IekZpJ+lbRc0sMHaT9L0kxJeyR1z8w1vaXq\n8XiyFeFK/ScpFhgIXAysAuZKGmNm/wvptgW4F7gys9f1lqrH48lehK9EdW1guZmtMLO9wIdAq9AO\nZrbBzOYCiZkVzyvVCNGl022ccXoxatc456DtI0e8T91a1alTsxpNG9dn0U8LAdi4cSMXX9iQ2jXO\nYeyYz/b1b3vtlaxdsyZs8r05dCDNGtaiWYOavDlkwAHts76bTrWyxWhxYR1aXFiH/v2eBmDzpo20\nadGUZg1r8eX4/SXU77i5NevXHZl8D993B3Uql6Z5w/2Vgbdt3UL71i24qO7ZtG/dgu3bth5w3p7d\nu7nm0ga0vLAOlzWsySvP/2df2/P/6UmLxrXpcff+QpmffzzioN/1UGxat5pet19L16sb0fXqxnzx\n/rA07WPeGcy11U9jx9bNWTr33Zf70K11U17tee++Y9O/+IRx772eJfmm92zMhB4NGPdAfT6//4I0\nbbc1OoMVLzanUJ74g557a8MyTHywARN6NOCVG6uTI86pi4daVGR89/r0u27/726rmqfRoWGZLMl2\nNGRSqRaRNC/k1SndZUoAf4V8XhUcOyq8Uo0QN9zUntFjxmfYXrrMGUz4aiqz5y/koUce4967OgPw\n8agPua1jJ76ZMYvX+r8KwPgvxlKt2rkUP+20sMj26y8/M/K9Nxk9cTrjps5mypcT+H3Fbwf0O69u\nPcZNnc24qbO5p/ujAIwd/RHXt7+d0ROn89bQgQB8PekLKletxqnFjky+q9vdxPAPP0tzbEj/F6jX\noDGTZy2iXoPGDOn/wgHn5TjpJN75dAJjp85mzNezmD7lK36YN4edO7bz808/Mu6bOcTHx/Pr/xaz\nOyGBT0a8y4233pEl2WJj42j/wBO8/Ok0nnl3HBNHvsVfvy0FnNJcOHMaRYof/O80o3P/2bmDlb8s\n4sWPviY+Pp4/lv3Cnt0JTPl8JM3a3pIl+QCuf20WLV6YQauXvtt3rHjBnDSoWITVWxIOes6pBU6i\nfYMytHrpOy7r+y0xMaLlucXJlzOOKiUK0LzfDBKTjYrF83FSfAytzyvJuzP+yLJsR4Yy9Q/YZGa1\nQl5Dj4d0XqlGiPoNGlKo0MkZttc9vx6FChUC4LzadVm9ehUA8fFx7Nq1iz179hAbG0tSUhKv9X+V\nrg/0CJtsvy37leo1apErd27i4uKoXa8+k774PFPnxsfFkZCwi7179xATyPfm0IF0urvbEctT+/z6\nFCiY9l59PXEcV7W9AYCr2t7A5AljDzhPEnny5AUgKTGRpKREZ8XExJCUlIiZkZCQQFx8PMMGvcxN\nt3UmPv7gVltGFDrlVM6s5Cy2XHnyUuLMcmzZsBaAt/r15qauPTP0/2V0bkxMDElJSZgZexISiIuL\nY8w7g2nergNxWZQvI3q2qsSz45ZgZJwWLDZG5IyPJTZG5IqPZf32PaSYERfrvk+uHLEkJqfQsfGZ\nvD3jD5KOY4qxME3/VwOnh3wuGRw7KrxSzQa889ZwLr6kGQCt217PF+PG0OryS+n+4MO8PmQQ7a6/\ngdy5c4dtvApnVWburO/ZumUzCbt2MW3yJNauWXVAvwVzZ9O8UW06tGvF0iXOt3/FNW2ZPHEcN7du\nQZf7evDem0O5svV15AqjfACbNm6g6KnFATilaDE2bdxw0H7Jycm0bFKHulVKc0GjplSvWZu8efPR\nqOmlXNG0LkVPLUa+/PlZOH8uFze/4qhk2rD6L35fspjyZ9dgztSJnHxKMcpUrJLlc3PlyUuN+k3o\n0fZiCp1yKrnz5mfZoh+o3eSyLMtkBu92rsPn919Au7pOf1xUpSjrtu9myZqdGZ63fvsehn2zkhmP\nX8is3k3YuTuRGUs38c+eZL75ZSPjHqjPhh272ZmQRPVSBflq8fosy3akiLAp1blAeUlnSMoBtAPG\nHOacwxJVq/+SygDjzKzqcRyzFnCzmd172M4RYPo3U3nnreF8OWU6AAUKFOCTz8YBsHXrVl7s9xwf\njPqUu7t0Ytu2rdxzXzfq1D3/qMYsV+Es7rinG+3btCR37jxUqnoOsbGxafpUOac63y74lTx58zJ1\n8kQ6t2/LlNmLyJe/AG98MBqA7du2MuTVFxj01oc80u1Odmzbxm1d7qPGeXWOSr70SEIZ/BXFxsYy\ndspsdmzfxp23tGPpLz9ToVIVOt3dbZ/1/Oj9Xej60OOMeu9NZkz7moqVqnJXtwOiaw5Jwq5/6Nf9\ndm7p8RSxsbF8+kZ/Hh80Isvn5s6bD4ArO9zFlR3uAmDQkw/Q7s7uTP70fRbOnE7pCpW4tmPXTF27\nzYCZrN++h8J5c/BO59r8tuFv7ryoHO2HzDnkeflzxXFR1aI06vMNOxISGdD+XFrVPI3P569h6NQV\nDJ26AoBn2pzNSxOX0qZOSRpUPIUla3YwcPKBrqJwE47VfzNLknQ3MAmIBYab2c+SOgftgyUVA+YB\n+YEUSV2Byma2I6PrZjtLNQiDCBtmNi9aFeriRT9xd5dOfPjxaAoXLnxA+3PP9KHHQ4/y0cgRnF/v\nAoYMe4tn+jwZlrHb3HALYyZ/z4djvqJAwYKccWa5NO358uUnT143tb7womYkJSWyZfOmNH0GvPAs\nd97/IGNHj6JW7Xr07f86r/b9b1jkK3JKUTasd9PsDevXUrjIKYfsn79AQerUb8j0qV+lOf7zoh8x\nM84oW4EJY0fz6uvv8ecfK/h9xfJMy5KUmEi/B26nQfOrqdu0OetW/cGG1X/Svc1FdLmsNps3rOXB\n6y5l66YDren056ZnxZJFmBmnlSnHzK/G8UDfIaz/63fW/rEiU7Kt3+4Skm/+ey9fLlpPnbKFKXly\nLr7oXp/pPRtTrEBOxnarT5F8OdKcd0GFIqzaksCWf/aSlGJMWrSemmUKpelTuUR+JFix8R+aVyvO\nPe/8QOkieShTJLyzkoMRrjhVMxtvZhXMrKyZ/Tc4NtjMBgfv15lZSTPLb2YFg/cZKlSITqUaJ+l9\nSb9I+lhSbkm/S3pO0gKgtaTqkmZJ+knSaEmFJBWVNB9AUjVJJqlU8Pm34DqtJS2WtFDS9KCtsaRx\nwfvekoZL+kbSCkn7lK2kx4Mg4RmSRmQ2EPhI+evPP7mh7bUMHf425ctXOKB9+fJlrFm9igaNGpOQ\nkEBMTAySSEjYHZbxU6fTa1b9xaQvxnDFNW3TtG9cvw4z50NbuGAuKSkpFDp5v+JfuWI569aupu4F\nDdPIt3v3wRdGskqTSy9n9Mj3ARg98n2aNmtxQJ/NmzayY/s2AHYnJPD9tCmcWS7tvXz52afo+vAT\nJCUlkpKcDECMYkhI2JUpOcyM1558gJJnlKflTW6Rq3T5SgyfuohBE+YwaMIcChctzvMjJlGoSNHD\nnpueDwf2pd2dD5KcmEhKipNPMTHsycR9zJUjljwnxe57X79CEX76axu1e31Nwz7f0LDPN6zbvpuW\nL85g0869ac5dszWB6qULkjPeqYh65QuzfP3fafp0a1aBFycsJS5GxAYZTlLMyJkjrHbPgQTVVA/3\nihRRNf0PqAjcZmbfSRoO3Bkc32xmNQAk/QTcY2bTJD0F9DKzrpJySsoPNMCZ7A0kzQA2mNkuSU8A\nl5rZakkFMxj/LOBCIB/wq6RBQHXgGqAaEA8sAOanPzEI2egEcPrppQ75JTvcdD3ffjuNzZs2UbFs\nKR7t2YukJBcKd1vHzjz79H/YsmUz3e67G4C4uDimf79/yvZUr5488WQfAFq3aUe7NlfzYr/n6flE\n70OOm1nuuvV6tm3dQlxcPL2ffYn8BQrywVsunOf6WzoyYdxoPnhrGLGxceTMlZNXhryTZgr+4tO9\n6faok6XlVa3p3L4tQ/q/QNcHH8+yLF3vaM+c76ezdctm6lcvx309enLHPQ9wX8eb+OiDtylRshSv\nvP4uAOvXreGxbncy7IPP2Lh+HQ/e25GU5BRSUlK4rNXVNLlkvzX41fgxnF29xr6ohEpVz+HyRudR\nsXJVKlU5eKhbepb8OIfp4z6mVPlKdG9zkbs/9zxCjQZND9p/y4Z1DHqyO48NfO+w586ZMoGylc/h\n5KLFAChTsQrdrm1CqfKVMuWrLZI3B4NvrQm4RacxC9YwfcmmDPsXzX8Sz7Y9m1tfn8fCP7czceE6\nxnarT1KK8b/VO/hw5v7oo4urnsqiVdvZsMNZwv9bvYMJPRqwZM2OQ/pqw0f07lNVqrURDQQ+1elm\nlmphNsHtZqgONDKzPyQVABaF9CkLfGRmNSS9DnwKdABGAM2Ab4FzzOxBSYOBssAo4FMz2yypMdDd\nzFpI6g0kpk4DJP2C221xLVDIzHoFx18E1phZv4y+S42atSxUCUYTqX8I0Ui016hauHZbpEXIkB5v\n/xBpETJk5UuXzzezWofveXiqnVvTxk+dedh+JQudFLYxs0I0Tv/T/1mlfv4nE+dOx1mppYHPcZZl\nfZxixcw6Az1xYRTzJR3oqIRQjZNMdFrzHs8JjTLxihTRqFRLSUpdvr4emBHaaGbbga2SGgSHbgKm\nBe+/BW4ElplZCm7fbvPUa0gqa2azzewJYCNpY9QOxXdAy8C9kBc40IHn8XiOGzHSYV8Rky1iI2fM\nr8BdwdS7EDDoIH3aA30D32p14CkAM/sd95CaHvSbAWwzs9Q9jH0lLZK0GPgeWJgZgYK9v2OAn4AJ\nwCJge9a/msfjCQtRbKpG1dQ2UIpnHaSpTLp+PwJ1M7jG6SHvnwaeDvl89UFO+SZ4YWa9010rNF62\nn5n1lpQbp7QPWKjyeDzHh+hdpooypRrlDJVUGcgJvG1mCyItkMdzIiIR0en94fBKNZOY2fWRlsHj\n8QREr071StXj8WQ/olineqXq8XiyG5Fd3T8cXql6PJ5sRWqWqmglGkOqPB6PJ9viLVWPx5Pt8NN/\nj8fjCRdZSO0XCbxS9Xg82YpI7+0/HF6pejyebEdGlR6iAb9Q5fF4sh3hyvwvqVmQfH65pANq6Mjx\natD+k6Qah7umV6oejyfbEY58KkFppoHAZUBl4LpgK3oolwHlg1cnDp7gKQ1eqXo8nuxHeLJU1QaW\nm9kKM9sLfAi0StenFfCOOWYBBSUVP9RFvVL1eDzZChG2fKolgL9CPq8KjmW1Txr8QtUx4ocF8zfl\nyxn7RxgvWQTIuMBQZPGyHRknkmylw3WhBQvmT8oVryKZ6JpT0ryQz0PNbGi45MgIr1SPEWZ26JrJ\nWUTSvEjU28kMXrYjw8t2ZJhZszBdajVpq3+UDI5ltU8a/PTf4/GcqMwFyks6Q1IOoB2uwkcoY4Cb\ngyiAusB2M1t7qIt6S9Xj8ZyQmFmSpLuBSUAsMNzMfpbUOWgfDIzH1blbDuzCVWo+JF6pZh+OuS/o\nKPCyHRletghjZuNxijP02OCQ9wbclZVryp3j8Xg8nnDgfaoej8cTRrxS9Xg8njDilarHkwkkFY60\nDJ7sgVeqnrCiaE4flAVCv4ekjsBjkuKPwThFJVUL3l8sqWS4xzgeSJkKxj8h8Kv/2QRJMjOTdCZw\nErDUzJJD2yIrYVo5JFUB1gOYWbTuGsqQkO9xEy7ZxgAzSzwGQ+UBnpe0FcgP3HQMxjgmhPxOVgY6\nSRpnZpMjLVek8Uo1mxD88jYHngP2ADMlTTGz0dGgUCGNIroPaINTqlslvW1m0yMqXCYJURQxZpYC\n3AqcCzwVtMeZWVK4xjOzlZLm48J2/mNmm4PsSSnR8nPNiOA+tQDuw21DLSop3swmRFi0iOKn/9kE\nSWcD9wNXAxcCS4HzJVWNqGDpkFQdFyDdAugJfAPcL6liJOXKDIEiTVVkpwCY2YXA98DHweckSUdl\njBzERTIW6IxLPXe7mSUHCiv/0YxzrJF0BtAH6AI0AZYAl0hqElHBIoxXqlGKpGKSBkiKkZQXuBGo\nCsSa2U5cmrLSwKURllOh/+NcE6vNbKuZ/Q/4CtgIlImMhJknsEyRdCcwSNIzkq42s+ZAjKTxQb8j\ntlTTuUiultQO+NvMRgCPAndLaiPpUuDhY+HHDSO5cLOmjWa2CngDqAh0ltQgopJFEK9Uo5ctQH9c\nModEYAAwEfdHd6aZbQw+lzpay+lISefLLRr8Px+Il/QYgJmtA5JwSX6jEknlJZ0UvG+H2wN+D9AI\naAz7LNZTJH16NGOFKNS7gIeAk4HvJTU3s0lAV+BhnAX43jHy4x4RIQ/QPADBQ3MObm98UTNbDXwC\nxAMXR0zQCON3VEU5koYBFXC/pCVx08T6wHtAR+DRYKtdxJDUBTfdX4Tzo36Lm/r/A3wH3Am0MrPf\nIiZkBkhqBrwK1DSzncG+76W4e30jcLmZJUoqZGZbJZU2s6NK6SjpPOAF4HLgZtz0OTfwiJmNlHQy\nEBONC3ySrsAtpsXh/M11cVP/04HJuIfCE7jv1N7M1kRI1IjhLdUo4yDT6U7AQmA0LkHuK7jkDs1w\nCxvjg4WNiCCpDc6y6wxUwVmk84Hbgd+BfEDbaFSoAecAI3G+wIa4tG7DgVvN7JJAod4DdA0s8ywr\n1PQ+VDObC7QFLgGuMbOquJnICEmXmtmWKFWo5+Ks6IHANuB9nB/1dWAWcDbuIbEK95BIiIykkcUr\n1SgjWKC4FHhK0ks4i+lxYBnwES5xcG+c4moq6fTU0KrjgaSakhqEKPIcOMvkIiAn0DWY4uYxs8fM\n7Dkz+/l4yXcEzMRZWn1xVvYU4EvclLyypBtxC2+jjmQ1XlLOkCn/uZJqAgTp44rirHtwiuhT4Nej\n/D5hQ9Lpks4P3pcF7gXmm9k3ZtYBJ+tAXKTCy7iF1KK4B8RdZrY1QqJHFK9UowxJdYDBOKVZAud3\nqwk8CGwHPg+svsnAGmDvcRaxEfAMbtpHINMnQAczu9jM9gbugE5yOSqjjnSW4yacz/pboFLwfjCw\nE+cWuBI3jc3ygyGI2LhJUq7AhzoSeFHSZ0GXhcCpkkYCjwHdzez3I/tW4SW4R9WAXZJy4hYbN+Hy\nj14IYGb342Yjb0rKFSz0bQeuN7MfIyN55PE+1ShCUhnctDnRzJ4Mjj0InG9mVwUrwZXM7KegLaeZ\n7T5OsqXGbSLpVdw0/zlgHk4hnAY8jyumdi9wk5ktPh6yZYV0q+8tAQOm4XzCDXDhU6OCh0MeIMnM\n9hzhWC1wfsdpwPlAZzPbJmk2sNLM2gWKtxEw2cyWHO33CyfB71s+YATuQTobeAQ3O5lgZtOCfpXM\n7JeICRpleEs1SpBUFOeXXAOUlFQOwMyex1VwrGJmiWb2k6SYoO2YK9RUqy5EoXbBKdAcwBCcNfMO\nbhrbD+frjUqFCmlW37sRuFWCELWPcItqdYFbA8vrnyNRqCE/n3HBNasBhXB1nzCzOkAZSRPMbJGZ\nDYgmhZoqPxBnZltw/vxuuE0QL+B8pVenWqw4v+q/Zovy0eKVavSwCRd32hIXTtVIUi1JZwGFcSvp\nwH4Fd5zYtxddbqNBZ6CLmTUFhgH/BU4xs344a++GaFWoqUiqAVyLsx5/k9QYaG1m7wMLgDNwD40j\nIuQB1BmogXPV7AAaSDo96FMXyJH6OVoILPkUud17H0nKhXNbjMZFdFQBXsa5R9bC/gdVtO8AO174\nbaoRRtJpQG4zWy5X2uFlXBXeMrgV4hxA70j42oLQnucl3WFmO3CLKcuB4riA776SKgEjJV1pZrOP\nt4yZIV08LbiSwxuBd4HNuO9TTC4T1WtAPjPbfpRjXoHbenq5mf0paQfu5ylJU81sZfBgiiqChdJm\nuIW7e80sQdJu3GwkGXga5+7pdTwXSLMTXqlGkMBn9wgugP8znO9qES5ZymdymX9ymdlfB1EMx5xg\n6nedXPaksmY2WNJmoL6kTUEM4iScUvrrkBeLEOl8qDWAvWa2WNLTQHvg9cClcitQOGSx5Wg5DRgR\nKNQ4MxsnKRnnY02Q9BeQHC3WXbrfr/Nw8aaLJbUF7sCt8o/DPeT3eoWaMV6pRhAz+0du51E1nK+q\nGG4Hzx2Sfg11/kfqj09uL38ToFWgUHvjQmZqBmFV1YBrozXIO0Sh3oNbBMwjaQBOmd4ZtN2Osypv\nDOPQfwBXSvrEzFLDpGJwlvFUC2NSlnAQWKj1cRb87zj/+EZceNlkXDD/NDMbFjEhswleqUaYYFr9\nraQrcSnmigMX4PZVR5Rg4eESoABwAy7I++ngfT2cf+2/Fr2B/QBIugS42MyqSToH92CIkfQRLvVe\nC+DmMMfTfoe7R7dI+g4oiIuKaGdu625UcBAL9SbcYt3/gA3BLKkEztefD+f79xwCH1IVhUiqfKA5\negAACTJJREFUYGZLIyxDbjPbJZdX4BvgbZxrYgDwhpkNiqR8mUUu6fMTOAV3vrmtqDVxfsG5wFu4\nWu67jsHYxYFWwBU4l8IzqeFw0YRc8pMVZrZa0gO4MLPXzGy33I65x3B+/dERFTSb4JVqFBEaCxp8\njkjy6SBUpjEwN/AFXoJTSv/B7Zx6DKcstkWLTzCVg90zue2V3YHfgJfNbIvcJov7gLsD3/GxlCkH\ngJkd740ahySYiQj3cMmF254LTql+YGZrJbXHZR2bHKnfx+yGV6qeA5CrLtAEF5v4Om7XVmvgITOb\nnWrFRlLGg5FuUaojbv95ipn1l1QLN7XdDrxqZpsknXSkgf3/BuSyna0IHqLXA1/gHj4lcMH9d0ZU\nwGyKj1P1HICZrQgWJK4E8uL8vA2BboE7ICoTZaQL7L8R567oLGmQmc3DuTBK4BYCYzj+W3yjArkc\nvbmBNyS9iFtUOxkXe9oWt0X6UrmUiD6gP4t4S9VzSOTyjApnwYyKtK/3YKSzUEviSp/cjZve18El\nellrZh2CaIa1ZrY+YgJHiNT7JCmvmf0tV1ngRWAFTqnWx5XB2QEUsKNMcXii4lf/PYdjb6Cw+kRa\nkIORTqHeiEuI/SDOB9zSzOrJpfQbJ2m3mXWJoLgRJVCol+DSGK4AlpvZ7ZIuwuVsqI3LyPWUmW2L\npKzZGa9UPYck2hcmQhRqU1wcaovACjMgtdhgGVwo2MiICBklBH7lgcADONdHJ0kVgwfNZElJuMXJ\nqP6ZRzteqXqyJQqpahqEBN0LLDGzv4Muu4C6cpUTmgONzGxlZKSNHCFT/tw4N8goMxsT+Epn49L2\nNTWzr80l74makufZFb9Q5cl2SCqIC1RHUiNcCNAyXA2pOoFSmInzqQ4H6pvZsogJHEFCpvyP4BJI\nt5dU3hxbgXVAbPpzIiDqvwZvqXqyI0VxGZ8eAiqbWQVJP+D8vq0BJM0xs4WRFDIaCPIdtMRZqN/K\nZfAfG4ScgVvIeytS8v0b8UrVk+0ws6XB9PUi4KUg3vQfSU/hNia0x2VUmhdJOSOFpFgzSw7u0TCc\n//SVwILvK2kP0CPo3svMZkVM2H8hPqTKk60I8REWwCXEPhtXhG6UuYxQFXCZoF40sw2RlPV4Iymf\nuYTbBBEPeXBJeh7FbXjoH9L3JAAz2+N9qOHFK1VPtkauJEpTXKxlQVxqumfM7J9DnvgvI1iImoir\ntvszLqn0AlwO3AZAOVyo1ICICXmC4Kf/nqgmIytKUg4z22tmY+XylNYELgPuONEUKkCQ/OYlXAnp\nf4DbzOx7ubI8f+Lidh+VdIqZ9YqkrP92vKXqiVrSBfbfjjMCTjazp9O3B5/znIgKNZQgkP8ToK+Z\n9ZEr3tcc99B5EyhhZjMiKeO/HR9S5YlaQhTq3bi9/D/g8g/cldqu/UXqONEVKoCZTQZuweVxvc7M\nEnE+5xbAFjOb4ffzH1v89N8TdciV6k4ys1Vyheeq46b2XYCZwGAF5bnt+BZBzBaY2ehgd9TbktoB\nu3Gr/NuDdj89PYb46b8nqghW9fvgKnW+ay7z/AggBYgH2psrRncnbu/6lxEUN6qRdDUuuUxHM5vp\nV/mPD16peqIGSeWBlcCluHyua3GVBq7GVT6tbmaLJF2P2yHU0iJQZTY7IelkO8ZJuD1p8UrVExVI\nKoWrhzXSXMmT83G1sH4HhuB8qg/gSrucA9xqZosjI63HkzFeqXoijqQWwDXA/UBJ4GbgcaAWcB1O\nsb6MyzYFkGBmq4+7oB5PJvBK1RNRJBUGRgGdcX7TusFrHdAXlzilDa6K53CvTD3Rjl/990SavUAi\n8CQuW1IX3C6gq3CB7M/ifk+bE6VlXDyeUHycqieiBHvVp+DKOC8LFlVmAGOBArjV65m4Esl+wcUT\n9Xil6okGRuJKXl8j6QEzS8Yp2q9wLoH8ZuatVE+2wPtUPVGDpHNxCnaAmb0a7PzJZVFYDtvjyQjv\nU/VEDWb2g6RrgSmSEs1sEK4siseTbfCWqifqkFQVFzb1W6Rl8XiyileqHo/HE0b8QpXH4/GEEa9U\nPR6PJ4x4perxeDxhxCtVj8fjCSNeqXo8Hk8Y8UrVE1YkJUv6UdJiSR8FVT6P9FqNJY0L3l8h6eFD\n9C0YJK7O6hi9JXXP7PF0fd4K4mozO1YZST5d4b8cr1Q94SbBzKqbWVVcspTOoY1yZPn3zszGmNmz\nh+hSEMiyUvV4wo1Xqp5jybdAucBC+1XSO8Bi4HRJl0iaKWlBYNHmBZDUTNISSQtwGf8Jjt8iaUDw\n/lRJoyUtDF71cNmsygZWct+gXw9JcyX9JOnJkGs9JmmppBlAxcN9CUkdg+sslPRJOuv7Iknzguu1\nCPrHSuobMvYdR3sjPdkHr1Q9xwRJcbhifYuCQ+WB18ysCq4ufU/gIjOrAczDVUnNCbwOtMSVVC6W\nweVfBaaZWTWgBvAzLk3gb4GV3EPSJcGYtXGFA2tKaiipJtAuONYcl6/1cHxqZucF4/0C3BbSViYY\n43KCgoRB+3YzOy+4fkdJZ2RiHM+/AL/33xNuckn6MXj/LfAGcBrwh5nNCo7XBSoD3wXVknPg0vud\nBaw0s2UAkt4DOh1kjCa46gAEGa22SyqUrs8lweuH4HNenJLNB4xOTdIiaUwmvlNVSX1wLoa8wKSQ\ntlFBRddlklYE3+ES4JwQf2uBYOylmRjLk83xStUTbhLMrHrogUBx/hN6CPjKzK5L1y/NeUeJgGfM\nbEi6MboewbXeAq40s4WSbgEah7Sl3+dtwdj3mFmo8k0tve35l+On/55IMAu4QFI5AEl5JFUAlgBl\nJJUN+l2Xwflf4yoEpPovCwA7cVZoKpOAW0N8tSUkFQWmA1dKyiUpH87VcDjyAWslxeOKEYbSWlJM\nIPOZwK/B2F2C/kiqIClPJsbx/AvwlqrnuGNmGwOLb4Skk4LDPc1sqaROwBeSduHcB/kOcon7gKGS\nbgOSgS5BXfvvgpClCYFftRIwM7CU/wZuNLMFkkYCC4ENwNxMiPw4MBvYGPwfKtOfwBwgP9DZzHZL\nGobztS4IcsJuBK7M3N3xZHd8liqPx+MJI3767/F4PGHEK1WPx+MJI16pejweTxjxStXj8XjCiFeq\nHo/HE0a8UvV4PJ4w4pWqx+PxhJH/A3Jegl23qTSZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cnf_matrix_val = confusion_matrix(y_val_true, y_val_prediction)\n", + "cnf_matrix_vpn = confusion_matrix(y_test_vpn_true, y_test_vpn_prediction)\n", + "cnf_matrix_tor = confusion_matrix(y_test_tor_true, y_test_tor_prediction)\n", + "\n", + "# Plot normalized confusion matrix\n", + "plt.figure()\n", + "plot_confusion_matrix(cnf_matrix_val, classes=class_names, normalize=True,\n", + " title='Normalized confusion matrix for regular validation set',\n", + " fname=MODEL_NAME + \"_val_\" + 'Normalized_confusion_matrix')\n", + "\n", + "# Plot normalized confusion matrix\n", + "plt.figure()\n", + "plot_confusion_matrix(cnf_matrix_vpn, classes=class_names, normalize=True,\n", + " title='Normalized confusion matrix for vpn test set',\n", + " fname=MODEL_NAME + \"_test_vpn_\" + 'Normalized_confusion_matrix')\n", + "\n", + "# Plot normalized confusion matrix\n", + "plt.figure()\n", + "plot_confusion_matrix(cnf_matrix_tor, classes=class_names, normalize=True,\n", + " title='Normalized confusion matrix for tor test set',\n", + " fname=MODEL_NAME + \"_test_tor_\" + 'Normalized_confusion_matrix')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Save Model and weights" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Save Model\n" + ] + } + ], + "source": [ + "model_json = model.to_json()\n", + "with open(MODEL_NAME + '.json', \"w\") as json_file:\n", + " json_file.write(model_json)\n", + "model.save_weights(MODEL_NAME + '.h5')\n", + "print(\"Save Model\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_reference/sessions_plotter.py b/_reference/sessions_plotter.py new file mode 100644 index 0000000..aaad287 --- /dev/null +++ b/_reference/sessions_plotter.py @@ -0,0 +1,42 @@ +import matplotlib.pyplot as plt +import numpy as np + +MTU = 1500 + + +def session_spectogram(ts, sizes, name=None): + plt.scatter(ts, sizes, marker='.') + plt.ylim(0, MTU + 100) + plt.xlim(ts[0], ts[-1]) + # plt.yticks(np.arange(0, MTU, 10)) + # plt.xticks(np.arange(int(ts[0]), int(ts[-1]), 10)) + plt.title(name + " Session Spectogram") + plt.ylabel('Size [B]') + plt.xlabel('Time [sec]') + + plt.grid(True) + plt.show() + + +def session_histogram(sizes, plot=False): + hist, bin_edges = np.histogram(sizes, bins=range(0, MTU + 1, 1)) + if plot: + plt.bar(bin_edges[:-1], hist, width=1) + plt.xlim(min(bin_edges), max(bin_edges)+100) + plt.show() + return hist.astype(np.uint16) + + +def session_2d_histogram(ts, sizes, plot=False): + # ts_norm = map(int, ((np.array(ts) - ts[0]) / (ts[-1] - ts[0])) * MTU) + ts_norm = ((np.array(ts) - ts[0]) / (ts[-1] - ts[0])) * MTU + H, xedges, yedges = np.histogram2d(sizes, ts_norm, bins=(range(0, MTU + 1, 1), range(0, MTU + 1, 1))) + + if plot: + plt.pcolormesh(xedges, yedges, H) + plt.colorbar() + plt.xlim(0, MTU) + plt.ylim(0, MTU) + plt.set_cmap('binary') + plt.show() + return H.astype(np.uint16)