bump feat: stable version

main
yulonger's Desktop 2 years ago
parent 984d403510
commit 28fff1c924

@ -1,6 +1,6 @@
import datetime
CSV_PATH = './_dataset/TrafficLabelling_/Friday-WorkingHours-DDoS.csv'
CSV_PATH = './_dataset/TrafficLabelling_/Friday-WorkingHours-merged.csv'
BYPASS_COLUMNS= ('Destination Port', 'Label')
UNIQUE_COLUMNS = [' Bwd PSH Flags', ' Fwd URG Flags', ' Bwd URG Flags', ' CWE Flag Count',
'Fwd Avg Bytes/Bulk', ' Fwd Avg Packets/Bulk', ' Fwd Avg Bulk Rate',

@ -16,6 +16,7 @@ def input_csv_to_df(file_path: str) -> pd.DataFrame:
def averaging_df(df: pd.DataFrame):
logger.info(f"Total: {len(df)} averaging...")
numeric_features = df.dtypes[df.dtypes != 'object'].index
scaler = QuantileTransformer()
df[numeric_features] = scaler.fit_transform(df[numeric_features])
@ -27,21 +28,37 @@ def averaging_df(df: pd.DataFrame):
def clean_data(df: pd.DataFrame) -> pd.DataFrame:
df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna(axis=0) # 删除具有NaN值的行
df = get_ddos_df(df)
# df = get_ddos_df(df)
df = drop_columns(df, UNIQUE_COLUMNS)
# df = drop_unique_columns(df)
df = df.iloc[:, 7:]
return df
def slice_df(df: pd.DataFrame):
logger.info(f"Total: {len(df)} slicing...")
ddos_df = select_label_rows(df, 'DDoS')
normal_df = select_label_rows(df, 'BENIGN')
return ddos_df, normal_df
def process(df: pd.DataFrame, label: str = None):
df = clean_data(df)
df_clean_data = averaging_df(df)
create_dir(IMG_SAVE_PATH)
generate_and_save(df_clean_data)
ddos_df, normal_df = slice_df(df)
ddos_df = averaging_df(clean_data(ddos_df))
normal_df = averaging_df(clean_data(normal_df))
logger.info(f"DDoS: {len(ddos_df)}, Normal: {len(normal_df)}")
ddos_save_path = f"{IMG_SAVE_PATH}/ddos"
benign_save_path = f"{IMG_SAVE_PATH}/benign"
create_dir(ddos_save_path)
generate_and_save(ddos_df, ddos_save_path)
create_dir(benign_save_path)
generate_and_save(normal_df, benign_save_path)
def generate_and_save(df_clean_data: pd.DataFrame):
def generate_and_save(df_clean_data: pd.DataFrame, save_path: str = IMG_SAVE_PATH):
row_length = len(df_clean_data.columns)
col_length = len(df_clean_data)
count = 0
@ -61,7 +78,7 @@ def generate_and_save(df_clean_data: pd.DataFrame):
logger.info(f"Shape: {ims.shape}")
array = np.array(ims, dtype=np.uint8)
new_image = Image.fromarray(array)
new_image.save(f"{IMG_SAVE_PATH}/{saves_count}.png")
new_image.save(f"{save_path}/{saves_count}.png")
count = 0
ims = []

Loading…
Cancel
Save